JPH1158473A - Die for injection molding - Google Patents

Die for injection molding

Info

Publication number
JPH1158473A
JPH1158473A JP21738397A JP21738397A JPH1158473A JP H1158473 A JPH1158473 A JP H1158473A JP 21738397 A JP21738397 A JP 21738397A JP 21738397 A JP21738397 A JP 21738397A JP H1158473 A JPH1158473 A JP H1158473A
Authority
JP
Japan
Prior art keywords
core
cap
cooling
mold
support block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21738397A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagahama
坦 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP21738397A priority Critical patent/JPH1158473A/en
Publication of JPH1158473A publication Critical patent/JPH1158473A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • B29C2045/7325Mould cavity linings for covering fluid channels or provided therewith

Abstract

PROBLEM TO BE SOLVED: To shorten the cooling time of a core in the cooling process of a die for injection molding. SOLUTION: The tip of a core of the die for injection molding is formed from a cap support block 3, which is not deformed even if a resin injection pressure is applied to the block 3 at the time of injection, and a core tip cap 1, which is attached to the outer periphery of the block 3 and formed from an extremely thin material so that the cap 1 itself is deformed by a resin pressure. And a cooling medium is passed through gaps formed by bringing the inner periphery of the cap 1 into close contact with the outer periphery of the block 3, on which spiral grooves are formed, to cool the core.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は射出成形用金型に関
し、特に、コアーを冷却できる射出成形用金型に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection mold, and more particularly to an injection mold capable of cooling a core.

【0002】[0002]

【従来の技術】射出成形用金型として例えば、熱可塑性
樹脂からなる管継手を成形する射出成形用金型は、図4
に示すように可動型10と固定型11の間に、ガイド1
8、19に沿って前後進できるスライド板16、17
と、内面形状を形成させるコアー14、15が設けられ
ている。成形品の外面形状を形成させる外型12、13
はそれぞれ可動型と固定型に取り付けられており、外型
12、13とコアー14、15によりキャビティ21が
形成されている。ランナ11から金型へ充填された溶融
した熱可塑性樹脂の熱は冷却工程中に金型との接触面か
ら熱伝導により吸熱される。この冷却工程の際に、冷却
が十分行われないと成形品は変形や歪みを生じてしまう
ため、金型の冷却効率を高める目的から金型内部に冷却
孔を設け、水などの冷却媒体を通すことが多い。
2. Description of the Related Art As an injection molding die, for example, an injection molding die for molding a pipe joint made of a thermoplastic resin is shown in FIG.
The guide 1 is provided between the movable mold 10 and the fixed mold 11 as shown in FIG.
Slide plates 16, 17 that can move forward and backward along 8, 19
And cores 14 and 15 for forming an inner surface shape. Outer dies 12, 13 for forming the outer shape of the molded product
Are mounted on a movable mold and a fixed mold, respectively, and a cavity 21 is formed by outer molds 12 and 13 and cores 14 and 15. The heat of the molten thermoplastic resin filled in the mold from the runner 11 is absorbed by heat conduction from the contact surface with the mold during the cooling process. During the cooling step, if the cooling is not performed sufficiently, the molded product will be deformed or distorted.Therefore, for the purpose of increasing the cooling efficiency of the mold, a cooling hole is provided inside the mold, and a cooling medium such as water is provided. Often passed.

【0003】ところで、金型のキャビティー内に充填さ
れた溶融樹脂は離型するまでの間に外型12、13とコ
アー14、15により冷却され収縮するが、成形品が収
縮するとキャビティーよりも容積が小さくなって、外型
12、13と成形品との間に隙間が生じ、冷却を行うた
めの接触面積が減って成形品を冷却しにくくなる場合が
ある。したがって、溶融樹脂を効率的に冷却するために
は、特に成形品の内面から冷却を行っているコアー1
4、15側からの冷却を効率よく行わなければならな
い。
By the way, the molten resin filled in the cavity of the mold is cooled and shrunk by the outer molds 12 and 13 and the cores 14 and 15 until the mold is released. Also, the volume may be reduced, a gap may be formed between the outer dies 12, 13 and the molded product, and the contact area for cooling may be reduced to make it difficult to cool the molded product. Therefore, in order to efficiently cool the molten resin, the core 1 which cools from the inner surface of the molded product is particularly used.
Cooling from the 4 and 15 sides must be performed efficiently.

【0004】他方、冷却工程ではコアー14、15は離
型まで常に溶融樹脂に囲まれた状態にあるので、熱が蓄
積しやすく高温になりがちである。
On the other hand, in the cooling step, since the cores 14 and 15 are always surrounded by the molten resin until the mold is released, heat is easily accumulated and tends to be high.

【0005】そこで、コアー14、15の温度上昇を押
さえるため、例えば図5に示すように、コアーは冷却孔
2が中心部と外周面に設けられた冷却ブッシュ6とコア
ー外側ブロック7とからなる二重構造になっている。そ
して、冷却孔2に冷却媒体を通すことでコアーを冷却し
ている。
In order to suppress the temperature rise of the cores 14 and 15, the core is composed of a cooling bush 6 having a cooling hole 2 provided at a central portion and an outer peripheral surface, and a core outer block 7, as shown in FIG. It has a double structure. The cooling medium is passed through the cooling holes 2 to cool the core.

【0006】[0006]

【本発明が解決しようとする課題】ところが、コアーは
樹脂充填時に射出ノズルからコアー外周面への斜め方向
の樹脂の流入圧、又は充填後にコアー外周面にかかるコ
アー内部方向へのキャビティー内樹脂圧(以下、単にこ
れらを「 樹脂圧」 という)を受ける。そのため、冷却ブ
ッシュ6を覆っているコアー外側ブロック7の厚みを厚
くすることで耐圧性を確保しなければならなかった。
However, when the resin is filled with the resin, the inflow pressure of the resin in the oblique direction from the injection nozzle to the outer peripheral surface of the core at the time of filling the resin, or the resin in the cavity in the inner direction of the core applied to the outer peripheral surface of the core after filling. Pressure (hereinafter simply referred to as “resin pressure”). Therefore, the pressure resistance must be secured by increasing the thickness of the core outer block 7 covering the cooling bush 6.

【0007】しかし、コアー外側ブロック7の厚みを厚
くすれば、当然、冷却孔2と溶融樹脂に接するコアー外
周面との距離が遠くなり、コアー外側ブロック7の厚み
方向の温度勾配が大きくなって冷却効率が悪くなるとい
う問題点があった。そこで、本発明は、上記のような二
重構造を有するコアーを効率よく冷却できる射出成形用
金型を提供することを目的とする。
However, if the thickness of the core outer block 7 is increased, the distance between the cooling hole 2 and the outer peripheral surface of the core that is in contact with the molten resin is naturally increased, and the temperature gradient in the thickness direction of the core outer block 7 is increased. There was a problem that the cooling efficiency deteriorated. Accordingly, an object of the present invention is to provide an injection molding die capable of efficiently cooling a core having the above-described double structure.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は外
型とコアーとからなり、閉型時に両者間にキャビティー
が形成される射出成形用金型において、コアー先端部が
キャップ支持ブロックと該キャップ支持ブロック外周面
に密着するように取り付けられたコアー先端キャップと
からなり、前記キャップ支持ブロックと該コアー先端キ
ャップとの接触面の一部に空隙を設け、当該空隙に冷却
媒体を通してコアーを冷却することを特徴とする射出成
形用金型である。
According to a first aspect of the present invention, there is provided an injection mold having an outer mold and a core, wherein a cavity is formed between the outer mold and the core when the mold is closed. And a core tip cap attached in close contact with the outer peripheral surface of the cap support block, a gap is provided in a part of a contact surface between the cap support block and the core tip cap, and a cooling medium is passed through the gap to form a core. This is a mold for injection molding characterized by cooling.

【0009】なお、ここでいうコアー先端キャップは厚
みを薄くしているためにそれ自体では樹脂圧によって変
形してしまうものである。
Incidentally, the core tip cap referred to here is deformed by resin pressure by itself because the thickness is reduced.

【0010】請求項2記載の発明は前記空隙がキャップ
支持ブロックの外周面に設けられた冷却溝とコアー先端
キャップからなることを特徴とする請求項1記載の射出
成形用金型である。
According to a second aspect of the present invention, there is provided the injection molding die according to the first aspect, wherein the gap comprises a cooling groove provided on an outer peripheral surface of the cap support block and a core tip cap.

【0011】請求項3記載の発明は前記空隙がキャップ
支持ブロックの外周面に設けられた冷却溝とコアー先端
キャップ内周面に設けられた冷却溝とからなることを特
徴とする請求項1記載の射出成形用金型である。
According to a third aspect of the present invention, the gap comprises a cooling groove provided on the outer peripheral surface of the cap support block and a cooling groove provided on the inner peripheral surface of the core tip cap. Injection molding die.

【0012】(作用)図1に示すように金型にかかる樹
脂圧は従来のコアー外側ブロックよりも非常に薄い厚み
で形成されたコアー先端キャップ1を変形させようとす
るが内周面に密着するキャップ支持ブロック3が樹脂圧
を支えてコアー形状を保持する。
(Operation) As shown in FIG. 1, the resin pressure applied to the mold tries to deform the core tip cap 1 formed with a thickness much smaller than that of the conventional core outer block, but adheres to the inner peripheral surface. The cap support block 3 supports the resin pressure and maintains the core shape.

【0013】これにより、金型に充填されコアー先端キ
ャップ1の周りを覆った溶融樹脂の熱は、コアー先端キ
ャップ1の外周面から効率的に吸熱され、さらに、キャ
ップ支持ブロックの冷却孔2に供給される冷却媒体によ
り金型から外部へ廃熱される。
As a result, the heat of the molten resin filled in the mold and covering the periphery of the core tip cap 1 is efficiently absorbed from the outer peripheral surface of the core tip cap 1, and is further transferred to the cooling holes 2 of the cap support block. The supplied cooling medium wastes heat from the mold to the outside.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明の射出成形用金型の
一例の断面図である。コアーはキャップ支持ブロック3
とキャップ支持ブロック3に密着するように取り付けた
コアー先端キャップ1による二重構造からなる。コアー
先端キャップ1は非常に薄い厚みで形成されているた
め、それ自体ではコアー先端部にかかる樹脂圧により変
形を受ける。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of an example of the injection mold of the present invention. Core is cap support block 3
And a core tip cap 1 attached so as to be in close contact with the cap support block 3. Since the core tip cap 1 is formed with a very small thickness, the core tip cap 1 itself is deformed by the resin pressure applied to the core tip.

【0015】そこで、キャップ支持ブロック3をコアー
先端キャップ1内周面に密着させて樹脂圧を支持する構
造となっている。空隙は、冷却媒体を通水させるために
冷却溝を設けているキャップ支持ブロック3外周面とコ
アー先端キャップ1内周面が樹脂圧が加わった状態で隙
間なく密着することにより形成され、この空隙は冷却孔
2の一部を構成している。
Therefore, the cap support block 3 has a structure in which the cap pressure is supported by closely contacting the inner peripheral surface of the core tip cap 1. The gap is formed when the outer peripheral surface of the cap support block 3 having the cooling groove for allowing the cooling medium to flow therethrough and the inner peripheral surface of the core tip cap 1 are tightly adhered to each other in a state where the resin pressure is applied. Constitutes a part of the cooling hole 2.

【0016】ここで、コアー先端キャップ1の厚みは、
コアーにかかる樹脂圧と空隙の幅をもとにしてコンピュ
ータにより計算された必要最少限の厚みに設計する。即
ち、空隙上のコアー先端キャップ1の厚みが薄すぎると
強度が弱くなり、図6に示すように樹脂圧が高くなると
極端なたわみを起こした後破断する。また、破断せずと
も極端なたわみを起こすと成形品の表面に凹凸を生じさ
せてしまう。
Here, the thickness of the core tip cap 1 is
The thickness is designed to be the minimum necessary thickness calculated by a computer based on the resin pressure applied to the core and the width of the gap. That is, if the thickness of the core tip cap 1 in the gap is too thin, the strength is weakened, and as shown in FIG. 6, when the resin pressure is increased, the core is severely bent and then broken. Further, if extreme bending occurs without breaking, the surface of the molded product will have irregularities.

【0017】キャップ支持ブロック3は、コアー先端キ
ャップ1の形状を保持しながらコアー先端部にかかる樹
脂圧を直接支える。なお、キャップ支持ブロック3の材
質は変形や歪みの起こらない高強度の金属が望ましく、
例えば、S55C材が挙げられる。このような構造のコ
アー先端部に対して樹脂圧がかかり、コアー先端キャッ
プ1はコアー内部方向へ押し込まれる。この圧力により
キャップ支持ブロック3及びコアー先端キャップ1の寸
法精度が、それぞれ所定の値以下(例えば樹脂圧300
kg/cm2 で誤差0.01mm、及び0.05mm以
下)であれば両者は密着する。
The cap support block 3 directly supports the resin pressure applied to the core tip while maintaining the shape of the core tip cap 1. The material of the cap support block 3 is desirably a high-strength metal that does not cause deformation or distortion.
For example, S55C material can be used. Resin pressure is applied to the core tip having such a structure, and the core tip cap 1 is pushed inward of the core. Due to this pressure, the dimensional accuracy of the cap support block 3 and the core tip cap 1 is less than a predetermined value (for example, a resin pressure of 300).
If the error is 0.01 mm or less and 0.05 mm or less in kg / cm 2 ), they are in close contact with each other.

【0018】また、コアー先端部は締結用ボルトでコア
ー本体部に固定されているが、コアー本体部とコアー先
端部を一体にして締結用ボルトをなくしてもよい。図1
のコアー先端部は、キャップ支持ブロック3の外周面と
中心部に冷却孔2が設けられており、冷却孔2に冷却媒
体を通すことで溶融樹脂の熱がコアー先端キャップ1外
周面を通して冷却媒体に吸熱される。なお、コアー先端
キャップ1は、高強度、高熱伝導性の金属を使用すれ
ば、より冷却効率がよいので銅合金、ベリリウム銅、ア
ルミ合金などが適している。
Although the core tip is fixed to the core body with a fastening bolt, the core body and the core tip may be integrated to eliminate the fastening bolt. FIG.
A cooling hole 2 is provided at an outer peripheral surface and a central portion of the core support block 3 at the core distal end, and heat of the molten resin passes through the cooling hole 2 so that heat of the molten resin passes through the outer peripheral surface of the core distal end cap 1. Endothermic. If the core tip cap 1 is made of a metal having high strength and high thermal conductivity, the cooling efficiency is better, so that a copper alloy, beryllium copper, an aluminum alloy or the like is suitable.

【0019】また、コアー先端キャップ1の厚みを薄く
できるため、コアー先端キャップ1を熱伝導性の低い金
属に変えても従来構造の金型に比べて冷却効率を向上さ
せることができる。したがって、熱伝導率は低いが耐食
性の高い金属に変えてもよいし、コアー先端キャップ1
表面に耐食性の金属層をさらに設けてもよい。例えばス
テンレス鋼を用いることができる。
Further, since the thickness of the core tip cap 1 can be reduced, even if the core tip cap 1 is changed to a metal having low thermal conductivity, the cooling efficiency can be improved as compared with a mold having a conventional structure. Therefore, a metal having a low thermal conductivity but a high corrosion resistance may be used.
A corrosion-resistant metal layer may be further provided on the surface. For example, stainless steel can be used.

【0020】なお、冷却溶媒を通す空隙の大きさは常に
一定である必要はなく、冷却能力を高めたい部分を太く
したり、強度を確保したい部分を細くしたりすることも
できる。
The size of the space through which the cooling solvent passes does not need to be constant, and a portion where the cooling capacity is desired to be increased may be made thicker, and a portion where the strength is desired to be secured may be made thinner.

【0021】冷却媒体はコアー本体外部から供給されキ
ャップ支持ブロックの中心部の冷却孔2を経て空隙に入
水される。そして、冷却媒体は空隙を経て再びコアーブ
ロック中心部の冷却孔2を通って排水される。なお、冷
却媒体の供給路は必ずしもらせん状に形成されなくても
よく、成形品の形状や使用する樹脂により最適な経路を
設定すればよい。
The cooling medium is supplied from the outside of the core body and enters the gap through the cooling hole 2 at the center of the cap support block. Then, the cooling medium is drained again through the cooling holes 2 at the center of the core block through the voids. Note that the supply path of the cooling medium does not necessarily have to be formed in a spiral shape, and an optimal path may be set according to the shape of the molded product and the resin used.

【0022】図2において、キャップ支持ブロックの外
周面に冷却孔2を持つ、より具体的な射出成形用金型の
実施形態を示す。冷却孔2の一部を形成している空隙
は、冷却媒体を通水させるための冷却溝が設けられたキ
ャップ支持ブロック3外周面と、コアー先端キャップ1
内周面を樹脂圧が加わった状態で隙間なく密着させるこ
とで形成されている。コアー先端部は、直径100m
m、厚みは5.5mmのS55C材からなるコアー先端
キャップ1がキャップ支持ブロック外周面に密着するよ
うの取り付けられ、幅7mm、深さ8mmの空隙がらせ
ん状に設けられている。
FIG. 2 shows a more specific embodiment of an injection mold having a cooling hole 2 on the outer peripheral surface of a cap support block. The gap that forms a part of the cooling hole 2 includes an outer peripheral surface of a cap support block 3 provided with a cooling groove for allowing a cooling medium to pass therethrough, and a core tip cap 1.
It is formed by closely contacting the inner peripheral surface with no gap in a state where the resin pressure is applied. The core tip is 100m in diameter
A core tip cap 1 made of S55C material having a thickness of 5.5 mm and having a thickness of 5.5 mm is attached so as to be in close contact with the outer peripheral surface of the cap support block, and a gap having a width of 7 mm and a depth of 8 mm is spirally provided.

【0023】図3において、キャップ支持ブロック3外
周面に設けられた冷却溝とコアー先端キャップ1内周面
に設けられた冷却溝とからなる空隙が、冷却孔2の一部
を形成している射出成形用金型の実施形態を示す。コア
ー先端部は、直径100mm、最も薄い部分の厚みが
4.5mmのS55C材のコアー先端キャップ1がキャ
ップ支持ブロック3外周面に密着するようの取り付けら
れ、直径7mmの空隙がらせん状に設けられている。
In FIG. 3, a gap formed by a cooling groove provided on the outer peripheral surface of the cap support block 3 and a cooling groove provided on the inner peripheral surface of the core tip cap 1 forms a part of the cooling hole 2. 1 shows an embodiment of an injection mold. The core tip is attached so that the core tip cap 1 of S55C material having a diameter of 100 mm and the thinnest portion having a thickness of 4.5 mm is in close contact with the outer peripheral surface of the cap support block 3, and a gap of 7 mm in diameter is spirally provided. ing.

【0024】直径75mmの塩化ビニル継手管に、本発
明の射出成形用金型を用いた時の冷却に要する時間をコ
ンピューターを用いてシミュレーションした。射出成形
用金型の材質をS55C材をとして計算すると従来の構
造ではコアー外側ブロック厚みが15mmであって24
秒で冷却が完了した。そこで、本発明の射出成形用金型
を用いて材質S55C材、コアー先端キャップ厚み5m
mで計算を行ったところ、その冷却時間が20秒であり
約17%の時間短縮を行える結果を示した。
The time required for cooling when the injection mold of the present invention was used for a 75 mm diameter vinyl chloride joint tube was simulated using a computer. When the material of the mold for injection molding is calculated based on the material of S55C, in the conventional structure, the core outer block thickness is 15 mm and
Cooling was completed in seconds. Therefore, using the injection mold of the present invention, the material S55C material, the core tip cap thickness 5 m
When the calculation was performed with m, the result showed that the cooling time was 20 seconds and the time could be reduced by about 17%.

【0025】[0025]

【発明の効果】本発明の金型はコアー先端キャップの厚
みを薄くできるので冷却媒体をコアー表面に近い部分へ
通すことができ、コアー先端キャップの温度を常に低く
抑えることができる。また、耐圧性を確保する必要がな
くなったのでコアー先端キャップの材質をより熱伝導性
のよい金属に変えることができる。これにより、射出成
形の冷却工程での冷却時間を短縮することができる。
According to the mold of the present invention, the thickness of the core tip cap can be reduced, so that the cooling medium can be passed to a portion close to the core surface, and the temperature of the core tip cap can always be kept low. Further, since it is no longer necessary to ensure the pressure resistance, the material of the core tip cap can be changed to a metal having better thermal conductivity. Thereby, the cooling time in the cooling step of injection molding can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の射出成形用金型のコアーの概略形状を
示す断面図。
FIG. 1 is a sectional view showing a schematic shape of a core of an injection mold according to the present invention.

【図2】キャップ支持ブロックに冷却溝を設けたコアー
の概略形状を示す断面図。
FIG. 2 is a sectional view showing a schematic shape of a core in which a cooling groove is provided in a cap support block.

【図3】キャップ支持ブロックとコアー先端キャップの
両方に冷却溝を設けたコアーの概略形状を示す断面図。
FIG. 3 is a sectional view showing a schematic shape of a core in which cooling grooves are provided in both a cap support block and a core tip cap.

【図4】管継手用の射出成形用金型の概略形状を示す断
面図。
FIG. 4 is a sectional view showing a schematic shape of an injection mold for a pipe joint.

【図5】従来の射出成形用金型のコアーの概略形状を示
す断面図。
FIG. 5 is a cross-sectional view showing a schematic shape of a core of a conventional injection molding die.

【図6】コアーにかかる樹脂圧によるコアー先端キャッ
プの変形の概念図。
FIG. 6 is a conceptual diagram of deformation of a core tip cap due to resin pressure applied to the core.

【符号の説明】[Explanation of symbols]

1 コアー先端キャップ 2 冷却孔 3 キャップ支持ブロック 6 冷却ブッシュ 7 コアー外側ブロック 12,13 外型 14,15 コアー Reference Signs List 1 core tip cap 2 cooling hole 3 cap support block 6 cooling bush 7 core outer block 12, 13 outer mold 14, 15 core

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】外型とコアーとからなり、閉型時に両者間
にキャビティーが形成される射出成形用金型において、
コアー先端部がキャップ支持ブロックと該キャップ支持
ブロック外周面に密着するように取り付けられたコアー
先端キャップとからなり、前記キャップ支持ブロックと
該コアー先端キャップとの接触面の一部に空隙を設け、
当該空隙に冷却媒体を通してコアーを冷却することを特
徴とする射出成形用金型。
1. An injection mold comprising an outer mold and a core, wherein a cavity is formed between the outer mold and the core when the mold is closed.
The core tip is composed of a cap support block and a core tip cap attached so as to be in close contact with the outer peripheral surface of the cap support block, and a gap is provided in a part of a contact surface between the cap support block and the core tip cap,
A mold for injection molding, wherein the core is cooled by passing a cooling medium through the gap.
【請求項2】前記空隙がキャップ支持ブロックの外周面
に設けられた冷却溝とコアー先端キャップからなること
を特徴とする請求項1記載の射出成形用金型。
2. The injection molding die according to claim 1, wherein said gap comprises a cooling groove provided on the outer peripheral surface of the cap support block and a core tip cap.
【請求項3】前記空隙がキャップ支持ブロックの外周面
に設けられた冷却溝とコアー先端キャップ内周面に設け
られた冷却溝とからなることを特徴とする請求項1記載
の射出成形用金型。
3. The injection molding metal according to claim 1, wherein said gap comprises a cooling groove provided on the outer peripheral surface of the cap support block and a cooling groove provided on the inner peripheral surface of the core tip cap. Type.
JP21738397A 1997-08-12 1997-08-12 Die for injection molding Pending JPH1158473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21738397A JPH1158473A (en) 1997-08-12 1997-08-12 Die for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21738397A JPH1158473A (en) 1997-08-12 1997-08-12 Die for injection molding

Publications (1)

Publication Number Publication Date
JPH1158473A true JPH1158473A (en) 1999-03-02

Family

ID=16703324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21738397A Pending JPH1158473A (en) 1997-08-12 1997-08-12 Die for injection molding

Country Status (1)

Country Link
JP (1) JPH1158473A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276224A (en) * 2006-04-05 2007-10-25 It Techno Kk Cooling structure of arc-shaped core mold and method for forming arc-shaped cooling water hole in the core mold
JP2007326241A (en) * 2006-06-06 2007-12-20 Toyo Seikan Kaisha Ltd Mold
JP2008023920A (en) * 2006-07-24 2008-02-07 Hisashi Kojima Mold core, its manufacturing method and pattern transfer mold
EP2439043A1 (en) * 2010-10-08 2012-04-11 ifw Manfred Otte GmbH Method for cooling an injection moulding tool
WO2019154794A1 (en) * 2018-02-06 2019-08-15 Uponor Innovation Ab Mold assembly for injection molding of a plastic pipe fitting and injection molded pipe fitting made of plastics
CN110421809A (en) * 2019-08-30 2019-11-08 杭州科技职业技术学院 A kind of fretting map depth chamber molding mold cavity type core cooling body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276224A (en) * 2006-04-05 2007-10-25 It Techno Kk Cooling structure of arc-shaped core mold and method for forming arc-shaped cooling water hole in the core mold
JP2007326241A (en) * 2006-06-06 2007-12-20 Toyo Seikan Kaisha Ltd Mold
JP2008023920A (en) * 2006-07-24 2008-02-07 Hisashi Kojima Mold core, its manufacturing method and pattern transfer mold
EP2439043A1 (en) * 2010-10-08 2012-04-11 ifw Manfred Otte GmbH Method for cooling an injection moulding tool
WO2019154794A1 (en) * 2018-02-06 2019-08-15 Uponor Innovation Ab Mold assembly for injection molding of a plastic pipe fitting and injection molded pipe fitting made of plastics
US11577436B2 (en) 2018-02-06 2023-02-14 Uponor Innovation Ab Mold assembly for injection molding of a plastic pipe fitting and injection molded pipe fitting made of plastics
CN110421809A (en) * 2019-08-30 2019-11-08 杭州科技职业技术学院 A kind of fretting map depth chamber molding mold cavity type core cooling body

Similar Documents

Publication Publication Date Title
US20020187217A1 (en) Injection molding cooling core and method of use
JPH1158473A (en) Die for injection molding
JPH09262870A (en) Injection mold and its production
JP6020822B2 (en) Injection mold and injection molding method
JPH07322566A (en) Manufacture of cooling unit
JP4113610B2 (en) Injection molding apparatus having cooling core
JP2009255468A (en) Two-color molding die and two-color molding method
JP3205019U (en) Sprue bush
JP4847782B2 (en) Mold injection mold
JP2000246769A (en) Mold for molding and method for molding
JP2007090530A (en) Method for producing roll
JP2005297386A (en) Mold assembly and molding method
JP2849349B2 (en) Electrofusion joint, method of manufacturing the same, and mold for injection molding
JP4091808B2 (en) Casting mold for vehicle wheel
JP2002172625A (en) Resin molding mold and resin molding method using the mold
JP2004009682A (en) Mold
JP2000301312A (en) Production of cylindrical formed product with die casting, apparatus therefor and cylindrical frame
JPH11115013A (en) Plastic injection molding method
JPH09207136A (en) Mold for resin molding and manufacture thereof
JP4024765B2 (en) Mold for molding disk substrate and molding method
JP2000205173A (en) Method for coating rotator by molding
JP2002326266A (en) Mold for molding optical disk and method for molding optical disk
JPH05329844A (en) Mold
JP3140484B2 (en) Injection mold
JP3285699B2 (en) Method for producing inner surface resin lining reducer and injection mold used for this method