JP2849349B2 - Electrofusion joint, method of manufacturing the same, and mold for injection molding - Google Patents
Electrofusion joint, method of manufacturing the same, and mold for injection moldingInfo
- Publication number
- JP2849349B2 JP2849349B2 JP7063783A JP6378395A JP2849349B2 JP 2849349 B2 JP2849349 B2 JP 2849349B2 JP 7063783 A JP7063783 A JP 7063783A JP 6378395 A JP6378395 A JP 6378395A JP 2849349 B2 JP2849349 B2 JP 2849349B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- joint
- cylinder member
- inner cylinder
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D23/00—Producing tubular articles
- B29D23/001—Pipes; Pipe joints
- B29D23/003—Pipe joints, e.g. straight joints
- B29D23/005—Pipe joints, e.g. straight joints provided with electrical wiring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Branch Pipes, Bends, And The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱可塑性樹脂製の管を
融着接続するための熱可塑性樹脂製継手本体の内周部に
電熱線を埋設した電気融着継手とこの電気融着継手を得
る方法及びその射出成型用金型に関し、特に厚肉大口径
の電気融着継手でも内部欠陥がなく、能率良く製造出来
るものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a thermoplastic resin joint body for fusion splicing a thermoplastic resin tube, and the electric fusion joint. More particularly, the present invention relates to a method for producing an injection-molded metal mold having a large-diameter and large-diameter electro-fusion joint, which has no internal defects and can be manufactured efficiently.
【0002】[0002]
【従来の技術】従来、熱可塑性の樹脂、例えばポリエチ
レン管を電気的に熱融着して接続する管継手として、特
開昭57−69010号公報で開示された電気融着式プ
ラスチック管継手がある。このものは図8に部分断面図
で示すごとく、一端から他端に亘って溝34を設け、こ
の溝34に電熱線33を巻回した内筒部材31と、この
内筒部材31の外面に同様の樹脂を一体成形した外方部
材32とによって設けた電気融着式プラスチック管継手
である。この管継手は、内周部に埋設した電熱線33に
通電することにより、管継手内に挿入した樹脂管と一体
に溶融して接続するものである。2. Description of the Related Art Conventionally, as a pipe joint for electrically welding and connecting a thermoplastic resin, for example, a polyethylene pipe, an electrofusion-type plastic pipe joint disclosed in Japanese Patent Application Laid-Open No. 57-69010 is known. is there. As shown in a partial cross-sectional view of FIG. 8, a groove 34 is provided from one end to the other end, and an inner cylindrical member 31 having a heating wire 33 wound around the groove 34 and an outer surface of the inner cylindrical member 31 are provided. This is an electrofusion-type plastic pipe joint provided by an outer member 32 integrally formed of the same resin. This pipe joint is connected to a resin pipe inserted into the pipe joint by being melted by energizing a heating wire 33 embedded in the inner peripheral portion.
【0003】上記プラスチック管継手は、電熱線33を
巻回した内筒部材31の外面に外方部材32を射出成形
して内筒部材31と外方部材32を一体化したものであ
るが、電熱線33は継手に挿入した接続樹脂管と継手内
周面との境界を加熱して両者を溶融するので、できる限
り継手内周面の近傍に設ける必要がある。このため内筒
部材31の電熱線33を収容する溝34底部の肉厚t
は、1mm以下の薄肉のものが用いられる。これに対し
て管継手の呼び径が大きくなると管継手自体の肉厚も大
きくなるので、外方部材32の肉厚Tも大きくなる。一
例としてこの2層からなるガス用ポリエチレン管接続用
管継手の呼び径別内筒部材と外方部材の肉厚寸法を図8
に示す。[0003] The plastic pipe joint is obtained by injection molding an outer member 32 on the outer surface of an inner cylindrical member 31 around which a heating wire 33 is wound, and integrating the inner cylindrical member 31 and the outer member 32. Since the heating wire 33 heats the boundary between the connecting resin pipe inserted into the joint and the inner peripheral surface of the joint and melts both, it is necessary to provide the heating wire as close as possible to the inner peripheral surface of the joint. For this reason, the thickness t of the bottom of the groove 34 for accommodating the heating wire 33 of the inner cylinder member 31
A thin material having a thickness of 1 mm or less is used. On the other hand, as the nominal diameter of the pipe joint increases, the thickness of the pipe joint itself also increases, so the thickness T of the outer member 32 also increases. As an example, FIG. 8 shows the thickness of the inner cylindrical member and the outer member of each of the nominal diameters of the two-layer pipe joint for connecting a polyethylene gas pipe.
Shown in
【0004】[0004]
【発明が解決しようとする課題】上記従来の薄肉の内筒
部材31の外面に大きな肉厚寸法の外方部材32を射出
成形すると、外方部材32の大きな射出圧力と熱容量に
よって内筒部材31が溶融し、内筒部材31の溝34に
巻回した電熱線33が不規則に移動し、管との接続作業
時に電熱線33同志が接触してショートし正常な加熱が
行われない不良を発生させる問題がある。また一般に合
成樹脂の熱伝導率は非常に悪く、更に溶融時から凝固時
への体積収縮もかなり大きい。この収縮率は樹脂の材質
によっては4%から10%に達するものもある。このた
め金型の射出成形の方案にもよるが、ゲートやランナー
の樹脂が固化した後もキャビテイー内の成形品の一部に
未固化樹脂部分があると、樹脂射出圧を更に加え続けて
いても溶融樹脂を成形品内の未固化樹脂部分に補給する
ことができず、凝固時の体積収縮によって樹脂層肉厚内
部にヒケが生じる。When the outer member 32 having a large thickness is injection-molded on the outer surface of the above-mentioned conventional thin inner tube member 31, the inner tube member 31 is formed by the large injection pressure and heat capacity of the outer member 32. Is melted, the heating wire 33 wound around the groove 34 of the inner cylinder member 31 moves irregularly, and the heating wire 33 comes into contact with each other at the time of connection with the pipe, causing a short circuit, thereby preventing normal heating from being performed. There are issues that arise. In general, the thermal conductivity of a synthetic resin is very poor, and the volume shrinkage from melting to solidification is considerably large. This shrinkage may reach 4% to 10% depending on the material of the resin. For this reason, depending on the injection molding method of the mold, after the resin of the gate and runner has solidified, if there is an unsolidified resin part in a part of the molded product in the cavity, the resin injection pressure is further applied. However, the molten resin cannot be supplied to the unsolidified resin portion in the molded product, and sinks occur inside the resin layer due to volume shrinkage during solidification.
【0005】ヒケを生じさせないためには、ゲートやラ
ンナーを太くし、樹脂の射出圧を大きくして長時間射出
圧を加えれば良いが、そうした場合、上記した薄肉の内
筒部材31が溶融して電熱線33の配置が移動してしま
ったり、肉厚T部の厚肉溶融樹脂が完全に凝固するまで
の時間が長いので成型タクトが長くなって能率を著しく
悪化させる問題がある。結果として薄肉の内筒部材に厚
肉の樹脂を射出成形するのは、製造上の管理が難しく、
品質が安定しない。この問題は外方部材32の最大肉厚
がTが10mm以上になる呼び径75A以上の継手に対
して著しく発生する。本発明は上記の問題を解消するも
ので、ヒケ等の欠陥が生じなく、品質上の優れた電気融
着継手とこの電気融着継手を能率良く製造出来る電気融
着継手の製造方法及びその射出成型用金型を提供するも
のである。In order to prevent sink marks, the gate and the runner may be made thicker, the injection pressure of the resin may be increased, and the injection pressure may be applied for a long time. In such a case, the thin inner cylindrical member 31 may melt. As a result, there is a problem that the arrangement of the heating wire 33 is moved or the time until the thick molten resin in the thick T portion is completely solidified is long, so that the molding tact becomes long and the efficiency is remarkably deteriorated. As a result, injection molding of thick resin into a thin inner cylinder member is difficult to control in manufacturing,
Quality is not stable. This problem occurs remarkably for a joint having a nominal thickness of 75A or more where the maximum thickness T of the outer member 32 is 10 mm or more. The present invention solves the above-mentioned problems, and does not cause defects such as sink marks and the like, and has excellent quality in an electro-fusion joint, a method for manufacturing the electro-fusion joint which can efficiently manufacture the electro-fusion joint, and injection of the same. This is to provide a molding die.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は、薄肉円
筒状で内面に接続樹脂管を受入れる管受口を有し外面に
電熱線を収容する溝を設けた熱可塑性樹脂製の内筒部材
層と、前記内筒部材層の溝内に巻回した電熱線と、前記
電熱線を巻回した内筒部材層の外面に、該内筒部材層と
同じ熱可塑性溶融樹脂を射出して設けた中間部材層と、
前記中間部材層の外面に、該中間部材層と同じ熱可塑性
溶融樹脂を射出して設けた継手の外形状を有す外筒部材
層と、前記電熱線の両端に結合して外筒部材層の外面に
突出する通電用コネクターピンとからなり、前記内筒部
材層を除く継手の肉厚が10mm以上の大きさの継手に
ついて、前記内筒部材層を含めて3層ないし5層の多層
樹脂層で設け、且つ内筒部材層を除く前記中間部材層と
外筒部材層の1層当たりの肉厚を15mm以下に設けた
ことを特徴とする電気融着継手である。The gist of the present invention is to provide a thin circle.
It has a tube socket for receiving the connecting resin tube on the inner surface and has an inner surface.
Inner tubular member made of thermoplastic resin provided with a groove for accommodating a heating wire
Layer, a heating wire wound in a groove of the inner cylinder member layer,
On the outer surface of the inner cylinder member layer around which the heating wire is wound, the inner cylinder member layer and
An intermediate member layer provided by injecting the same thermoplastic molten resin,
On the outer surface of the intermediate member layer, the same thermoplastic as the intermediate member layer
An outer cylindrical member having an outer shape of a joint provided by injecting molten resin
Layer, and connected to both ends of the heating wire on the outer surface of the outer cylindrical member layer.
The inner cylinder part
For joints with a thickness of 10 mm or more, excluding the material layer
About three to five layers including the inner cylinder member layer.
The intermediate member layer provided with a resin layer and excluding the inner cylinder member layer
The thickness per outer cylinder member layer was set to 15 mm or less.
It is an electrofusion joint characterized by the above-mentioned.
【0007】熱可塑性樹脂製継手本体の内周部に電熱線
を埋設した電気融着継手を得る方法であって、外周面の
溝に電熱線を巻回した継手本体の内周面を形成する熱可
塑性樹脂製の内筒部材を設け、この内筒部材を成型用金
型のキャビティー内に装着し、内筒部材の外面に熱可塑
性樹脂を射出成形して前記内筒部材と一体の中間部材を
設け、以下成形した中間部材を成型用金型のキャビティ
ー内に装着し、中間部材の外面に熱可塑性樹脂を射出成
形して中間部材と一体の継手の外形状を形成する外筒部
材を設け、最終目的形状の電気融着継手を得ることを特
徴とする電気融着継手の製造方法である。A method for obtaining an electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a thermoplastic resin joint main body, the method comprising :
Heat friendly forming the inner peripheral surface of the joint body formed by winding the heating wire in the groove
An inner cylinder member made of a plastic resin is provided, the inner cylinder member is mounted in a cavity of a molding die, and a thermoplastic resin is injection- molded on an outer surface of the inner cylinder member to form an intermediate member integrated with the inner cylinder member. The intermediate member molded below is installed in the cavity of the molding die, and a thermoplastic resin is injected onto the outer surface of the intermediate member.
An outer cylindrical part that forms and forms the outer shape of the joint integral with the intermediate member
A method for manufacturing an electro-fusion joint, comprising providing a material and obtaining an electro-fusion joint having a final target shape.
【0008】この電気融着継手の製造方法は、前記成形
用金型を1組又は複数組有し、この金型の夫々のキャビ
テイー部で内筒部材を得る工程と中間部材を得る工程と
順次成形部材を得る工程とを同期して行い、最終目的形
状の電気融着継手を得ることを特徴とする。The method of manufacturing the electro-fusion joint includes one or more sets of the molding dies, a step of obtaining an inner cylindrical member and a step of obtaining an intermediate member in each of the cavities of the mold. The step of obtaining the molded member is performed in synchronization with the step of obtaining an electro-fusion joint having a final target shape.
【0009】また、熱可塑性樹脂製継手本体の内周部に
電熱線を埋設した電気融着継手を得る射出成型用金型で
あって、同じマンドレルを用いて溶融樹脂を射出成形で
きる複数のキャビティ部を有し、このキャビティー部
は、継手の内周面を形成し電熱線を収容する溝を設けた
内筒部材を形成するキャビティー部と、このキャビティ
ー部より一回り大きく前記内筒部材の外面に熱可塑性樹
脂を射出成形して中間部材を形成するキャビティー部、
及びこの成形した外面に熱可塑性樹脂層を射出成形して
外筒部材を形成するキャビティー部とを有し、前記各キ
ャビティー部の1層当たりの肉厚が15mm以下になる
ように設けたことを特徴とする電気融着継手の射出成型
用金型である。The present invention also provides an injection molding die for obtaining an electrofusion joint in which a heating wire is embedded in an inner peripheral portion of a thermoplastic resin joint main body, wherein a plurality of cavities capable of injection molding a molten resin using the same mandrel. has a section, the cavity portion has a Ruki Yabiti portion to form a Uchitsutsu member provided with grooves for accommodating the heating wire forms an inner peripheral surface of the joint, slightly larger the inner than the cavity portion A cavity portion for forming an intermediate member by injection molding a thermoplastic resin on the outer surface of the cylindrical member,
And injection molding a thermoplastic resin layer on the molded outer surface
And a cavity portion for forming the outer cylindrical member, each key
An injection-molding mold for an electro-fusion joint, wherein the thickness of one layer of the cavity portion is 15 mm or less.
【0010】[0010]
【作用】本発明は上記の構成であり、薄肉の内筒部材層
の外面に従来の厚肉の外方部材層が複数回に分けて射出
成形されることにより、継手全体の円筒部材層が内筒部
材層を含めて3層ないし5層の多層になった電気融着継
手である。特に継手の呼び口径が75A以上の大口径の
継手に有効で、電熱線を巻回した内筒部材層を除く肉厚
が10mm以上の大きさの継手について、継手全体の円
筒部の肉厚を内筒部材層を含めて3層ないし5層の多層
樹脂層にして、且つ内筒部材層を除く前記中間部材層と
外筒部材層の1層当たりの肉厚を薄く、15mm以下に
することで、品質の向上及び成形時間の大幅な短縮が図
れるものである。According to the present invention, the cylindrical member layer of the entire joint is formed by injection molding the conventional thick outer member layer on the outer surface of the thin inner cylindrical member layer in a plurality of times. This is an electrofusion joint having a multilayer structure of three to five layers including the inner cylinder member layer. Especially effective for large-diameter joints with a nominal diameter of 75A or more , excluding the inner cylinder member layer around which the heating wire is wound.
Is a joint having a size of 10 mm or more, the thickness of the cylindrical portion of the entire joint is made into three to five multilayer resin layers including the inner cylinder member layer, and the intermediate member layer excluding the inner cylinder member layer
By reducing the thickness per outer cylinder member layer to 15 mm or less, it is possible to improve quality and significantly reduce molding time.
【0011】このために、継手の内周面を形成すると共
に外周溝に電熱線を収容した内筒部材を設け、これを成
型用金型のキャビティー部に装着し、電熱線付き内筒部
材の外面に熱可塑性溶融樹脂を射出成形して内筒部材と
一体の中間部材を設け、この外面に順次樹脂を射出成形
して最終的に継手の外形状を形成する外筒部材を設け、
継手の全体の樹脂層が3層ないし5層の多層になった電
気融着継手を得るものである。[0011] To this end, it is common to form the inner peripheral surface of the joint.
An inner cylinder member containing a heating wire is provided in an outer circumferential groove, and this is mounted in a cavity of a molding die, and a thermoplastic molten resin is injection-molded on an outer surface of the inner cylinder member with a heating wire. And an intermediate member integrated with it, and resin is sequentially injection-molded on this outer surface
And finally provide an outer cylinder member that forms the outer shape of the joint,
An object of the present invention is to obtain an electrofusion joint in which the entire resin layer of the joint has a multilayer structure of three to five layers.
【0012】この3層ないし5層の層数は、電気融着継
手の形状や肉厚、各層の成形作業取扱い時間等を考慮し
て最適な多層数に行える。3層以上であれば、従来の肉
厚が10mmを超える外方部材層を備えた継手の厚肉外
方部材層が複数層に分割されることとなり、内筒部材と
の肉厚差が減少し、また1層当たりの肉厚及び樹脂容量
が減少するので射出圧力が小さくても済む。よって薄肉
の内筒部材が射出成型時に外方部材の樹脂容量で溶融さ
れる問題や、内筒部材に装着した電熱線が内筒部材の溶
融によって移動し短絡が生じる等の問題がなく、1層当
たりの肉厚が減少するため射出後の冷却速度が速く冷却
時間が短くなってヒケ等の内部欠陥が生じない。この場
合、各層の射出成形作業は同期して行えるので、1層当
たりの最も長い成形時間が全体の成形タクトになり、上
記10mm以上の厚肉外方部材層を備えた継手の厚肉部
が複数層に分割されることで一層当たりの肉厚が15m
m以下になって樹脂容量が減少し、肉厚減によって冷却
速度が速くなり冷却時間が大幅に短縮される。このため
全体の電気融着継手を成形するタクトが大幅に短縮され
る。The number of the three to five layers can be set to an optimum number in consideration of the shape and thickness of the electrofusion joint, the time required for forming work of each layer, and the like. If there are three or more layers, the thick outer member layer of the conventional joint having an outer member layer having a thickness exceeding 10 mm will be divided into a plurality of layers, and the difference in thickness from the inner cylindrical member will be reduced. In addition, since the thickness and resin capacity per layer are reduced, the injection pressure can be reduced. Therefore, there is a problem that the thin inner cylinder member is melted by the resin capacity of the outer member at the time of injection molding , and a heating wire attached to the inner cylinder member may melt the inner cylinder member.
There is no problem such as moving to a short circuit caused by melting, 1 sweeping
Since the thickness of the shrinkage is reduced, the cooling rate after injection is high, and the cooling time is short, so that internal defects such as sink marks do not occur. In this case, since the injection molding operation of each layer can be performed in synchronization, the longest molding time per layer becomes the entire molding tact, and the thick portion of the joint having the thick outer member layer of 10 mm or more is required. By dividing into multiple layers, the thickness per layer is 15m
m or less, the resin capacity is reduced, and the cooling speed is increased due to the reduced wall thickness, and the cooling time is greatly reduced. For this reason, the tact of forming the whole electrofusion joint is greatly reduced.
【0013】一般に溶融樹脂の金型内での冷却時間は、
金型からの取り出し温度にもよるが、理論的に成形品の
肉厚の2乗に比例する。従って一つのキャビテイー部で
の1層当たりの肉厚が半分になれば冷却時間は1/4に
なる。また一つのキャビテイー部での1層当たりの射出
溶融樹脂の容量が大幅に少なくなるので、射出した溶融
樹脂の冷却速度が早くなり、射出成形された樹脂各部の
冷却が均等に行われる。このため冷却時間が大幅に短縮
されると共に内部にヒケ等の欠陥が生じない。Generally, the cooling time of the molten resin in the mold is
Although it depends on the temperature at which the molded product is taken out of the mold, it is theoretically proportional to the square of the thickness of the molded product. Therefore, if the thickness per layer in one cavity is halved, the cooling time is reduced to 1 /. Further, since the capacity of the injected molten resin per one layer in one cavity portion is greatly reduced, the cooling rate of the injected molten resin is increased, and the injection-molded resin portions are uniformly cooled. For this reason, the cooling time is significantly reduced, and no defects such as sink marks are generated inside.
【0014】従って従来のヒケ防止のために大きな射出
圧力や長時間の射出圧を加え続ける必要がなくなり、従
来より射出容量が小さくまた射出圧力の小さい樹脂成形
機であっても、大きな口径の電気融着継手を成形するこ
とができる。また一般に一つのキャビテイー部当たりの
1層の射出樹脂容量が多いと、成形時の樹脂温度や金型
の温度などの射出成形条件が成形後の品質に大きく影響
するが、全体を3ないし5層にすることで1層当たりの
肉厚が15mm以下になって射出樹脂容量が少なく肉厚
が均等になる。このため冷却時間が早くなり、射出成形
条件にあまり影響を受けず、成形作業が容易で、内部欠
陥のない良好な品質の電気融着継手が得られる。Therefore, it is no longer necessary to continuously apply a large injection pressure or a long injection pressure in order to prevent sink marks, and even if the resin molding machine has a smaller injection capacity and a smaller injection pressure than the conventional resin molding machine, a large-diameter electric machine can be used. A fusion joint can be formed. In general, when the injection resin capacity of one layer per one cavity part is large, the injection molding conditions such as the resin temperature during molding and the temperature of the mold greatly affect the quality after molding. By doing so, the thickness per layer becomes 15 mm or less, and the injection resin capacity is small and the thickness becomes uniform. Therefore, the cooling time is shortened, the molding operation is not much affected by the injection molding conditions, the molding operation is easy, and a good quality electrofusion joint without internal defects can be obtained.
【0015】[0015]
【実施例】以下本発明の一実施例を図面に基づいて説明
する。図1ないし図3は本発明の実施例を示す電気融着
継手射出成型用金型と電気融着継手の断面図である。図
4は本発明の実施例を従来技術と比較して説明する成形
状態の図で、(a)は従来の2層からなる成形状態を示
し、(b)は本実施例の3層からなる成形状態を示す図
である。図1において、一組の金型内に溶融樹脂を成形
する3か所のキャビテイー部A、B、Cを設けてあり、
各キャビテイー部は順に径方向が大きくなっている。ま
た各キャビテイー部について共通のマンドレル10を装
着して成形できるようにしてある。金型の入口11から
射出された溶融樹脂はランナー12、ゲート13を通っ
て各々のキャビテー部A、B、C内に充填される。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 to FIG. 3 are cross-sectional views of an injection-molding mold for electric fusion joints and an electric fusion joint showing an embodiment of the present invention. FIGS. 4A and 4B are views of a molding state for explaining an embodiment of the present invention in comparison with the prior art. FIG. 4A shows a molding state of a conventional two-layer structure, and FIG. It is a figure showing a molding state. In FIG. 1, three cavities A, B, and C for forming a molten resin in a set of molds are provided.
Each cavity portion is sequentially larger in the radial direction. In addition, a common mandrel 10 is attached to each cavity portion so that molding can be performed. The molten resin injected from the mold inlet 11 passes through the runner 12 and the gate 13 and is filled in the respective cavities A, B, and C.
【0016】キャビテイー部Aにマンドレル10を装着
して溶融樹脂を射出すると、図2、図3又は図4(b)
で示す電気融着継手の薄肉内筒部材21が成形される。
キャビテー部Aに射出成形された樹脂が固化した後、金
型内からマンドレル10付の内筒部材21が取り出さ
れ、マンドレル10付の状態で、薄肉内筒部材21の外
周溝23に電熱線22が巻回しされる。電熱線22は内
筒部材21の端部にコネクターピン24、24を挿入し
て固定し、コネクターピン24と結線される。When the mandrel 10 is mounted on the cavity portion A and the molten resin is injected, FIG. 2, FIG. 3 or FIG.
The thin inner cylindrical member 21 of the electric fusion joint shown by the symbol is formed.
After the resin injected into the cavity A is solidified, the inner cylindrical member 21 with the mandrel 10 is taken out of the mold, and the heating wire 22 is inserted into the outer peripheral groove 23 of the thin inner cylindrical member 21 with the mandrel 10 attached. Is wound. The heating wire 22 is fixed by inserting connector pins 24 into the end of the inner cylindrical member 21, and is connected to the connector pin 24.
【0017】この様に成形された継手内面を形成する電
熱線22付内筒部材21を、次にマンドレル10付の状
態でBのキャビテー部に装着し、Bのキャビテイー部で
中間部材層25の溶融樹脂を射出成形して内筒部材21
付の中間部材27を得る。この中間部材層25を射出成
形している間も、キャビテイー部Aで前記の薄肉内筒部
材21が成形されている。キャビテー部Bで内筒部材付
の中間部材27を射出成形した後、前記同様金型内から
マンドレル10付の状態で成形された中間部材27が取
り出され、次にこの中間部材27をCのキャビテー部に
装着して中間部材27の外面に最終外筒部材層26の樹
脂を射出成形する。中間部材層25の外面に最終外筒部
材層26を成形した後、金型からマンドレル10付の状
態で成形品を取り出し、成形品からマンドレル10を抜
き取ると図2、図3又は図4(b)で示す電気融着継手
28が成形される。The inner cylindrical member 21 with the heating wire 22 forming the inner surface of the joint thus formed is mounted on the cavities of B with the mandrel 10 attached thereto. The inner cylindrical member 21 is formed by injection molding the molten resin.
To obtain the intermediate member 27 attached. While the intermediate member layer 25 is being injection-molded, the above-described thin inner cylinder member 21 is formed in the cavity portion A. After injection molding of the intermediate member 27 with the inner cylinder member in the cavity portion B, the intermediate member 27 molded with the mandrel 10 is taken out of the mold in the same manner as described above. The resin of the final outer cylinder member layer 26 is injection-molded on the outer surface of the intermediate member 27 by being mounted on the portion. After the final outer cylinder member layer 26 is formed on the outer surface of the intermediate member layer 25, the molded product is taken out of the mold with the mandrel 10, and the mandrel 10 is removed from the molded product as shown in FIG. 2, FIG. 3 or FIG. ) Is formed.
【0018】この様に3層に成形された内筒部材層21
と中間部材層25と最終外筒部材層26の各樹脂層は、
各層の外面に射出された溶融樹脂の熱によって互いの接
触面が熱融着され、一体的に結合した電気融着継手28
が成形される。尚、内筒部材層21と中間部材層25を
純ポリエチレン樹脂材料で設け、最終外筒部材層26を
カーボンブラック入りの樹脂材料で設けることができ
る。この最終外方部材層26をキャビテー部Cで射出成
形している間にも、前記別のキャビテイー部Aで薄肉内
筒部材21と前記キャビテイー部Bで中間部材層25が
同期して成形されている。従って全体の射出成形タクト
としては、キャビテイー部A、B、Cで成形されるいず
れか最も長い成形時間が全体のタクトになり、各層の射
出成形時間が短縮すると全体の成形タクトは大きく短縮
される。The inner cylinder member layer 21 thus formed into three layers
And each resin layer of the intermediate member layer 25 and the final outer cylinder member layer 26,
The contact surfaces of the respective layers are thermally fused by the heat of the molten resin injected onto the outer surfaces of the respective layers, and the electric fusion joints 28 are integrally joined.
Is molded. Note that the inner cylinder member layer 21 and the intermediate member layer 25 can be provided by a pure polyethylene resin material, and the final outer cylinder member layer 26 can be provided by a resin material containing carbon black. While this final outer member layer 26 is being injection-molded in the cavity portion C, the intermediate member layer 25 is formed in synchronization with the thinner inner cylindrical member 21 and the cavity portion B in the another cavity portion A. I have. Therefore, as the entire injection molding tact, the longest molding time of any of the cavities A, B, and C is the entire tact, and if the injection molding time of each layer is shortened, the entire molding tact is greatly reduced. .
【0019】図5は呼び150Aのソケット形電気融着
継手(外径207mm、長さ248mm)を図4(a)
で示す従来方式で行った場合の肉厚22mmの外方部材
32と、図4(b)で示す本実施例の肉厚11mmの最
終外筒部材層26との、金型内での冷却時間と冷却温度
の関係を測定した冷却線図である。図の冷却線イは肉厚
が22mmの従来方式の外方部材32の冷却線を表し、
ロは肉厚が11mmの本実施例の最終外筒部材26の冷
却線を表す。この冷却線図から判るように例えば金型か
らの取り出し温度を95℃とすると、イの従来方式では
溶融樹脂を射出してから金型内で95℃に冷却するまで
の時間は450秒で、ロの本実施例では95℃に冷却す
るまでの時間は150秒である。従って金型からの取り
出し温度を95℃とすれば、イの従来方式に比べてロの
本実施例では成形タクトが単純に1/3に短縮出来る。FIG. 5 shows a socket type electrofusion joint (outer diameter 207 mm, length 248 mm) having a nominal size of 150 A in FIG.
The cooling time in the mold between the outer member 32 having a thickness of 22 mm and the final outer cylinder member layer 26 having a thickness of 11 mm of the present embodiment shown in FIG. FIG. 4 is a cooling diagram showing the relationship between the temperature and the cooling temperature. The cooling line A in the figure represents the cooling line of the conventional outer member 32 having a thickness of 22 mm,
B represents a cooling line of the final outer cylinder member 26 of this embodiment having a thickness of 11 mm. As can be seen from this cooling diagram, for example, when the take-out temperature from the mold is 95 ° C., the time from injection of the molten resin to cooling to 95 ° C. in the mold in the conventional method of (a) is 450 seconds, In this embodiment, the time required for cooling to 95 ° C. is 150 seconds. Therefore, if the temperature at which the mold is taken out from the mold is set to 95 ° C., the molding tact can be simply reduced to で は in the present embodiment of FIG.
【0020】図6は上記のように継手の肉厚と冷却温度
の関係を調べて求めた金型からの取り出し温度線図で、
樹脂成形肉厚と射出成型時間(冷却時間)の関係を説明
する図である。呼び口径が150Aのソケット形電気融
着継手の場合、図4(a)で示す従来方式では、図8で
示したごとく内筒部材層31の溝の底部の肉厚t(肉厚
最少部)は0.6mmで、溝の山部の肉厚最大部は5.
5mmである。この内筒部材層31の外面に成形する外
方部材層32の最大肉厚部Tは22mmである。この内
筒部材層31の射出成形する冷却時間は90秒で、外方
部材層32を射出成形する冷却時間は360秒であっ
た。この時の金型からの取り出し温度は135℃であ
る。この外方部材層32の成形状態をプロットしたのが
図6のE点である。図4(b)で示す本実施例では、内
筒部材層21は前記従来の内筒部材31の寸法と同じ
で、従来方式の外方部材層32の肉厚を中間部材層25
と最終外筒部材層26の2層に分割し、夫々の肉厚を従
来の半分の各11mmとした。その結果、中間部材層2
5と最終外筒部材層26の夫々の射出成形時間は100
秒になり、この時の金型からの取り出し温度は130℃
であった。またヒケ等の欠陥のない電気融着継手が得ら
れた。この状態をプロットしたのが図6のF点である。FIG. 6 is a temperature diagram taken out from the mold obtained by examining the relationship between the thickness of the joint and the cooling temperature as described above.
It is a figure explaining the relationship between resin molding wall thickness and injection molding time (cooling time). In the case of a socket-type electrofusion joint having a nominal diameter of 150A, in the conventional method shown in FIG. 4A, the thickness t (the minimum thickness portion) at the bottom of the groove of the inner cylinder member layer 31 as shown in FIG. Is 0.6 mm, and the maximum thickness at the peak of the groove is 5.
5 mm. The maximum thickness T of the outer member layer 32 formed on the outer surface of the inner cylinder member layer 31 is 22 mm. The cooling time for injection molding of the inner cylinder member layer 31 was 90 seconds, and the cooling time for injection molding of the outer member layer 32 was 360 seconds. At this time, the removal temperature from the mold is 135 ° C. The state of molding of the outer member layer 32 is plotted at point E in FIG. In the present embodiment shown in FIG. 4 (b), the inner cylinder member layer 21 has the same dimensions as the conventional inner cylinder member 31, and the outer member layer 32 of the conventional method has the same thickness as the intermediate member layer 25.
And the final outer cylinder member layer 26, each having a thickness of 11 mm, which is half of the conventional thickness. As a result, the intermediate member layer 2
Injection molding time of each of No. 5 and the final outer cylinder member layer 26 is 100
Seconds, and the temperature of removal from the mold at this time is 130 ° C.
Met. Further, an electro-fusion joint having no defects such as sink marks was obtained. This state is plotted at point F in FIG.
【0021】また呼び口径が200Aのソケット形電気
融着継手(外径278mm、長さ321mm)の場合、
図4(a)で示す従来方式では、内筒部材層31の最小
肉厚部tは0.8mmで最大肉厚部は5.5mmであ
る。この内筒部材層31の外面に射出成形する外方部材
層32の肉厚Tは28mmである。内筒部材層31の射
出成形時間は100秒で、外方部材層32の射出成型時
間は図6のJ点で示すごとく900秒であった。この時
の金型からの取り出し温度は120℃である。一方図4
(b)で示す本実施例では、上記と同様に内筒部材層2
1は従来の内筒部材層31と同じ寸法で、従来の外方部
材層32の肉厚Tを中間部材層25と最終外筒部材層2
6の2層に分割して夫々の肉厚を従来の半分の14mm
とした。その結果、図6のK点で示すごとく、中間部材
層25と最終外筒部材層26の夫々の射出成形時間は1
50秒に大幅に短縮された。この時の金型からの取り出
し温度も従来方式より低く115℃である。またヒケ等
内外部とも欠陥のない電気融着継手が得られた。In the case of a socket type electric fusion joint (outer diameter 278 mm, length 321 mm) having a nominal diameter of 200 A,
In the conventional method shown in FIG. 4A, the minimum thickness t of the inner cylinder member layer 31 is 0.8 mm, and the maximum thickness is 5.5 mm. The thickness T of the outer member layer 32 injection-molded on the outer surface of the inner cylinder member layer 31 is 28 mm. The injection molding time of the inner cylinder member layer 31 was 100 seconds, and the injection molding time of the outer member layer 32 was 900 seconds as indicated by the point J in FIG. At this time, the removal temperature from the mold is 120 ° C. On the other hand, FIG.
In this embodiment shown in (b), the inner cylinder member layer 2 is formed in the same manner as described above.
1 is the same size as the conventional inner cylinder member layer 31 and the thickness T of the conventional outer member layer 32 is set to the intermediate member layer 25 and the final outer cylinder member layer 2.
6 divided into two layers, each having a thickness of 14 mm, half of the conventional thickness.
And As a result, as shown by a point K in FIG. 6, the injection molding time of each of the intermediate member layer 25 and the final outer cylinder member layer 26 is one.
It was greatly reduced to 50 seconds. At this time, the removal temperature from the mold is 115 ° C., which is lower than the conventional method. In addition, an electro-fusion joint having no defects on the inside and outside of sink marks was obtained.
【0022】次に上記呼び口径が200Aのソケット形
電気融着継手について更に成形時間の短縮を図るために
継手の肉厚を4層に分割成形した実施例について説明す
る。図7は呼び口径200Aの継手を4層成形化した継
手の各層の断面図を示し、1層目41は前記実施例の内
筒部材層21のごとく溝内に電熱線22を巻回してあ
り、この外面に前記したごとく2層目42、3層目4
3、4層目44を順次射出成形して一体の電気融着継手
45を得るものである。この場合も2層目から4層目の
各層の肉厚は従来の外方部材層32の肉厚28mmの1
/3の約9.5mmにした。Next, a description will be given of an embodiment in which the thickness of the joint is divided into four layers in order to further shorten the molding time for the socket-type electrofusion joint having a nominal diameter of 200 A. FIG. 7 is a cross-sectional view of each layer of a joint in which a joint having a nominal diameter of 200 A is formed into four layers. The first layer 41 has a heating wire 22 wound in a groove like the inner cylinder member layer 21 of the above embodiment. On the outer surface, as described above, the second layer 42, the third layer 4
The third and fourth layers 44 are sequentially injection-molded to obtain an integrated electrofusion joint 45. Also in this case, the thickness of each of the second to fourth layers is 1 mm of the conventional outer member layer 32 having a thickness of 28 mm.
/ 3, about 9.5 mm.
【0023】この実施例では2層目42と3層目43の
外面部にも凹凸を形成して、キャビテイー部内で射出成
形時に、金型キャビテイー部内面と接触する面積を多く
し、射出された樹脂の冷却効率を上げて冷却時間の短縮
を図っている。更に射出した各樹脂層間の接触面積が多
くなるようにして一体的に溶融する溶融密着強度を増し
ている。この実施例の射出成形後の金型からの取り出し
時間は、冷却時間が最も長い第2層目42の冷却時間が
115秒で、この時の温度が100℃であった。従って
前記従来方式の成形時間900秒と比較してこの実施例
の4層成形の場合では、900秒から115秒に大幅に
短縮することができ、金型からの取り出し温度も低下し
た。また上記3層からなる実施例の場合と比べても15
0秒から115秒に35秒間短縮することができた。In this embodiment, irregularities are also formed on the outer surfaces of the second layer 42 and the third layer 43 to increase the area in contact with the inner surface of the mold cavity at the time of injection molding in the cavity to be injected. The cooling time is shortened by increasing the cooling efficiency of the resin. Further, the contact area between the injected resin layers is increased to increase the melt adhesion strength for integrally melting. The time taken out of the mold after injection molding in this example was 115 seconds for the cooling time of the second layer 42 having the longest cooling time, and the temperature at this time was 100 ° C. Therefore, in the case of the four-layer molding of this embodiment, the molding time was significantly reduced from 900 seconds to 115 seconds, as compared with the conventional molding time of 900 seconds, and the temperature for taking out from the mold was also lowered. In addition, compared to the case of the embodiment having the above three layers, 15
The time was reduced from 0 to 115 seconds for 35 seconds.
【0024】上記実施例では、継手の肉厚を3層又は4
層に成形する実施例について説明したが、継手の形状や
大きさ及び成型機の仕様などによっては5層に分割して
成形しても良い。この複数層は同一の樹脂材料でもよ
く、又樹脂の材質や色が異なる樹脂で成形しても良い。
更に何層になっても可能であるが、実用上継手の形状や
各層の成形作業取り扱い時間等も考慮すると3層ないし
5層が最も適当である。また図3や図7で示す電気融着
継手のごとく、径方向と共に継手の長手方向にも3ない
し5層に分割して成形しても良い。また1つの金型内に
複数層のキャビテイー部A、B、Cを設けた金型で説明
したが、夫々の層を射出成形するキャビテイー部A、
B、Cを個々に備えた複数組の金型を用いて順次多段成
形しても良いことは当然である。In the above embodiment, the thickness of the joint is three layers or four layers.
Although the embodiment of forming into a layer has been described, the joint may be formed into five layers depending on the shape and size of the joint and the specifications of the forming machine. The plurality of layers may be formed of the same resin material, or may be formed of resins having different resin materials and colors.
Any number of layers is possible, but in practice, three to five layers are most suitable in consideration of the shape of the joint and the processing time for forming each layer. Also, as in the electrofusion joint shown in FIGS. 3 and 7, the joint may be divided into three or five layers in the longitudinal direction of the joint as well as in the radial direction. Also, a mold having a plurality of cavity portions A, B, and C provided in one mold has been described, but the cavity portions A for injection molding each layer are described.
It goes without saying that multi-stage molding may be performed sequentially using a plurality of sets of dies each having B and C individually.
【0025】[0025]
【発明の効果】本発明によれば、継手本体内に射出する
樹脂の肉厚を十分に小さく出来、また1回に射出する溶
融樹脂の容量を少なく出来るので、各層段階で射出成形
した溶融樹脂の冷却速度が早くなり、成形タクトが大幅
に短縮されて成形作業能率が向上する。また各部が均一
に冷却されるので従来のヒケ等の内部欠陥が生じない。
このため、品質の優れた電気融着継手を能率良く得るこ
とが出来る。According to the present invention, the thickness of the resin injected into the joint body can be made sufficiently small, and the volume of the molten resin injected at one time can be reduced. The cooling speed of the mold becomes faster, the molding tact time is greatly reduced, and the molding work efficiency is improved. In addition, since each part is uniformly cooled, internal defects such as conventional sink marks do not occur.
For this reason, an electrofusion joint having excellent quality can be efficiently obtained.
【図1】 本発明の一実施例の電気融着継手射出成形用
金型の平面図である。FIG. 1 is a plan view of an injection-molding mold for an electro-fusion joint according to an embodiment of the present invention.
【図2】 本発明の一実施例の電気融着継手の断面図で
ある。FIG. 2 is a cross-sectional view of an electric fusion joint according to one embodiment of the present invention.
【図3】 本発明の別の実施例の電気融着継手の断面図
である。FIG. 3 is a sectional view of an electrofusion joint according to another embodiment of the present invention.
【図4】 従来方式(a)と本実施例方式(b)とを比
較して説明する各工程の成形品を示す図である。FIG. 4 is a view showing a molded product in each step for comparing and explaining a conventional method (a) and a method (b) of this embodiment.
【図5】 従来方式と本実施例の金型内での冷却時間と
冷却温度の関係を示す図である。FIG. 5 is a diagram illustrating a relationship between a cooling time and a cooling temperature in a mold according to a conventional method and a mold according to the present embodiment.
【図6】 本発明の実施例と従来技術とを比較して説明
する金型からの取り出し時間に対する樹脂肉厚と射出成
形時間(冷却時間)の関係を示す図である。FIG. 6 is a diagram illustrating a relationship between a resin thickness and an injection molding time (cooling time) with respect to a removal time from a mold, which is described in comparison between an example of the present invention and a conventional technique.
【図7】 本発明実施例の4層成形した電気融着継手の
断面図である。FIG. 7 is a cross-sectional view of a four-layer molded electrofusion joint according to an embodiment of the present invention.
【図8】 従来の電気融着継手の部分断面図と各層の肉
厚T、t寸法を示す図である。FIG. 8 is a partial cross-sectional view of a conventional electrofusion joint and a diagram showing thicknesses T and t dimensions of respective layers.
A、B、C 金型内の各キャビテイー部 10 マ
ンドレル 11 入口 12 ラ
ンナー 13 ゲート 21 内
筒部材層 22 電熱線 23 溝 24 コネクターピン 25 中
間部材層 26 最終外筒部材層 27 内
筒部材付の中間部材 28、45 成形後の電気融着継手 41 第
1層 42 第2層 43 第
3層 44 第4層A, B, C Each cavity portion in the mold 10 Mandrel 11 Inlet 12 Runner 13 Gate 21 Inner cylinder member layer 22 Heating wire 23 Groove 24 Connector pin 25 Intermediate member layer 26 Final outer cylinder member layer 27 Intermediate with inner cylinder member Member 28, 45 Electrofusion joint after molding 41 First layer 42 Second layer 43 Third layer 44 Fourth layer
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29L 31:24 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B29L 31:24
Claims (4)
る管受口を有し外面に電熱線を収容する溝を設けた熱可
塑性樹脂製の内筒部材層と、 前記内筒部材層の溝内に巻回した電熱線と、 前記電熱線を巻回した内筒部材層の外面に、該内筒部材
層と同じ熱可塑性溶融樹脂を射出して設けた中間部材層
と、 前記中間部材層の外面に、該中間部材層と同じ熱可塑性
溶融樹脂を射出して設けた継手の外形状を有す外筒部材
層と、 前記電熱線の両端に結合して外筒部材層の外面に突出す
る通電用コネクターピンとからなり、 前記内筒部材層を除く継手の肉厚が10mm以上の大き
さの継手について、前記内筒部材層を含めて3層ないし
5層の多層樹脂層で設け、且つ内筒部材層を除く前記中
間部材層と外筒部材層の1層当たりの肉厚を15mm以
下に設けたことを特徴とする電気融着継手。 1. A thin cylindrical shape which receives a connecting resin tube on the inner surface.
A heat sink with a tube receiving port and a groove on the outer surface to accommodate the heating wire
An inner cylinder member layer made of a plastic resin, a heating wire wound in a groove of the inner cylinder member layer, and an inner cylinder member on an outer surface of the inner cylinder member layer wound with the heating wire.
Intermediate member layer provided by injecting the same thermoplastic molten resin as the layer
And the same thermoplastic as the intermediate member layer on the outer surface of the intermediate member layer
An outer cylindrical member having an outer shape of a joint provided by injecting molten resin
Layer and both ends of the heating wire and project from the outer surface of the outer cylinder member layer.
The joint thickness excluding the inner cylinder member layer is 10 mm or more.
For the joint of the above, three or more layers including the inner cylinder member layer
Provided with five multilayer resin layers and excluding the inner cylinder member layer
The thickness per layer of the intermediate member layer and the outer cylinder member layer is 15 mm or less.
An electrofusion joint provided below.
線を埋設した電気融着継手を得る方法であって、外周面の溝に電熱線を巻回した 継手本体の内周面を形成
する熱可塑性樹脂製の内筒部材を設け、 この内筒部材を成型用金型のキャビティー内に装着し、
内筒部材の外面に熱可塑性樹脂を射出成形して前記内筒
部材と一体の中間部材を設け、以下成形した中間部材を 成型用金型のキャビティー内に
装着し、中間部材の外面に熱可塑性樹脂を射出成形して
中間部材と一体の継手の外形状を形成する外筒部材を設
け、最終目的形状の電気融着継手を得ることを特徴とす
る電気融着継手の製造方法。2. A method for obtaining an electric fusion joint in which a heating wire is buried in an inner peripheral portion of a thermoplastic resin joint body, wherein an inner peripheral surface of the joint body in which a heating wire is wound around a groove on an outer peripheral surface is provided. Providing an inner cylinder member made of thermoplastic resin to be formed, mounting this inner cylinder member in the cavity of the molding die,
A thermoplastic resin is injection- molded on the outer surface of the inner cylinder member to provide an intermediate member integral with the inner cylinder member. Thereafter, the molded intermediate member is mounted in a cavity of a molding die, and heat is applied to the outer surface of the intermediate member. Manufacturing an electro-fusion joint characterized by providing an outer cylinder member that forms an outer shape of a joint integral with an intermediate member by injection molding a plastic resin to obtain an electro-fusion joint of a final target shape Method.
この金型の夫々のキャビティー部で前記内筒部材を得る
工程と中間部材層を得る工程と外筒部材層を得る工程と
を同期して行い、最終目的形状の電気融着継手を得るこ
とを特徴とする請求項2記載の電気融着継手の製造方
法。3. The molding die has one or more sets,
Performing the steps of obtaining the inner cylindrical member, obtaining the intermediate member layer, and obtaining the outer cylindrical member layer in the respective cavity portions of the mold in synchronization with each other to obtain an electro-fusion joint having a final target shape. The method for producing an electro-fusion joint according to claim 2, characterized in that:
線を埋設した電気融着継手を得る射出成型用金型であっ
て、 同じマンドレルを用いて溶融樹脂を射出成形できる複数
のキャビティ部を有し、このキャビティー部は、継手の
内周面を形成し電熱線を収容する溝を設けた内筒部材を
形成するキャビティー部と、このキャビティー部より一
回り大きく前記内筒部材の外面に熱可塑性樹脂を射出成
形して中間部材を形成するキャビティー部、及びこの成
形した外面に熱可塑性樹脂層を射出成形して外筒部材を
形成するキャビティー部とを有し、前記各キャビティー
部の1層当たりの肉厚が15mm以下になるように設け
たことを特徴とする電気融着継手の射出成型用金型。4. An injection molding die for obtaining an electrofusion joint in which a heating wire is embedded in an inner peripheral portion of a thermoplastic resin joint body, wherein a plurality of cavities capable of injection molding a molten resin using the same mandrel. has a section, the cavity portion has a Ruki Yabiti portion to form a Uchitsutsu member provided with grooves for accommodating the heating wire forms an inner peripheral surface of the joint, slightly larger the inner than the cavity portion A cavity portion that forms an intermediate member by injection molding a thermoplastic resin on the outer surface of the cylindrical member, and a thermoplastic resin layer is formed by injection molding a thermoplastic resin layer on the molded outer surface.
A cavity portion to be formed, wherein each of the cavities is
An injection-molding mold for an electro-fusion joint, wherein the thickness of each portion of the portion is 15 mm or less.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7063783A JP2849349B2 (en) | 1994-03-25 | 1995-03-23 | Electrofusion joint, method of manufacturing the same, and mold for injection molding |
US08/504,866 US5618065A (en) | 1994-07-21 | 1995-07-20 | Electric welding pipe joint having a two layer outer member |
EP95111534A EP0693652B1 (en) | 1994-07-21 | 1995-07-21 | Electric welding pipe joint |
DE69519833T DE69519833T2 (en) | 1994-07-21 | 1995-07-21 | Electric welding socket |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5621494 | 1994-03-25 | ||
JP16925394 | 1994-07-21 | ||
JP6-169253 | 1994-07-21 | ||
JP6-56214 | 1994-07-21 | ||
JP7063783A JP2849349B2 (en) | 1994-03-25 | 1995-03-23 | Electrofusion joint, method of manufacturing the same, and mold for injection molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0885154A JPH0885154A (en) | 1996-04-02 |
JP2849349B2 true JP2849349B2 (en) | 1999-01-20 |
Family
ID=27295847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7063783A Expired - Lifetime JP2849349B2 (en) | 1994-03-25 | 1995-03-23 | Electrofusion joint, method of manufacturing the same, and mold for injection molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2849349B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4569880B2 (en) * | 1997-03-28 | 2010-10-27 | 日立金属株式会社 | Manufacturing method of electroweld plastic pipe joint |
JP2000213683A (en) * | 1999-01-27 | 2000-08-02 | Nkk Corp | Manufacturing method of electrically fused coupling |
JP2005256934A (en) * | 2004-03-11 | 2005-09-22 | Mitsubishi Plastics Ind Ltd | Electric fusion joint and its manufacturing method |
CN110065201B (en) * | 2019-05-31 | 2024-02-27 | 海力士五金机电(昆山)有限公司 | Automatic feeding device for mold core binding posts |
-
1995
- 1995-03-23 JP JP7063783A patent/JP2849349B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0885154A (en) | 1996-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5618065A (en) | Electric welding pipe joint having a two layer outer member | |
EP0396273B1 (en) | Electro-fusion fittings | |
JP2849349B2 (en) | Electrofusion joint, method of manufacturing the same, and mold for injection molding | |
US5228186A (en) | Method of manufacturing electro-fusion fittings | |
JP2729900B2 (en) | Molding method and molding die for hollow product | |
JP3855083B2 (en) | Method and apparatus for forming hollow molded product | |
JP4420279B2 (en) | Plastic Constant Velocity Joint Boot Manufacturing Equipment Plastic Constant Velocity Joint Boot Manufacturing Method Resin Constant Velocity Joint Boot | |
JP5856672B2 (en) | Tubular one-piece electrofused joint and manufacturing method thereof | |
JP2001047464A (en) | Production of electrofusion joint | |
JPS61143112A (en) | Method for solid phase extrusion of synthetic resin | |
KR960004669B1 (en) | Plastic tube, apparatus and method for manufacturing the same | |
JPH08296785A (en) | Electric fusion joint and manufacture of the same | |
JP5677098B2 (en) | Tubular one-piece electrofusion joint | |
JPH1038175A (en) | Electrofusion pipe joint and its manufacture | |
JPH09277313A (en) | Mold for tubular molded article and molding method thereof | |
JPH0780933A (en) | Production of flanged resin lining steel pipe | |
JPH09207224A (en) | Electrofusion-type pipe joint and its manufacture | |
JPH1016000A (en) | Production of electric fusion joint | |
JPH07132555A (en) | Preparation of resin lining steel pipe with flange | |
JPH0968295A (en) | Manufacture of electric fusion coupling | |
JP4000541B2 (en) | Electric fusion joint and method for manufacturing the same | |
JPH10166386A (en) | Manufacture of electric fusion joint | |
JPH05256392A (en) | Electric fision type plastic pipe joint | |
JPH10103570A (en) | Joint forming method and molding die | |
JP2001304481A (en) | Forming method for electrofusion joint and electrofusion joint |