JPH1158192A - Super-abrasive grinding wheel for high speed grinding and high speed grinding work method - Google Patents

Super-abrasive grinding wheel for high speed grinding and high speed grinding work method

Info

Publication number
JPH1158192A
JPH1158192A JP23070397A JP23070397A JPH1158192A JP H1158192 A JPH1158192 A JP H1158192A JP 23070397 A JP23070397 A JP 23070397A JP 23070397 A JP23070397 A JP 23070397A JP H1158192 A JPH1158192 A JP H1158192A
Authority
JP
Japan
Prior art keywords
grinding
workpiece
super
speed
superabrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23070397A
Other languages
Japanese (ja)
Inventor
Yozo Ogura
養三 小倉
Masaru Tanaka
勝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Diamond Industrial Co Ltd
Original Assignee
Osaka Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Diamond Industrial Co Ltd filed Critical Osaka Diamond Industrial Co Ltd
Priority to JP23070397A priority Critical patent/JPH1158192A/en
Publication of JPH1158192A publication Critical patent/JPH1158192A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To carry out contouring grinding having a high finishing accuracy with a good efficiency. SOLUTION: A workpiece W and super-abrasive grains grinding wheel P are relatively moved in a workpiece rotating axial direction while rotating both components respectively, and a surface of the workpiece W is grindingly- worked along its rotating axial direction by 1 pass. Its grinding circumferential speed is set to 120 m/sec or more, the inclining angle θ of a taper part 1b is set to 10 to 45 degrees, more preferably, it is set to before and after 15 degrees. The average particle diameter of the super-abrasives is set to 100 to 500 μm, a concentrating degree is set to 150 or more, resistance force of vitrified bond is set to 7.0 kgf/mm<2> or more, and a high temperature hardness at 300 deg.C is set to 450 Hv or more. When the inclining angle and the average particle diameter are set, a finishing accuracy satisfied in a circularity and surface roughness is obtained in circumferential speed of 120 m/sec by one pass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、工作物を回転さ
せながら1パスで、高精度、高能率に研削加工できる高
速研削用超砥粒砥石および高速研削加工法に関し、特
に、工作物の一部に切欠部、溝部または凹部を有するも
のを高精度、高能率に研削加工する高速研削用超砥粒砥
石および高速研削加工法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superabrasive grain grinding wheel for high-speed grinding and a high-speed grinding method capable of performing high-precision and high-efficiency grinding in one pass while rotating a workpiece. TECHNICAL FIELD The present invention relates to a superabrasive grain grinding wheel for high-speed grinding and a high-speed grinding method for grinding a material having a notch, a groove, or a concave portion with high accuracy and high efficiency.

【0002】[0002]

【従来の技術】今日の研削加工法において、工作物と超
砥粒砥石を、それぞれ回転させながら工作物回転軸線方
向に相対移動させて、工作物の表面をその回転軸線方向
に沿って1パスで研削加工するものがある。この加工を
一般にコンタリング研削という。
2. Description of the Related Art In today's grinding method, a workpiece and a super-abrasive grindstone are relatively moved in the direction of a rotation axis of a workpiece while rotating each, and the surface of the workpiece is moved in one pass along the direction of the rotation axis. Some of them are ground. This processing is generally called contouring grinding.

【0003】この加工法に使用される超砥粒砥石は、そ
の外周研削面が、前記工作物回転軸線と平行な仕上げ研
削用のストレート部と、このストレート部に連続し前記
工作物回転軸線に対して傾斜する荒研削用のテーパ部と
から成り(図2参照)、この超砥粒砥石によるコンタリ
ング研削では、まず、超砥粒砥石のテーパ部で荒研削を
行い、続くストレート部で仕上げ研削を行う。この種の
超砥粒砥石として、特開平7−156047号公報(公
報1)、特開平8−99257号公報(公報2)などに
記載のものを挙げることができる。
[0003] The superabrasive grindstone used in this processing method has a straight portion for finish grinding whose outer peripheral grinding surface is parallel to the workpiece rotation axis, and a straight portion connected to the straight portion and connected to the workpiece rotation axis. It consists of a taper part for rough grinding inclined to the other side (see Fig. 2). In contour grinding with this super-abrasive grindstone, rough grinding is first performed on the tapered part of the super-abrasive grindstone, and then finished with the straight part Perform grinding. Examples of this type of superabrasive grindstone include those described in JP-A-7-156047 (JP-A-1) and JP-A-8-99257 (JP-A-2).

【0004】[0004]

【発明が解決しようとする課題】近年、研削能率の向上
を図るため、超砥粒砥石の周速度を80m/sec以上
で加工することが行われ、上記公報2には100〜12
0m/secに周速度を高めて行う旨の記載がある。さ
らに、周速度200m/sec仕様の研削装置も市販さ
れている。一方、各種の機械の精度を向上させる必要か
ら、その機械の構成部品の仕上精度、例えば、表面粗
さ、真円度も、より高いものが要求される。
In recent years, in order to improve the grinding efficiency, super-abrasive grindstones are machined at a peripheral speed of 80 m / sec or more.
There is a description that the peripheral speed is increased to 0 m / sec. Further, a grinding device having a peripheral speed of 200 m / sec is also commercially available. On the other hand, since it is necessary to improve the accuracy of various machines, higher finishing accuracy, such as surface roughness and roundness, of components of the machine is required.

【0005】しかし、従来のコンタリング研削では、1
パスで十分な表面粗さ、真円度が得られず、また、周速
度を上げると、それらの仕上精度が低下するという考え
の下、所要の精度を得るために、切込み量を少なくして
工作物を複数回パスさせて加工しており、極めて能率が
良くないのが実情である。特に、工作物の一部に切欠
部、溝部、凹部がある場合、その切欠部などの存在は高
い精度を得る上でより大きな問題となる。
However, in the conventional contouring grinding, 1
With the idea that sufficient surface roughness and roundness cannot be obtained with the pass, and that if the peripheral speed is increased, their finishing accuracy will be reduced, reduce the depth of cut to obtain the required accuracy. The work is processed by passing the work several times, which is not very efficient. In particular, when there is a notch, a groove, or a recess in a part of a workpiece, the presence of the notch or the like becomes a greater problem in obtaining high accuracy.

【0006】この発明は、上記実情の下、周速度120
m/sec以上の超高速研削においても、仕上げ精度の
高いコンタリング研削を行い得るようにすることを課題
とする。
[0006] Under the circumstances described above, the present invention provides a peripheral speed of 120
It is an object to perform contouring grinding with high finishing accuracy even in ultra-high-speed grinding at m / sec or more.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、まず、周速度を120m/sec以上
とし、つぎに、テーパ部の工作物回転軸線に対する傾斜
角度θを10〜45度としたのである。
In order to solve the above-mentioned problems, the present invention first sets the peripheral speed to 120 m / sec or more, and then sets the inclination angle θ of the tapered portion with respect to the workpiece rotation axis at 10 to 45. It was a degree.

【0008】上記公報2に記載のごとく、従来の技術
は、一般に、周速度が120m/sec以下であり、ま
た、テーパ部の傾斜角度は、公報1に記載のごとく10
度以下である。この傾斜角度が10度以下としているの
は、通常、該傾斜角度が大きくなると、研削抵抗が高く
なり、発熱量が増して研削焼けや硬度低下等を招くから
とされている。
[0008] As described in the above publication 2, the prior art generally has a peripheral speed of 120 m / sec or less, and the inclination angle of the tapered portion is 10 m.
Degrees or less. The reason why the inclination angle is set to 10 degrees or less is that, when the inclination angle is increased, the grinding resistance is increased, the calorific value is increased, and grinding burns and hardness decrease are caused.

【0009】しかし、トラバース速度が一定で、周速度
が増せば、研削に参加する研削面の総面積も増し、これ
によって、超砥粒砥石一回転での研削量は減少する。
However, if the traverse speed is constant and the peripheral speed increases, the total area of the grinding surfaces participating in grinding also increases, thereby reducing the amount of grinding in one revolution of the superabrasive grinding wheel.

【0010】一方、テーパ部が研削抵抗のほとんどすべ
てを負担すると考えられ、法線研削抵抗Fn は、テーパ
部が負担する全研削抵抗をFとすると、Fcos θとなる
ため、傾斜角度θが増せば、減少することとなる(図6
参照)。
On the other hand, is considered a tapered portion to bear almost all of the grinding resistance, the normal grinding force F n is, when all the grinding resistance tapered portion to bear a F, since the F cos theta, the inclination angle theta is If it increases, it will decrease (Fig. 6
reference).

【0011】このようなことから、周速度が高く、かつ
傾斜角度θが大きくなっても、表面粗さ、真円度などの
仕上げ精度が単純に低下するとは考えられない。この考
えに基づき、後述の実施例を行い、上述の傾斜角度を得
た。
Therefore, it is not considered that the finishing accuracy such as the surface roughness and the roundness simply decreases even if the peripheral speed is high and the inclination angle θ is large. Based on this idea, the following example was performed, and the above-described inclination angle was obtained.

【0012】また、超砥粒の粒径は加工能率に影響を及
ぼし、この発明では、1パスで荒研削から仕上げ研削を
行うため、その加工能率が高い必要があり、その粒径が
100μm未満では細かすぎて、1パスによる荒研削に
は不向きであり、又、500μmを越えると、1パスに
よる仕上げ精度の点で問題が生じる。このため、1パス
研削の加工能率を考慮して、超砥粒の粒径は100〜5
00μmの間で適宜に設定する。
Further, the grain size of the super-abrasive grains affects the machining efficiency. In the present invention, since the rough grinding is performed to the finish grinding in one pass, the machining efficiency needs to be high, and the grain size is less than 100 μm. However, it is too fine and is not suitable for rough grinding in one pass, and if it exceeds 500 μm, a problem occurs in terms of finishing accuracy in one pass. For this reason, in consideration of the processing efficiency of the one-pass grinding, the particle size of the superabrasive grains is 100 to 5
It is set appropriately between 00 μm.

【0013】さらに、超砥粒集中度も加工能率に影響を
及ぼすが、集中度が低いと、研削率が低下するため、1
パス研削では150以上が必要である。因みに、集中度
は高い方が好ましいが、実用化されている集中度は25
0程度までである。
[0013] Furthermore, the degree of concentration of superabrasive grains also affects the processing efficiency. However, if the degree of concentration is low, the grinding rate decreases.
For pass grinding, 150 or more is required. Incidentally, it is preferable that the degree of concentration is high, but the degree of concentration that has been put to practical use is 25.
It is up to about 0.

【0014】また、周速度120m/sec以上の研削
には、砥石(砥粒層)に剛性及び高温硬度が必要であ
り、実用上では、ビトリファイドボンド超砥粒砥石にお
いて、そのビトリファイドボンドに、抗折力:7kgf
/mm2 以上、300℃での高温硬度:450Hv以上
が望まれる。
For grinding at a peripheral speed of 120 m / sec or more, the grindstone (abrasive layer) needs to have rigidity and high-temperature hardness. In practical use, a vitrified bond superabrasive grindstone has resistance to the vitrified bond. Bending power: 7kgf
/ Mm 2 or more, high-temperature hardness at 300 ° C .: 450 Hv or more is desired.

【0015】[0015]

【実施例】まず、図1に示す実験装置及び実験条件の
下、図2で示す超砥粒砥石Pでもって、図3に示す工作
物Wを、図4に示すようにして研削した。図中、Sは2
mmとした。また、コンタリング研削用超砥粒砥石P
は、高い砥粒保持力、高いボンド強度及び高い高温強度
を持つ必要があり、CBN砥粒(平均粒径:200)、
集中度:200のビトリファイドボンドによるものとし
た。さらに、実施例では、同一粒径・集中度の従来のも
のに比べ、図13の物性値で示すように、抗折力で28
%、300℃における高温硬度を38%向上させたビト
リファイドを使用した。その結果を図7乃至図11に示
す。
First, a workpiece W shown in FIG. 3 was ground as shown in FIG. 4 with a superabrasive grindstone P shown in FIG. 2 under the experimental apparatus and experimental conditions shown in FIG. In the figure, S is 2
mm. Also, a superabrasive grindstone P for contouring grinding
Is required to have high abrasive grain holding power, high bond strength and high high temperature strength, and CBN abrasive grains (average particle size: 200),
Concentration: 200% vitrified bond. Further, in the example, as shown by the physical property values in FIG.
%, A vitrified material whose high-temperature hardness at 300 ° C. was improved by 38% was used. The results are shown in FIGS.

【0016】なお、真円度・表面粗さに関しては真円度
測定器、表面粗さ測定器を、研削抵抗はキスラー社製動
力計の9167Aタイプを用いて測定した。超砥粒砥石
摩耗量に関しては、摩耗形状をねずみ鋳鉄(FC20)
に転写し、形状を表面粗さ計で測定した。因みに、1パ
スの切り込み量に関し、この発明の効果を十分に得るに
はφ0.2mm以上であることが好ましい。これ未満で
あると、テーパ部1bを設けた意義がなくなるからであ
る。
The roundness and surface roughness were measured using a roundness measuring device and a surface roughness measuring device, and the grinding resistance was measured using a dynamometer 9167A type manufactured by Kistler. Regarding the wear amount of the super-abrasive grindstone, the wear shape is gray cast iron (FC20)
And the shape was measured with a surface roughness meter. Incidentally, with respect to the cut amount of one pass, it is preferable that the diameter is 0.2 mm or more in order to sufficiently obtain the effect of the present invention. If it is less than this, the significance of providing the tapered portion 1b is lost.

【0017】図7乃至図10から、傾斜角度θを大きく
すると、表面粗さ、超砥粒砥石摩耗量が減少し、法線・
接線研削抵抗Fn、Ftともに減少している。表面粗さ
の減少には超砥粒砥石摩耗量の減少によるストレート部
1a長さの変化が影響していると考えられる。また、研
削抵抗が減少したのは、テーパ部1bと工作物Wとの接
触面積が少なくなったためと考えられる。このように超
砥粒砥石先端の傾斜角度θがコンタリング研削性能に大
きな影響を及ぼすことが理解できる。
From FIGS. 7 to 10, when the inclination angle θ is increased, the surface roughness and the wear amount of the superabrasive grindstone decrease, and the normal
Both the tangential grinding resistances Fn and Ft decrease. It is considered that the decrease in the surface roughness is affected by the change in the length of the straight portion 1a due to the decrease in the wear amount of the superabrasive grindstone. Further, the reason why the grinding resistance was reduced is considered to be that the contact area between the tapered portion 1b and the workpiece W was reduced. Thus, it can be understood that the inclination angle θ of the tip of the superabrasive grindstone has a great effect on the contouring grinding performance.

【0018】また、図11から、傾斜角度θが大きくな
ると、真円度の値が減少している。これは後述の工作物
Wのたわみが研削抵抗の減少により軽減されたためと考
えられる。
Further, from FIG. 11, the value of the roundness decreases as the inclination angle θ increases. This is probably because the deflection of the workpiece W described later has been reduced by the reduction in the grinding resistance.

【0019】以上の考察から、傾斜角度θは15°程度
が最も優れており、下限10度、上限45度では工作物
表面粗さに差がないため、その上下限を限度とする。
From the above considerations, it is most preferable that the inclination angle θ is about 15 °, and there is no difference in the surface roughness of the workpiece at the lower limit of 10 ° and the upper limit of 45 °.

【0020】また、従来例に比べて実施例は、図12に
示すように、真円度、表面粗さともに約30%改善され
ている。さらに、超砥粒砥石摩耗長さL(図5参照)に
関しては40%減少している。したがって、実施例は耐
摩耗性を有しているだけではなく、良好な加工精度が得
られることが理解できる。また、溝aの部分では工作物
断面プロファイルに凹みが生じ、真円度の値が大きくな
ることがわかった。この凹みの原因は溝部分で断続研削
現象が生じ、工作物のたわみが弾性回復したためと考え
られる。なお、図11は、29×103 mm3 加工した
後の工作物の真円度等を示す。
As shown in FIG. 12, the roundness and the surface roughness of the embodiment are improved by about 30% as compared with the conventional example. Further, the wear length L of the superabrasive grindstone (see FIG. 5) is reduced by 40%. Therefore, it can be understood that the working example has not only abrasion resistance but also good working accuracy. In addition, it was found that in the portion of the groove a, a recess was formed in the workpiece cross-sectional profile, and the value of roundness was increased. It is considered that the cause of this dent is that the intermittent grinding phenomenon occurred in the groove portion, and the deflection of the workpiece was elastically recovered. FIG. 11 shows the roundness and the like of the workpiece after the processing of 29 × 10 3 mm 3 .

【0021】[0021]

【発明の効果】この発明は、以上の説明から明らかなよ
うに、従来では好ましくないとされていたテーパ部の傾
斜角度を、周速度120m/sec以上での加工におい
て、10度〜45度とすることにより、高能率でもっ
て、高精度のコンタリング研削を行い得る。
As is apparent from the above description, according to the present invention, the inclination angle of the tapered portion, which has been considered to be unfavorable in the past, is increased to 10 to 45 degrees in machining at a peripheral speed of 120 m / sec or more. By doing so, highly accurate contouring grinding can be performed with high efficiency.

【0022】また、工作物の被研削面に、切欠部、溝
部、凹部が存在していても、テーパ部の傾斜角度が従来
より大きいことにより、そのテーパ部が切欠部等の端面
に当接する際の接点における法線抵抗が少なくなり、真
円度等の精度劣化も少なくなる。
Further, even if a notch, a groove, and a recess exist on the surface to be ground of the workpiece, the taper portion comes into contact with an end face of the notch or the like because the inclination angle of the taper portion is larger than in the past. In this case, the normal resistance at the contact point is reduced, and the accuracy deterioration such as roundness is also reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例における実験装置及び実験条件を示す
FIG. 1 is a diagram showing an experimental apparatus and experimental conditions in one embodiment.

【図2】高速研削超砥粒砥石の要部概略図FIG. 2 is a schematic view of a main part of a high-speed grinding superabrasive grinding wheel.

【図3】工作物を示し、(a)は左側面図、(b)は正
面図
3A and 3B show a workpiece, wherein FIG. 3A is a left side view, and FIG.

【図4】研削作用説明図FIG. 4 is an explanatory view of a grinding action.

【図5】超砥粒砥石摩耗説明図FIG. 5 is an explanatory diagram of superabrasive grinding wheel wear.

【図6】超砥粒砥石と工作物の研削抵抗関係図であり、
(a)は側面図、(b)は要部拡大図
FIG. 6 is a graph showing a relationship between a superabrasive grinding wheel and a grinding resistance of a workpiece;
(A) is a side view, (b) is an enlarged view of a main part.

【図7】実施例における累積材料除去量と工作物表面粗
さの関係図
FIG. 7 is a diagram showing the relationship between the accumulated material removal amount and the workpiece surface roughness in the embodiment.

【図8】実施例における累積材料除去量と摩耗長さの関
係図
FIG. 8 is a diagram showing the relationship between the accumulated material removal amount and the wear length in the example.

【図9】実施例における累積材料除去量と法線研削抵抗
の関係図
FIG. 9 is a graph showing the relationship between the accumulated material removal amount and the normal grinding resistance in the embodiment.

【図10】実施例における累積材料除去量と接線研削抵
抗の関係図
FIG. 10 is a diagram showing the relationship between the accumulated material removal amount and the tangential grinding resistance in the example.

【図11】実施例におけるテーパ部の傾斜角度と真円度
の関係表及び図
FIG. 11 is a table showing the relationship between the inclination angle of the tapered portion and the roundness in the embodiment.

【図12】実施例と従来例の比較表FIG. 12 is a comparison table between an embodiment and a conventional example.

【図13】実施例と従来例のビトリファイドボンドの物
性値の比較表
FIG. 13 is a comparison table of physical property values of a vitrified bond of an example and a conventional example.

【符号の説明】[Explanation of symbols]

P 超砥粒砥石 W 工作物 θ テーパ部傾斜角度 1a ストレート部 1b テーパ部 a 溝 P Super-abrasive grindstone W Workpiece θ Tapered part inclination angle 1a Straight part 1b Tapered part a Groove

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 工作物Wと超砥粒砥石Pを、それぞれ回
転させながら工作物回転軸線方向に相対移動させて、工
作物の表面をその回転軸線方向に沿って1パスで研削加
工する砥石周速度が120m/sec以上の高速研削用
超砥粒砥石であって、 その超砥粒砥石外周研削面が、上記工作物回転軸線と平
行な仕上げ研削用のストレート部1aと、このストレー
ト部1aに連続し前記工作物回転軸線に対して傾斜する
荒研削用のテーパ部1bとから成り、そのテーパ部1b
の傾斜角度θが10〜45度であることを特徴とする高
速研削用超砥粒砥石。
1. A grindstone for grinding a workpiece W and a superabrasive grindstone P in a single pass along the rotational axis direction by relatively moving the workpiece W and the superabrasive grindstone P in the direction of the rotational axis of the workpiece. A super-abrasive grindstone for high-speed grinding having a peripheral speed of 120 m / sec or more, wherein the super-abrasive grindstone outer peripheral grinding surface has a straight portion 1a for finish grinding parallel to the workpiece rotation axis, and the straight portion 1a. And a tapered portion 1b for rough grinding that is inclined with respect to the rotation axis of the workpiece.
The super-abrasive grindstone for high-speed grinding, wherein the inclination angle θ is 10 to 45 degrees.
【請求項2】 超砥粒の平均粒径が100〜500μ
m、集中度が150以上で、かつ、抗折力が7.0kg
f/mm2 以上、300℃での高温硬度が450Hv以
上のビトリファイドボンドからなることを特徴とする請
求項1に記載の高速研削用超砥粒砥石。
2. The superabrasive having an average particle size of 100 to 500 μm.
m, concentration level is 150 or more and flexural strength is 7.0 kg
The superabrasive grinding wheel for high-speed grinding according to claim 1, wherein the superabrasive wheel for high-speed grinding is made of a vitrified bond having a f / mm 2 or more and a high-temperature hardness at 300 ° C of 450 Hv or more.
【請求項3】 請求項1又は2記載の高速研削用超砥粒
砥石を用い、その砥石周速度120m/sec以上で、
工作物Wを回転させながら1パスで研削することを特徴
とする高速研削加工法。
3. A super-abrasive grinding wheel for high-speed grinding according to claim 1 or 2, wherein the peripheral speed of the grinding wheel is 120 m / sec or more.
A high-speed grinding method characterized by grinding in one pass while rotating a workpiece W.
【請求項4】 上記工作物Wの被研削面に、切欠部、溝
部、凹部の少なくとも一つが存在することを特徴とする
請求項3に記載の高速研削加工法。
4. The high-speed grinding method according to claim 3, wherein at least one of a notch, a groove, and a recess exists on the surface to be ground of the workpiece W.
JP23070397A 1997-08-27 1997-08-27 Super-abrasive grinding wheel for high speed grinding and high speed grinding work method Pending JPH1158192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23070397A JPH1158192A (en) 1997-08-27 1997-08-27 Super-abrasive grinding wheel for high speed grinding and high speed grinding work method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23070397A JPH1158192A (en) 1997-08-27 1997-08-27 Super-abrasive grinding wheel for high speed grinding and high speed grinding work method

Publications (1)

Publication Number Publication Date
JPH1158192A true JPH1158192A (en) 1999-03-02

Family

ID=16912001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23070397A Pending JPH1158192A (en) 1997-08-27 1997-08-27 Super-abrasive grinding wheel for high speed grinding and high speed grinding work method

Country Status (1)

Country Link
JP (1) JPH1158192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116160324A (en) * 2023-03-28 2023-05-26 中国航发动力股份有限公司 High-speed grinding method for single crystal casting superalloy turbine guide vane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116160324A (en) * 2023-03-28 2023-05-26 中国航发动力股份有限公司 High-speed grinding method for single crystal casting superalloy turbine guide vane

Similar Documents

Publication Publication Date Title
US7121928B2 (en) High smoothness grinding process and apparatus for metal material
KR100558798B1 (en) Point superabrasive machining of nickel alloys
CN103648719B (en) Microstoning emery wheel, the superfine processing method using this emery wheel and ball bearing
CN107457703A (en) A kind of end surface full jumping is better than 2 μm of bronze boart boart wheel disc precise dressing method
JPH1158192A (en) Super-abrasive grinding wheel for high speed grinding and high speed grinding work method
JPH1133918A (en) Grinding wheel for working inside and outside diameter of substrate for magnetic recording medium, and method for working inside and outside diameter
JP2001025948A (en) Spherical grinding wheel
JP2003334715A (en) Taper end mill for machining rib groove
JP3072366B2 (en) Manufacturing method of multi-blade grinding tool
JP3690994B2 (en) Electrodeposition tool manufacturing method
JPH03270816A (en) Abrasive grain reamer
JP2787411B2 (en) How to use a rotating whetstone
JPS5835412Y2 (en) Adjustment tool for diamond and CBN honing wheels
JPS6322269A (en) Simultaneous truing and dressing method for diamond wheel and composite grinding wheel
JPH02237762A (en) Honing head
JPH05123950A (en) Rolling roller grinding method
JPH10264041A (en) Lapping ultra-abrasive grain wheel
JP2510464B2 (en) Grinding method for soft metal
RU2120848C1 (en) Spindle grinding head
JP2003053672A (en) Grinding wheel with shaft
JP3294060B2 (en) Roll grinding wheel
JPS63196375A (en) Shaping method for grinding wheel
JP2005262363A (en) Extra-smooth grinding method
JP2001170861A (en) Centerless grinding blade
JPH08197433A (en) Composite grinding wheel for cutting