JPH1157355A - Ceramic filter and its production - Google Patents

Ceramic filter and its production

Info

Publication number
JPH1157355A
JPH1157355A JP22769397A JP22769397A JPH1157355A JP H1157355 A JPH1157355 A JP H1157355A JP 22769397 A JP22769397 A JP 22769397A JP 22769397 A JP22769397 A JP 22769397A JP H1157355 A JPH1157355 A JP H1157355A
Authority
JP
Japan
Prior art keywords
membrane layer
layer
filtration membrane
ceramic
ceramic filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22769397A
Other languages
Japanese (ja)
Other versions
JP3615026B2 (en
Inventor
Katsuichi Iwata
克一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP22769397A priority Critical patent/JP3615026B2/en
Publication of JPH1157355A publication Critical patent/JPH1157355A/en
Application granted granted Critical
Publication of JP3615026B2 publication Critical patent/JP3615026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve back washing efficiency regardless of the air passing pore diameter of a filter membrane layer. SOLUTION: A base material layer 2 composed mainly of a sintered compact of a ceramic particle such as silicon carbide particle having 300-400 μm particle diameter, the filter membrane layer 3 of a fine porous layer provided on the surface of the base material layer 2 and having 80-100 μm thickness and 15-25 μm average pore diameter and a ceraic particle forming many projections on the filter membrane layer 3 and 30-200 μm average particle diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、逆洗性に優れたセ
ラミックフィルタ、およびその製造方法の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic filter having excellent backwashing properties, and an improvement in a method for manufacturing the same.

【0002】[0002]

【従来の技術】ろ過除塵を目的に排ガス浄化経路に設置
されたセラミックフィルイタは、使用目的に応じた材質
および粒径のセラミック粒子を同じくセラミックバイン
ダで結合して、表裏に連通する無数の気孔を内部に形成
した多孔質セラミック体からなるものである。このよう
な用途のセラミックとしては、耐摩耗性、耐熱性、耐薬
品性などに優れた、アルミナセラミック、炭化珪素(S
iC)セラミックが広く用いられている。
2. Description of the Related Art A ceramic filter installed in an exhaust gas purifying path for the purpose of filtering and removing dust is composed of ceramic particles of a material and a particle size corresponding to the purpose of use, which are similarly connected by a ceramic binder, and a myriad of pores communicating with the front and back. Is formed of a porous ceramic body. Ceramics for such applications include alumina ceramics, silicon carbide (S) having excellent wear resistance, heat resistance, chemical resistance, and the like.
iC) Ceramics are widely used.

【0003】このようなセラミックフィルタを図2に例
示すると、外観は、外径60mm×長さ1500mmの
円筒形状をなし、40mm内径の中心軸空間13が形成
されている。このセラミックフィルタ1の厚さ10mm
の大部分は、粒径100〜500μmのセラミック粒子
を焼結して得られる基材層11であって、平均気孔径1
00μm程度の多孔性セラミックであり、セラミックフ
ィルタとしての十分な機械的強度が得られるよう配慮さ
れている。この基材層11の表面上には、厚さが100
μm程度のろ過膜層12が形成され、このろ過膜層12
の表裏に連通する無数のろ過気孔の気孔径は、ろ過対象
物のサイズにより定められる。例えば、ろ過対象物がサ
ブミクロン程度であれば、ろ過膜層12のろ過気孔の大
きさは、0.5μm程度のものが採用される。
FIG. 2 shows an example of such a ceramic filter. The ceramic filter has a cylindrical shape having an outer diameter of 60 mm × length of 1500 mm, and has a central shaft space 13 having an inner diameter of 40 mm. The thickness of this ceramic filter 1 is 10 mm
Is a substrate layer 11 obtained by sintering ceramic particles having a particle diameter of 100 to 500 μm,
It is a porous ceramic having a size of about 00 μm and is designed so that a sufficient mechanical strength as a ceramic filter can be obtained. On the surface of the base material layer 11, a thickness of 100
A filtration membrane layer 12 of about μm is formed.
The pore diameters of the myriad of filtration pores communicating with the front and back of are determined by the size of the filtration target. For example, if the object to be filtered is on the order of submicron, the filtration pore size of the filtration membrane layer 12 is about 0.5 μm.

【0004】この事例のセラミックフィルタ1では、外
側からろ過膜層12を経て中心軸空間13に向かってろ
過が行われるのであるが、ろ過の進行に伴ってろ過ダス
トが堆積しフィルタ前後の差圧(圧力損失に相当する)
が上昇する。この差圧がある許容上限に達した時点で、
ろ過方向とは逆方向に高圧空気を繰り返しパルスとして
通過させ、堆積したろ過ダストを剥離、落下させて除去
する、いわゆる逆洗操作が行われる。
In the ceramic filter 1 of this case, filtration is performed from the outside to the central axis space 13 via the filtration membrane layer 12, and as the filtration proceeds, filtration dust accumulates and the pressure difference between before and after the filter is increased. (Equivalent to pressure loss)
Rises. When this differential pressure reaches a certain upper limit,
A so-called backwashing operation is performed in which high-pressure air is repeatedly passed as a pulse in a direction opposite to the filtration direction, and the deposited filter dust is separated, dropped and removed.

【0005】このような逆洗操作を行っても、ろ過気孔
に目詰まりを起こした微細なダストが除去できなくな
り、前記差圧が初期の低い値に回復しないようになった
場合は、目詰寿命として新品と交換するのが通例であ
る。そして、この逆洗操作を容易にするため、すなわ
ち、ろ過堆積ダストの除去を容易にするには、セラミッ
クフィルタのろ過膜層12のろ過気孔径を小さく設定す
る手法が採用されていた。
[0005] Even if such a back washing operation is performed, fine dust clogging the filtration pores cannot be removed, and if the differential pressure does not recover to the initial low value, the clogging may occur. It is customary to replace it with a new one as its life. Then, in order to facilitate the backwashing operation, that is, to facilitate the removal of the filter-deposited dust, a method of setting the filtration pore diameter of the filtration membrane layer 12 of the ceramic filter small has been adopted.

【0006】このように、ろ過気孔径を小さく設定した
場合は、逆洗操作はある程度容易になる反面、圧力損失
が大きくならざるを得ないので、逆洗の頻度が高くなる
という不具合があった。
As described above, when the filtration pore size is set to be small, the backwashing operation becomes somewhat easier, but the pressure loss must be increased, so that the frequency of backwashing becomes high. .

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するためになされたものであり、ろ過膜層のろ
過気孔径には関わりなく、逆洗効率を高めることが可能
となる新規な構造のセラミックフィルタを提供するもの
であり、またその新規な構造のセラミックフィルタの製
造方法を提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to increase the backwashing efficiency irrespective of the filtration pore size of the filtration membrane layer. A ceramic filter having a novel structure is provided, and a method of manufacturing a ceramic filter having the novel structure is provided.

【0008】[0008]

【課題を解決するための手段】上記の問題を解決するた
めになされた本発明のセラミックフィルタは、基材層、
その表面に設けられたろ過膜層、およびそのろ過膜層の
表面に無数の突起を形成するセラミック粒子を備えたこ
とを特徴とするものである。そして、この本発明のセラ
ミックフィルタは、前記ろ過膜層の平均気孔径の値aに
対する前記突起を形成する前記セラミック粒子の平均粒
径の値bの比が2以上であるである形態に具体化するこ
とができる。
Means for Solving the Problems A ceramic filter according to the present invention which has been made to solve the above problems, comprises a substrate layer,
It is characterized by comprising a filtration membrane layer provided on the surface and ceramic particles forming countless projections on the surface of the filtration membrane layer. The ceramic filter of the present invention is embodied in a form in which the ratio of the average particle diameter value b of the ceramic particles forming the projections to the average pore diameter value a of the filtration membrane layer is 2 or more. can do.

【0009】本発明は、さらに前記ろ過膜層の平均気孔
径の値aに対する前記突起を形成する前記セラミック粒
子の平均粒径の値bの組合せb/a(μm)が、50〜
200/15〜25(μm)、または30〜80/0.
3〜5(μm)である形態に具体化することができる。
In the present invention, the combination b / a (μm) of the average pore diameter value a of the filtration membrane layer with the average particle diameter value b of the ceramic particles forming the projections is 50 to 50%.
200/15 to 25 (μm), or 30 to 80/0.
It can be embodied in a form of 3 to 5 (μm).

【0010】また、上記の問題を解決するためになされ
た本発明のセラミックフィルタの製造方法は、セラミッ
ク基材層の表面にろ過膜層を形成するためのスラリをコ
ーティングした後、その表面に平均粒径が30〜200
μmのセラミック粒子を付着させた後、乾燥、焼結し
て、ろ過膜層の表面に無数の突起を形成することを特徴
とするものである。
[0010] Further, the method for manufacturing a ceramic filter of the present invention, which has been made to solve the above-mentioned problem, comprises a step of coating a surface of a ceramic base material layer with a slurry for forming a filtration membrane layer, and then coating the surface with an average. Particle size 30-200
After the ceramic particles of μm are adhered, the particles are dried and sintered to form countless projections on the surface of the filtration membrane layer.

【0011】[0011]

【発明の実施の形態】次に、本発明のセラミックフィル
タおよびその製造方法に係る実施形態を図1を参照して
説明する。図1は、本発明のセラミックフィルタの断面
構造のモデルを示す断面イラスト図であり、本発明のセ
ラミックフィルタは、基材層2と、その基材層2の表面
に設けられたろ過膜層3と、そのろ過膜層3の表面に無
数の突起4を形成するセラミック粒子とを備えた構造を
主体とするものである。ここでろ過膜層3は単層で示し
てあるが、その気孔径が基材層2の気孔径と差が大きい
場合には、中間ろ過層を単数、複数介在させることがで
きるものである。
Next, an embodiment of a ceramic filter and a method of manufacturing the same according to the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional illustration showing a model of a cross-sectional structure of the ceramic filter of the present invention. The ceramic filter of the present invention includes a base layer 2 and a filtration membrane layer 3 provided on the surface of the base layer 2. And a ceramic particle which forms countless projections 4 on the surface of the filtration membrane layer 3. Here, although the filtration membrane layer 3 is shown as a single layer, when the pore diameter is large and the pore diameter of the base material layer 2 is large, one or more intermediate filtration layers can be interposed.

【0012】そして、ここで焼却炉で発生する通常のダ
スト(平均粒径5〜25μm)を対象とするセラミック
フィルタの場合を例示すると、基材層2は、主として粒
径300〜400μmのセラミック粒子、例えば炭化珪
素粒子の焼結体からなり、平均気孔径50〜150μm
の無数の表裏間に通じる連通気孔を備えている。そして
この基材層2の表面に設けられたろ過膜層3は、基材層
2と同材質からなるより細い粒子を焼結した、厚さ80
〜100μm、平均気孔孔が15〜25μmの微細多孔
質層からなるものである。
In the case of a ceramic filter intended for ordinary dust (average particle size of 5 to 25 μm) generated in an incinerator, the base material layer 2 mainly includes ceramic particles having a particle size of 300 to 400 μm. Made of a sintered body of silicon carbide particles, for example, having an average pore diameter of 50 to 150 μm.
It has a series of vent holes that lead to countless front and back sides. The filtration membrane layer 3 provided on the surface of the base material layer 2 is formed by sintering finer particles made of the same material as the base material layer 2 and having a thickness of 80 mm.
It is composed of a microporous layer having a thickness of about 100 μm and an average pore size of 15 μm to 25 μm.

【0013】また、対象ダストが5μm以下、サブミク
ロンサイズの場合には、基材層2の気孔径は、30〜5
0μm程度のやや小径とし、表面層であるろ過膜層3の
平均気孔孔として0.3〜5μmの微細多孔質層の形成
するが、この基材層2とろ過膜層3との間に、粒径2〜
5μm程度の中間ろ過層(図示せず)を介在させて、気
孔の大きさが段階的に変化するよう構成するのがよい。
When the target dust is 5 μm or less and has a submicron size, the pore diameter of the base material layer 2 is 30 to 5 μm.
A microporous layer having a small diameter of about 0 μm and a pore size of 0.3 to 5 μm is formed as an average pore of the filtration membrane layer 3 which is a surface layer, and between the base layer 2 and the filtration membrane layer 3, Particle size 2
It is preferable that an intermediate filtration layer (not shown) of about 5 μm is interposed so that the size of pores changes stepwise.

【0014】そして、本発明の特徴とするところは、こ
のろ過膜層3の表面に無数の突起4を形成するセラミッ
ク粒子がある程度の間隔を設けて固着している点にあ
る。この場合、突起4を形成するためのセラミック粒子
としては、後記の逆洗効率を効果的に高める観点から、
その平均粒径の値bの前記ろ過膜層3の平均気孔径の値
aに対する比b/aが2以上の大きさであるのが好まし
い。さらには比b/aが5以上であるのがさらに好まし
い。
The feature of the present invention resides in that the ceramic particles forming the countless projections 4 are fixed to the surface of the filtration membrane layer 3 at a certain interval. In this case, as ceramic particles for forming the projections 4, from the viewpoint of effectively improving the backwashing efficiency described below,
Preferably, the ratio b / a of the value b of the average particle diameter to the value a of the average pore diameter of the filtration membrane layer 3 is 2 or more. More preferably, the ratio b / a is 5 or more.

【0015】また、本発明における、突起4を形成する
ためのセラミック粒子の好ましい大きさbを、ろ過膜層
3の平均気孔径aの範囲との関係で示すと、組合せb/
a(μm)が、50〜200/15〜25、または30
〜80/0.3〜5の組合せで示すことができる。つま
り、突起形成用セラミック粒子には、ろ過膜層3の平均
気孔径の値の適応した好適な範囲があるのである。そし
て、このとき、得られるその突起4の高さは、自ずから
使用セラミック粒子1個の1/2〜 2/3の大きさに
大略相当し、残余はろ過膜層に埋め込まれた部分とな
る。また、各突起4間の間隔としては、使用セラミック
粒子1個分程度の間隔にするのが適当である。
Further, in the present invention, the preferable size b of the ceramic particles for forming the projections 4 is shown in relation to the range of the average pore diameter a of the filtration membrane layer 3, and the combination b /
a (μm) is 50 to 200/15 to 25, or 30
8080 / 0.3〜5. That is, the ceramic particles for forming projections have a suitable range in which the value of the average pore diameter of the filtration membrane layer 3 is adapted. At this time, the height of the protrusion 4 obtained naturally corresponds to about 1/2 to 2/3 of the size of one ceramic particle used, and the remainder is a portion embedded in the filtration membrane layer. Further, it is appropriate that the interval between the projections 4 is set to be about one ceramic particle used.

【0016】次に、本発明の無数の突起4を形成したセ
ラミックフィルタと、従来の平滑なセラミックフィルタ
との逆洗回数と通気量回復率の比較試験結果を表1に示
す。この試験では、実機のセラミックフィルタ捕集灰に
類似の組成に合成した模擬ダストをろ過した場合を示し
ているが、ここで明らかなように、ろ過膜層3に突起4
を設けた本発明の実施品の場合が、いずれの逆洗におい
ても通気量の回復率が大きく洗浄効果が大であることが
分かる。また、実機において延べ800時間ろ過運転
し、約50回逆洗を行った結果では、通気量回復率で約
10%の差が生じた。
Next, Table 1 shows a comparison test result of the number of times of backwashing and the rate of air flow recovery between the ceramic filter having the countless projections 4 of the present invention and the conventional smooth ceramic filter. This test shows a case where simulated dust synthesized to have a composition similar to that of the collected ash from the ceramic filter of the actual machine was filtered.
It can be seen that, in the case of the embodiment of the present invention provided with the above, the rate of recovery of the ventilation rate is large and the cleaning effect is large in any backwashing. In addition, as a result of performing the filtration operation in the actual machine for a total of 800 hours and performing backwashing about 50 times, there was a difference of about 10% in the rate of air flow recovery.

【0017】[0017]

【表1】 注:温度は、セラミックフィルタのろ過温度を示す。[Table 1] Note: Temperature indicates the filtration temperature of the ceramic filter.

【0018】次に、本発明のセラミックフィルタの製造
方法を、焼却炉の通常のダストを対象にしたSiCセラ
ミックフィルタの実施形態を事例として説明する。この
場合、基材層は、SiC粒子の粗粒(平均粒子径350
μm)60〜70%、中粒(平均粒子径125μm)1
0〜20%、微粒(平均粒子径1.5μm)15〜25
%、に成形助剤を添加した配合物を所定の形状、例えば
前記の円筒状形状、に成形し2000℃以上の高温で焼
結して得られる。
Next, a method of manufacturing a ceramic filter according to the present invention will be described with reference to an embodiment of a SiC ceramic filter for ordinary dust in an incinerator. In this case, the base material layer is made of coarse SiC particles (average particle size of 350
μm) 60-70%, medium grain (average particle size 125 μm) 1
0 to 20%, fine particles (average particle size 1.5 μm) 15 to 25
% And a molding aid in a predetermined shape, for example, the above-mentioned cylindrical shape, and sintered at a high temperature of 2000 ° C. or higher.

【0019】また、ろ過膜層は、SiC粒子の細粒1
(平均粒子径40μm)60〜70%、細粒2(平均粒
子径25μm)10〜20%、微粒(平均粒子径1.5
μm)15〜25%、に成形助剤を添加したスラーリを
準備し、これを先に準備した円筒状基材層表面に、機械
的塗布およびスプレー塗布により、厚さ80〜100μ
mにコートする。なお、この事例では、得られるろ過層
の気孔径は15〜25μm程度のものであるが、さらに
サブミクロン単位の微細気孔を目的とする場合には、1
層または複数の中間的な気孔径のろ過層を介在させて、
段階的に平均気孔径を下げていって、最終的に目的の微
細な気孔のろ過層を形成するようにするのがよい。
The filtration membrane layer is composed of fine particles 1 of SiC particles.
(Average particle diameter 40 μm) 60 to 70%, fine particles 2 (average particle diameter 25 μm) 10 to 20%, fine particles (average particle diameter 1.5
A slurry having 15 to 25% of a molding aid added thereto is prepared, and the slurry is mechanically and spray-coated on the previously prepared cylindrical base material layer surface to a thickness of 80 to 100 μm.
coat m. In this case, the pore size of the obtained filtration layer is about 15 to 25 μm.
Layer or a plurality of intermediate pore size filtration layers,
It is preferable that the average pore diameter be reduced stepwise so that a target fine pore filtration layer is finally formed.

【0020】そして、このコート層に突起を形成するた
めに、平均粒径が30〜200μmの範囲から選ばれた
比較的粒度の揃ったSiC粒子をサンドスプレーにより
付着させるのであるが、この場合、このコート層が十分
に湿潤状態を保っているうちに乾燥させたSiC粒子を
付着させるのがよい。このようにすると、SiC粒子が
コート層表面に粒子1個分の厚さで一重並びに付着し、
余分の粒子は付着することないから、コート層表面に整
然とした突起を設けることができる。
Then, in order to form projections on the coat layer, SiC particles having a relatively uniform particle size selected from the range of 30 to 200 μm are adhered by sand spray. It is preferable that dried SiC particles be adhered while the coating layer is kept sufficiently wet. By doing so, the SiC particles adhere to the surface of the coating layer in a single layer with a thickness of one particle,
Since extra particles do not adhere, orderly projections can be provided on the surface of the coat layer.

【0021】そして、各突起間に適宜間隔を開けたいと
きには、機械的なブラッシングを行い、付着した粒子を
部分的に掻き落とすようにすればよい。また、セラミッ
ク粒子が酸化物系材料の場合には、使用する粒子にほぼ
同サイズの可燃性材料、例えば合成樹脂からなる粒子を
混合しておき、前記の手順でコート層表面に付着させ、
その後の焼結に際して可燃性材料粒子を燃焼させれば、
それが占めていた場所が空間となって各突起間に適宜間
隔を設けることができる。
When it is desired to provide an appropriate interval between the projections, mechanical brushing may be performed to partially scrape off the attached particles. In the case where the ceramic particles are an oxide-based material, a flammable material having substantially the same size as the particles to be used, for example, particles of a synthetic resin are mixed, and adhered to the surface of the coat layer in the above-described procedure.
By burning the combustible material particles during subsequent sintering,
The space occupied by the space serves as a space, and an appropriate space can be provided between the projections.

【0022】このようにSiC粒子により突起形成を行
った後、十分に乾燥し、2000℃以上の高温でろ過膜
層を焼結して、平均気孔径15〜25μmのろ過孔を形
成すると同時に、このろ過膜層と突起部分とを強固に結
合して完成品を得ることができる。このようにして、本
発明によれば、突起構造を有するセラミックフィルタを
効率よく製造することができるのである。
After the projections are formed by the SiC particles in this way, the filter membrane layer is sufficiently dried, and the filtration membrane layer is sintered at a high temperature of 2000 ° C. or more to form filtration pores having an average pore diameter of 15 to 25 μm. This filtration membrane layer and the protruding portion can be firmly bonded to obtain a finished product. Thus, according to the present invention, a ceramic filter having a projection structure can be efficiently manufactured.

【0023】ここで、突起形成のためのSiC粒子の好
ましい粒度範囲は、ろ過対象物の粒度分布に対応して設
定されるろ過層の平均気孔径の値に関連して、30〜2
00μmの範囲から選択すればよい。例えば、SiC粒
子の平均粒径bと、ろ過膜層3の平均気孔径aとの組合
せb/a(μm)が、50〜200/15〜25(μ
m)、または30〜80/0.3〜5(μm)の組合せ
が製造の容易さ、逆洗効率など実用上適当である。つま
り、突起形成用セラミック粒子には、ろ過膜層3の平均
気孔径の値の適応した好適な範囲があるのである。
Here, the preferable particle size range of the SiC particles for forming the projections is 30 to 2 in accordance with the value of the average pore diameter of the filtration layer set in accordance with the particle size distribution of the object to be filtered.
What is necessary is just to select from the range of 00 micrometers. For example, the combination b / a (μm) of the average particle diameter b of the SiC particles and the average pore diameter a of the filtration membrane layer 3 is 50 to 200/15 to 25 (μm).
m) or a combination of 30 to 80 / 0.3 to 5 (μm) is practically appropriate, such as ease of production and backwashing efficiency. That is, the ceramic particles for forming projections have a suitable range in which the value of the average pore diameter of the filtration membrane layer 3 is adapted.

【0024】次に、本発明の作用について説明すると、
本発明のセラミックフィルタによる逆洗方法では、先に
詳述したセラミックフィルタのように、ろ過膜層の表面
に無数の突起を形成するセラミック粒子を備えたセラミ
ックフィルタの裏面側からパルス気流を供給して、ろ過
膜層を逆流する空気が表面に放出されるに伴い、その突
起の間のろ過膜層の表面上の堆積ダストを剥離させると
同時に、その突起間を覆うろ過堆積ダストをも押し剥が
して除去するものである。
Next, the operation of the present invention will be described.
In the backwashing method using the ceramic filter of the present invention, as in the case of the ceramic filter described in detail above, a pulsed air current is supplied from the back surface side of the ceramic filter having ceramic particles forming countless projections on the surface of the filtration membrane layer. As the air flowing back through the filtration membrane layer is released to the surface, the deposition dust on the surface of the filtration membrane layer between the projections is peeled off, and at the same time, the filtration deposition dust covering between the projections is also pushed off. To remove.

【0025】このような作用が行われるのは、ろ過膜層
の表面に無数の突起を形成する本発明のセラミック粒子
の存在によって、ろ過堆積ダストの圧縮状態が緩和され
ていることによるものと思われる。この点をさらに説明
すると、本発明のセラミックフィルタのろ過操作時のろ
過堆積ダストの挙動を観察するに、ろ過の進行に伴い、
ろ過対象のダストが逐次堆積するのであるが、細かいダ
ストは突起間のろ過膜層上に到達して堆積するものの、
粗大なダストは突起に妨げられて、突起を覆う状態に堆
積することになる。
It is considered that such a function is performed because the compressed state of the filter-deposited dust is alleviated by the presence of the ceramic particles of the present invention which form countless projections on the surface of the filter membrane layer. It is. To further explain this point, to observe the behavior of the filter sediment dust during the filtration operation of the ceramic filter of the present invention, as the filtration proceeds,
Although the dust to be filtered is deposited sequentially, the fine dust reaches the filter membrane layer between the protrusions and deposits,
Coarse dust is hindered by the projections and accumulates so as to cover the projections.

【0026】そこで、このような突起が設けられていな
いフィルタの場合には、ろ過膜層上に堆積したダスト
は、さらにダストが積み重なる圧力によって圧縮状態に
充填されるのに対して、本発明の場合には、上記のよう
にろ過膜層上に堆積したダストは圧縮状態がある程度以
上には進行しないように、突起によって緩和されるので
ある。従って、本発明では、ろ過膜層上に堆積したダス
トは、従来の場合と異なり、逆洗を受けると比較的容易
に剥離し除去されるのである。
Therefore, in the case of a filter having no such projections, the dust deposited on the filtration membrane layer is further filled in a compressed state by the pressure at which the dust is accumulated. In such a case, dust accumulated on the filtration membrane layer as described above is alleviated by the projections so that the compressed state does not progress to a certain degree or more. Therefore, in the present invention, unlike the conventional case, the dust deposited on the filtration membrane layer is relatively easily separated and removed when subjected to backwashing.

【0027】[0027]

【発明の効果】本発明は以上に詳述したように構成され
ているので、本発明のセラミックフィルタでは、ろ過膜
層のろ過気孔径には関わりなく、逆洗効率を高めること
が可能となる。また、本発明のセラミックフィルタの製
造方法では、本発明の突起構造を有するセラミックフィ
ルタを効率よく製造することができる。よって本発明
は、従来の問題点を解消したセラミックフィルタおよび
その製造方法として、その工業的価値は極めて大なるも
のがある。
Since the present invention is configured as described above in detail, in the ceramic filter of the present invention, it is possible to increase the backwashing efficiency irrespective of the pore diameter of the filtration membrane layer. . Further, according to the method for manufacturing a ceramic filter of the present invention, a ceramic filter having the projection structure of the present invention can be efficiently manufactured. Therefore, the present invention has an extremely large industrial value as a ceramic filter and a method of manufacturing the same which have solved the conventional problems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を説明するための断面概念
図。
FIG. 1 is a conceptual cross-sectional view illustrating an embodiment of the present invention.

【図2】セラミックフィルタの1例を示す外観斜視図。FIG. 2 is an external perspective view showing one example of a ceramic filter.

【符号の説明】[Explanation of symbols]

1 セラミックフィルタ、2 基材層、3 ろ過膜層、
4 突起。
1 ceramic filter, 2 substrate layer, 3 filtration membrane layer,
4 Projections.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基材層、その表面に設けられたろ過膜層、
およびそのろ過膜層の表面に無数の突起を形成するセラ
ミック粒子を備えたことを特徴とするセラミックフィル
タ。
1. A substrate layer, a filtration membrane layer provided on the surface thereof,
And a ceramic filter comprising ceramic particles forming countless projections on the surface of the filtration membrane layer.
【請求項2】前記ろ過膜層の平均気孔径の値aに対する
前記突起を形成する前記セラミック粒子の平均粒径の値
bの比が2以上である請求項1に記載のセラミックフィ
ルタ。
2. The ceramic filter according to claim 1, wherein the ratio of the average particle diameter value b of the ceramic particles forming the projection to the average pore diameter value a of the filtration membrane layer is 2 or more.
【請求項3】前記ろ過膜層の平均気孔径の値aに対する
前記突起を形成する前記セラミック粒子の平均粒径の値
bの組合せb/a(μm)が、50〜200/15〜2
5(μm)、または30〜80/0.3〜5(μm)で
ある請求項1に記載のセラミックフィルタ。
3. The combination b / a (μm) of the average pore diameter value a of the filtration membrane layer to the average particle diameter value b of the ceramic particles forming the projections is 50 to 200/15 to 2.
The ceramic filter according to claim 1, wherein the thickness of the ceramic filter is 5 (μm) or 30 to 80 / 0.3 to 5 (μm).
【請求項4】セラミック基材層の表面にろ過膜層を形成
するためのスラリをコーティングした後、その表面に平
均粒径が30〜200μmのセラミック粒子を付着させ
た後、乾燥、焼結して、ろ過膜層の表面に無数の突起を
形成することを特徴とするセラミックフィルタの製造方
法。
4. A slurry for forming a filtration membrane layer is coated on the surface of the ceramic base material layer, and ceramic particles having an average particle size of 30 to 200 μm are adhered to the surface, and then dried and sintered. And forming countless projections on the surface of the filtration membrane layer.
JP22769397A 1997-08-25 1997-08-25 Ceramic filter and manufacturing method thereof Expired - Lifetime JP3615026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22769397A JP3615026B2 (en) 1997-08-25 1997-08-25 Ceramic filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22769397A JP3615026B2 (en) 1997-08-25 1997-08-25 Ceramic filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1157355A true JPH1157355A (en) 1999-03-02
JP3615026B2 JP3615026B2 (en) 2005-01-26

Family

ID=16864874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22769397A Expired - Lifetime JP3615026B2 (en) 1997-08-25 1997-08-25 Ceramic filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3615026B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861122B2 (en) * 2001-01-31 2005-03-01 Toshiba Ceramics Co., Ltd. Ceramic member with fine protrusions on surface and method of producing the same
JP2006255639A (en) * 2005-03-18 2006-09-28 Ngk Insulators Ltd Method for manufacturing ceramic filter
WO2018235901A1 (en) 2017-06-21 2018-12-27 エム・テクニック株式会社 Filtration membrane module and filtration method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861122B2 (en) * 2001-01-31 2005-03-01 Toshiba Ceramics Co., Ltd. Ceramic member with fine protrusions on surface and method of producing the same
JP2006255639A (en) * 2005-03-18 2006-09-28 Ngk Insulators Ltd Method for manufacturing ceramic filter
WO2018235901A1 (en) 2017-06-21 2018-12-27 エム・テクニック株式会社 Filtration membrane module and filtration method
KR20200020680A (en) 2017-06-21 2020-02-26 엠. 테크닉 가부시키가이샤 Filtration membrane module and filtration treatment method
US11161079B2 (en) 2017-06-21 2021-11-02 M. Technique Co., Ltd. Filtration membrane module and filtration processing method

Also Published As

Publication number Publication date
JP3615026B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
EP0228631A2 (en) Ceramic filter with plural layers of different porosity
JP2003269132A (en) Exhaust emission control filter
KR20040049279A (en) Method for producing multi-layered ceramic filter and ceramic filter using the same
GB2242431A (en) Porous PTFE structures
JPS61141682A (en) Ceramic foam and manufacture
JPH1157355A (en) Ceramic filter and its production
KR101575828B1 (en) Manufacturing method of ceramic filter
JP2004521732A (en) A filter having a structure arranged in a grade order and a method for manufacturing the same.
JP2004521732A5 (en)
JP4480414B2 (en) Method for producing filter catalyst
CN110302612A (en) Amplifier case
JPH08971A (en) Method for forming ceramic membrane
JP3442411B2 (en) Silicon carbide filter and method of manufacturing the same
KR101242607B1 (en) Ceramic filter with supporting body and method of preparing thereof
JPS63240912A (en) Ceramic filter for dustcollecting from exhaust gas
JP2006513841A (en) Method of manufacturing filter element and filter element obtained by the method
JPH0910527A (en) Dust collecting ceramic filter
JP4187154B2 (en) Metal porous sintered body and filter
JP5430081B2 (en) Method for producing porous metal sintered body
JP3652963B2 (en) Ceramic filter for dust collection
JP4654429B2 (en) Ceramic multilayer structure and manufacturing method thereof
JP2004025276A (en) Ceramic filter for high temperature use and method of filtering molten metal using the same
JP3784314B2 (en) Ceramic filter for dust collection and manufacturing method thereof
CN216856321U (en) Filter membrane structure
JPH0760035A (en) Metal filter and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term