JP4187154B2 - Metal porous sintered body and filter - Google Patents

Metal porous sintered body and filter Download PDF

Info

Publication number
JP4187154B2
JP4187154B2 JP2003095376A JP2003095376A JP4187154B2 JP 4187154 B2 JP4187154 B2 JP 4187154B2 JP 2003095376 A JP2003095376 A JP 2003095376A JP 2003095376 A JP2003095376 A JP 2003095376A JP 4187154 B2 JP4187154 B2 JP 4187154B2
Authority
JP
Japan
Prior art keywords
filter
sintered body
pores
test piece
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003095376A
Other languages
Japanese (ja)
Other versions
JP2004300526A (en
Inventor
賢治 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Precision Ltd
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Precision Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Precision Ltd, Hitachi Metals Ltd filed Critical Hitachi Metals Precision Ltd
Priority to JP2003095376A priority Critical patent/JP4187154B2/en
Priority to US10/617,872 priority patent/US6964817B2/en
Priority to EP20030015992 priority patent/EP1382408B1/en
Priority to DE60333058T priority patent/DE60333058D1/en
Priority to CNB031476589A priority patent/CN100516263C/en
Publication of JP2004300526A publication Critical patent/JP2004300526A/en
Priority to US11/104,490 priority patent/US7195735B2/en
Application granted granted Critical
Publication of JP4187154B2 publication Critical patent/JP4187154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンの排気ガス中の煤を除去するためのフィルター材、即ち、ディーゼルパテキュラーフィルター(以下DPFと略す。)や焼却炉および火力発電所の燃焼ガス等の集塵機用フィルター等に使用することが出来る金属多孔質焼結体およびそれを用いたフィルターに関する。
【0002】
【従来の技術】
従来、DPF用フィルターとしては、耐熱性があるコージェライト(セラミックス)製ハニカムが用いられている。しかし、セラミックスは振動や熱衝撃により破損しやすく、また、低熱伝導のためにフィルターに捕捉された炭素を主成分とする煤が燃焼するときに局所的な加熱(ヒートスポット)が発生し、クラックや溶損が発生し問題となっている。そこで、セラミックスよりも強度があり熱伝導率の高い金属製のDPF用フィルターの提案がなされている。
たとえば、3次元網目構造を持つ金属製ポーラス体をフィルターとして採用することが提案されている(特許文献1参照。)。この提案は、耐クラック、耐溶損性という点で優れたものであり、また、構造的にもハニカムに比べ簡略化できる。
【0003】
【特許文献1】
特開平5−312017号公報
【0004】
【発明が解決しようとする課題】
上述した3次元網目構造の金属製ポーラス体は、熱衝撃による耐クラック性や耐溶損の点では有利であるものの、煤の捕捉性能が低いという問題がある。これは、従来の3次元網目構造の金属製ポーラス体は、骨格が細いために表面積が小さい。このために、煤粒子の骨格への衝突の確率が低く、また、骨格表面が滑らかなために、付着した煤が不安定であり、ある程度付着すると骨格から剥離してしまうために、捕捉率が低いと考えられる。この結果、エンジンで発生した煤がフィルターで捕捉されずにそのまま大気中へ放出される割合が高くなる。また、捕捉率を上げるには、フィルターを厚く大きくする必要があり、DPF自体が大きなものになってしまい、車載用としては問題が出てくる。
本発明の目的は、煤等の微細な被除去物の捕捉率が高いフィルター等に用いることができる金属多孔質焼結体およびそれを用いたフィルターを提供することである。
【0005】
【課題を解決するための手段】
本発明者は、細い骨格の3次元網目構造ではなく、連通する空洞状の空間が分散し、その空洞の壁に比較的大径の細孔が形成された金属製の多孔質焼結体構造を採用することにより、煤の捕捉性能等を大きく改善できることを見いだし本発明に到達した。
【0006】
すなわち本発明は、内部に一部もしくは全部が連通する、平均粒径が0.1mm〜10mmの樹脂粒が除去されてなる、空洞状の空間が分散しており、該空間を構成する壁面に細孔が形成された金属多孔質焼結体であって、BET表面積が700cm/cm以上、水銀圧入法により測定する壁面の細孔の平均直径が1μm以上29.4μm以下であることを特徴とする金属多孔質焼結体である。
好ましくは、空隙率が85%以上から95%以下とする。
また、上記の金属多孔質焼結体はフィルター用途に好適である。
【0007】
【発明の実施の形態】
上述したように、本発明の重要な特徴は空洞状の空間が分散し、その空洞の壁に比較的大径の細孔が形成された金属多孔質焼結体構造を採用したことにある。金属多孔質焼結体をフィルターとして用いた場合、煤等の微小な被除去物がフィルターに吸着する確率を増やすには、焼結体内部をガスが通過する際に、ガス中の被除去物が衝突可能な焼結体部分の面積を増加させることが有効である。本発明では被除去物が衝突し吸着する部分を従来の骨格の細い網目構造ではなく、空洞状の空間を分散させて構成する壁面として比表面積の向上を図る。加えて、空間を構成する壁面に細孔を形成することで壁面の面粗さを増加し、一層高い比表面積を達成することにより、より吸着の確率を増やすのである。以上の特徴を具体的に例えば、BET法による比表面積として評価すると、本発明では従来の3次元網目構造の金属製ポーラス体では困難であった700cm/cm以上の高い比表面積とすることができる。これにより被除去物が吸着する確率を増やし、被除去物の捕捉性能を上げるというものである。BET法による比表面積は900cm/cm以上であることが好ましい。
【0008】
また、壁面に形成させる細孔は比表面積を増加させ、壁面上の凹凸となって被除去物を付着しやすくするだけでなく、壁面に細孔による通気性を確保することで、壁面にろ過の機能を付加する。この際、壁面に形成された細孔の水銀圧入法による平均の細孔径(直径)は、1μm以上である必要がある。1μmより小さい場合は、捕捉率が下がる傾向があるためである。これは、壁面の細孔が小さいとガスが壁面を透過し難くなり、ガスが壁面に沿って流れてしまい、ガス中の被除去物が壁面に捕捉されずに、そのまま連通孔から壁面の外へ流出する割合が増加するためと考えられる。好ましくは10μm以上、より好ましくは20μm以上である。本発明では、29.4μm以下にする。
【0009】
以上に述べた本発明の金属多孔質焼結体内部に形成する空洞状の空間は、その一部もしくは全部が連通している必要がある。
金属多孔質焼結体をフィルターとして用いる場合には、被除去物を含むガス等が焼結体内部を通過する。各空洞が孤立しているとガス等は空洞状の空間を構成する壁面を透過しなければない。本発明では、壁面には細孔が存在するので通気性はあるが、ガスの経路が細孔のみではフィルター通過時のガスの圧損が高くなりすぎる場合がある。特にDPF等のフィルターとして使用するには煤等の被除去物の捕捉量の増加に伴い、細孔の目詰まりによる急激な圧損の上昇がおこる。従って、空洞状の空間は、その一部もしくは全部が連通していることが必要である。なお、連通している空間の開口寸法が大きな程、また、連通の頻度が高い程圧損は低減する。
以上の条件を満足することにより、多孔質体の各空洞状の空間は、被除去物のトラップとして機能する。
【0010】
本発明では、焼結体使用時の振動や熱衝撃による破損や、特にDPF用フィルターとして用いた際における煤の燃焼時のヒートスポットによるクラックや溶損を防止するために、セラミックスに比べ振動や衝撃に強く、高熱伝導であるために熱がこもり難い金属の焼結体を使用する。この際、フィルターは排気ガスにより加熱され、DPFの方式によってはフィルターの再生のために煤の発火温度である600℃以上の高温に加熱される場合もあり、高温での耐食性が要求されるため、使用条件にあった材質の選定が必要である。
【0011】
本発明の金属多孔質焼結体では、空隙率は85%以上95%以下であることが好ましい。
空洞状の空間とその壁面により構成する本発明の金属多孔質焼結体では、空隙率が85%よりも低い場合は、空洞間の連通が不足するため、フィルターとして用いた場合には圧損が高くなる。一方、95%より高くなると壁面が少なくなり、金属多孔質焼結体の強度が不足すると共に、フィルターとして用いた場合の被除去物の捕捉性能が落ちて本素材の特徴が失われる。
【0012】
また、厚さ10mmの本発明の金属多孔質焼結体において、23℃における流量5m/sで大気を流した場合の圧損は、1kPa以上10kPa以下であることが好ましい。
金属多孔質焼結体の空洞の連通度は、マクロ的には上記の圧損として評価できる。1kPa未満では連通度が高すぎるためフィルターとして用いた際に、被除去物と壁面との衝突の頻度が低くなり、補足率が低下する。一方、10kPaより高くなると、空洞の連通度が低いために、フィルターとして用いた場合に、早い時期から被除去物による目詰まりが発生し、圧損の上昇が高いために、例えば、DPF用フィルターとして使った場合、エンジンの出力低下の原因になる。
【0013】
上述した本発明に適用する金属多孔質焼結体の製造方法としては、例えば以下の方法が適用できる。
まず、金属粉末を準備する。金属多孔質焼結体をDPF用フィルターとして用いる場合には、フィルターを600℃以上の高温で加熱再生する方式のフィルター用途にも対応させるため、Cr:16wt%以上含有するステンレス鋼や高温でアルミナ皮膜を生成するAl:1〜10wt%、Cr:5〜30wt%を含有する耐熱鋼等の金属粉末が有効である。その粒径としては、平均粒径200μm以下が好ましい。この金属粉末に樹脂粒、バインダを混合する。樹脂粒は焼結体に空洞を造ることを目的として混合するが、その平均粒径は0.1mm〜10mmである。樹脂粒は焼結時に気化させるか、または金属粉末を成形体とした後、焼結前に溶剤を用いて溶解、除去を行う。焼結時における樹脂粒の溶融や気化に伴う焼結体の変形や崩壊が問題となる場合には、後者の溶解による除去が好ましい。
【0014】
また、後者の樹脂粒を溶解除去する方法は、厚さ10mm以上の多孔質焼結体の安定した製造が可能であり、厚さに対する自由度が増し、有効な製法である。また、プロセス的にも、溶剤と樹脂の組み合わせによっては、処理後の溶剤は蒸留により、樹脂、溶剤ともにリサイクルできるという利点もある。
バインダとしては樹脂を用いることもできるが、溶剤で樹脂粒を除去するという方法を適用する場合は、溶剤に溶け合わない例えばメチルセルロースと水を主成分とするバインダを使用することが有効である。
【0015】
ついで成形体を作製する。成形の際は、樹脂粒が粉砕しない程度の圧力をかけることにより、樹脂粒どうしの接触面積を上げることが好ましい。これにより、できあがった多孔質体における空間の連通部分の開口寸法は大きくなり、連通の頻度も高くなる。この後、成形体を加熱脱脂、焼結する。水をバインダに入れる場合は、成形後に乾燥工程を入れることが好ましく、樹脂粒を溶剤で除去する場合は、加熱脱脂の前に、溶剤抽出、乾燥の工程を付与することが好ましい。
【0016】
以上に述べた空洞の壁面に比較的大径の細孔を有しかつ比表面積の大きい本発明の金属多孔質焼結体は、比表面積が大きく、通気性があることからフィルターとしての用途の他、触媒担体に用いることができる。また、空洞や壁面の細孔には、毛細管現象により液体を吸収、保持したり、水蒸気等の蒸気を毛管凝縮する特徴があることから、直接メタノール型燃料電池の燃料をタンクから燃料電極へ輸送するための吸収体や、ガス中の水蒸気の分離部材の用途にも適する。
【0017】
【実施例】
(試験片の作製)
平均粒径60μmのSUS316L水アトマイズ粉末、市販のメチルセルロース、および樹脂粒として不定形の平均粒径2.5mmのパラフィンワックス粒を混合し、水、可塑剤を加えて混合・混練し混練体を作製した。なお、樹脂粒の混合量としては、金属粉末と樹脂粒を合わせた体積を100%とした場合、樹脂粒の体積率が90%になるように設定した。
【0018】
その後、プレス機により混練体を0.7MPaの圧力でプレス成形して円盤を作製し、50℃で乾燥した。次に成形体から溶剤にて成形体中のパラフィンワックス粒を抽出し、90℃で乾燥を行った。続いて窒素中において600℃で加熱脱脂後、1200℃の真空中で焼結することにより、厚さがそれぞれ7mmと10mm、直径がいずれもφ144mmの2種類の円盤状の試験片を作製した。以下、厚さ7mmの試験片を本発明例1、厚さ10mmの試験片を本発明例2とする。
【0019】
本発明例1、2の場合と同じ条件で作製した混練体をローラーで延ばして成形し、その成形体を再び本発明例1、2と同じ工程で処理し、厚さ10mmで直径φ144mmの円盤状の試験片を作製した。以下、この試験片を本発明例3とする。
また、比較例として導電処理されたウレタンフォームをベースにメッキ法により、Ni−Cr合金の3次元網目構造を持つ金属製ポーラス体の試験片を作製した。これを厚さ10mmで直径φ144mmの円盤状に加工した。
【0020】
(断面形態の比較)
本発明例1、3及び比較例の断面形態の一例である走査電子顕微鏡写真(SEM写真)および光学顕微鏡写真をそれぞれ図1〜3に示す。SEM写真は、試験片を2つに割った破断面を観察したものであり、断面組織写真(光学顕微鏡写真)は、樹脂に埋めた試験片を研磨することにより、試験片の断面を観察したものである。
本発明例1では、隣接する空洞に連通孔があいていることがわかる。また、壁面は金属粉末を焼結した構造となっており、凹凸および細孔が見られる。なお、本発明例2でも同様の形態が確認できた。
本発明例3でも、本発明例1と比べると空洞の連通の度合が小さいものの隣接する空洞に連通孔があいていることがわかる。また、壁面は本発明例1と同様に金属粉末を焼結した構造となっており、凹凸および細孔が見られる。
これらの本発明例に対し、比較例では骨格は細く、中空で、表面は滑らかで細孔は存在していない。
【0021】
(表面積等の比較)
本発明例1〜3及び比較例における単位体積あたりの表面積(BET表面積)、細孔径(平均直径)、空隙率、大気を透過させた際の圧損を測定した。単位体積あたりの表面積はBET法、細孔径の平均直径は水銀圧入法、圧損は23℃での流量5m/sの大気を透過た際の差圧により測定した。
なお、表面が平滑である比較例については細孔径の測定は行っていない。また、BET比表面積については、本発明例では壁面を構成する焼結体部分、比較例では骨格部分の1g当たりの比表面積を計測し、空隙率を使って多孔質体1cm当たりの比表面積に換算したものである。さらに、比較例については、骨格部が中空であるので、断面組織の画像処理のデータを使って、フィルター性能に寄与しない中空部の表面積を差し引いて補正した値を示している。結果を表1に示す。
【0022】
本発明例は、比較例と比べて空隙率は同程度であるが、比表面積は本発明の方が2倍近く大きいことがわかる。また、先に示した断面形態と表1の結果とから、本発明例では空洞部の連通の度合が高いほど、多孔質体の厚さが薄いほど、圧損が低くなることがわかる。
また、比較例の圧損は本発明例に比べて非常に低いことがわかる。これは、比較例の構造が滑らかな細い骨格による網目構造のため、本発明例の上記の構造に比べ、多孔質体の透過するガス流に対する抵抗が小さいためと考えられる。
【0023】
【表1】

Figure 0004187154
【0024】
(フィルター特性の評価)
本発明例1〜3および比較例をフィルターとして用いて、炭素微粒子の投入量と圧力損失の関係および炭素微粒子の捕捉率について評価をおこなった。
【0025】
−評価法−
まず、試験片をあらかじめ130℃で2時間乾燥後、秤量する。ついで、図4に示すようにホルダー1内に試験片2をシール材3を介してセットし、流量が5m/sで一定になるように片側から吸引し、もう片側から平均粒径0.042μmの炭素微粒子を0.1g/minの割合で投入して、投入量に対する試験片での圧損の変化を調査した。この時の試験片の通風部は試験片中央部のφ139.5とした。圧損は、試験片の前後の差圧より求めた。なお、試験は気温が23℃に保持された部屋でおこなった。
【0026】
試験は流量を5m/sで一定に制御ができなくなった時点で終了し、ホルダーより試験片を取り出す。その後、130℃で2時間乾燥後秤量し、試験片の増加量から炭素微粒子の捕捉量を求め、その捕捉量を試験中の炭素微粒子の全投入量で割った値をその試験片の捕捉率とした。また、試験片への炭素微粒子の付着状態についても調査した。
【0027】
−評価結果−
炭素微粒子の投入量と圧損の関係を図5に、各試験片の試験終了後に測定した捕捉率を表2に示す。
【0028】
【表2】
Figure 0004187154
【0029】
厚さが同じ10mmの(本発明例2)と(本発明例3)の試験片を比較した場合、圧損は空洞の貫通の度合が高い(本発明例2)の方が低く、捕捉率は空洞の貫通の度合が低い(本発明例3)の方が高いことがわかる。
また、厚さ7mmの(本発明例1)と10mmの(本発明例2)の試験片を比較した場合、圧損は厚さの薄い(本発明例1)の方が低く、捕捉率は厚さの厚い(本発明例2)の方が高いことがわかる。
さらに、厚さ7mmの(本発明例1)を図4に示すように3mmの隙間を設けて3枚重ねた場合には、圧損は(本発明例3)よりも低いが、捕捉率は95.2%と(本発明例3)と同等な高い値を示すことがわかる。
【0030】
以上より、空洞の連通の度合い、金属多孔質焼結体の厚さ、および重ねる枚数により圧損および捕捉率の制御が可能であることがわかる。
【0031】
一方(比較例)は、(本発明例1)〜(本発明例3)に比べ圧損は低く、また、炭素微粒子の投入量に対しても圧損の上昇は見られないものの、捕捉率は2.7%と非常に低いことがわかる。(本発明例)と同等レベルに捕捉率を上げるためには、かなりの厚さにする必要があることが推測される。従って、高捕捉率が要求されるフィルターとして使う場合には、非常に容積が大きなものとなってしまう。
【0032】
試験後の厚さ7mmの(本発明例1)の試験片を割った破断面の炭素微粒子投入側の面(表面)付近、および、裏面付近のSEM写真を図6に、炭素微粒子が堆積している壁面の破断部(壁面の断面)を拡大したSEM写真を図7に示す。また、試験後の(比較例)を表面および裏面から内部の骨格への炭素微粒子の付着状態を観察した光学顕微鏡写真を図8に示す。
(本発明例1)は、図6から炭素微粒子の投入側から反対側にかけて、炭素微粒子の流れに対向する各空洞の壁面に炭素微粒子が溜まっていることが確認できた。また、図7において白く見える微粒子が炭素微粒子であるが、これから(本発明例1)では炭素微粒子が連通する空洞状の空間を構成する壁面に堆積しているのと同時に、細孔内にも堆積していることが確認できた。
一方、(比較例)は、図8から細長い滑らかな骨格の炭素微粒子投入側の面に付着していることがわる。また、投入側の面でも付着していない部分があることがわかる。
【0033】
以上のことから、本発明では、金属多孔質焼結体内部の各空洞がトラップとして機能しており、さらに空洞の細孔を持つ壁面がフィルターとして被除去物の捕捉に大きく寄与していることがわかる。また、捕捉後の被除去物は、壁面が十分な面積をもち、焼結構造による大きな凹凸があるために、比較例に比べ、安定して付着していることがわかる。
一方、比較例は、黒鉛微粒子が衝突して付着できる面が細く狭いために付着量がすぐに飽和してしまうと考えられる。また、骨格表面が滑らかでなためにある程度付着すると剥がれ落ちてしまうことが考えられる。このために、炭素微粒子の投入量に関係なく圧損が低い値で一定であり、捕捉率が低いと考えられる。
【0034】
【発明の効果】
本発明により、煤等の微細な被除去物の捕捉率が高いフィルター等に用いることができる金属多孔質焼結体を提供することができる。また、比較的大径の細孔を有しかつ比表面積の大きい本発明の金属多孔質焼結体は、フィルターとしての用途の他、比表面積が大きく、通気性があることから触媒担体に用いることができる。さらに、空洞や壁面の細孔には、毛細管現象により液体を吸収、保持したり、水蒸気等の蒸気を毛管凝縮する特徴があることから、液体の吸収体や保持体、ガス中の水蒸気の分離用部材の用途にも適することができる。
【図面の簡単な説明】
【図1】本発明例1の断面形態を示す走査電子顕微鏡写真(SEM写真)、及び光学顕微鏡写真である。
【図2】本発明例3の断面形態を示す走査電子顕微鏡写真(SEM写真)、及び光学顕微鏡写真である。
【図3】比較例の断面形態を示す走査電子顕微鏡写真(SEM写真)、及び光学顕微鏡写真である。
【図4】フィルター特性の評価手法(試験片をセットした状態)を示す模式図である。
【図5】炭素微粒子の投入量と圧損の関係および捕捉率を示す図である。
【図6】捕捉率評価試験後の(本発明例1)試験片への炭素微粒子の付着状況を示す走査電子顕微鏡写真(SEM写真)である。
【図7】(本発明例1)試験片の壁面部への炭素微粒子の付着状況を示す走査電子顕微鏡写真(SEM写真)である。
【図8】捕捉率評価試験後の(比較例)試験片への炭素微粒子の付着状況を示す光学顕微鏡写真である。
【符号の説明】
1.ホルダー 2.試験片 3.シール材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filter material for removing soot in exhaust gas of a diesel engine, that is, a filter for a dust collector such as a diesel particulate filter (hereinafter abbreviated as DPF), an incinerator and a combustion gas of a thermal power plant. The present invention relates to a porous metal sintered body that can be used and a filter using the same.
[0002]
[Prior art]
Conventionally, a cordierite (ceramics) honeycomb having heat resistance has been used as a filter for DPF. However, ceramics are easily damaged by vibration and thermal shock, and local heating (heat spots) is generated when soot containing carbon as a main component trapped in the filter for low heat conduction burns, causing cracks. And melting damage is a problem. Accordingly, a metal DPF filter having a strength higher than that of ceramics and a high thermal conductivity has been proposed.
For example, it has been proposed to employ a metal porous body having a three-dimensional network structure as a filter (see Patent Document 1). This proposal is excellent in terms of resistance to cracking and melting damage, and can be simplified in terms of structure compared to a honeycomb.
[0003]
[Patent Document 1]
JP-A-5-312017 [0004]
[Problems to be solved by the invention]
The metal porous body having the above-described three-dimensional network structure is advantageous in terms of resistance to cracking and melting damage due to thermal shock, but has a problem of low scavenging performance. This is because a conventional metal porous body having a three-dimensional network structure has a small surface area because it has a thin skeleton. For this reason, the probability of collision of the soot particles with the skeleton is low, and since the skeleton surface is smooth, the attached soot is unstable. It is considered low. As a result, the rate at which soot generated in the engine is released into the atmosphere as it is without being captured by the filter increases. Further, in order to increase the capture rate, it is necessary to make the filter thick and large, and the DPF itself becomes large, which causes a problem for in-vehicle use.
The objective of this invention is providing the metal porous sintered compact which can be used for the filter etc. with a high capture | acquisition rate of fine to-be-removed objects, such as a soot, and a filter using the same.
[0005]
[Means for Solving the Problems]
The present inventor is not a three-dimensional network structure having a thin skeleton, but a metal porous sintered body structure in which communicating hollow spaces are dispersed and relatively large-diameter pores are formed on the walls of the cavities. As a result, it has been found that the trapping performance and the like of the soot can be greatly improved by adopting.
[0006]
That is, according to the present invention, hollow spaces are dispersed in which a part or all of the inside communicates, resin particles having an average particle diameter of 0.1 mm to 10 mm are removed, and the walls constituting the space are dispersed. A porous metal sintered body having pores, wherein the BET surface area is 700 cm 2 / cm 3 or more, and the average diameter of the pores on the wall surface measured by the mercury intrusion method is 1 μm or more and 29.4 μm or less. It is a metal porous sintered body characterized.
Preferably, the porosity is 85% to 95%.
Moreover, said metal porous sintered compact is suitable for a filter use.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As described above, an important feature of the present invention is that a metal porous sintered body structure in which hollow spaces are dispersed and relatively large-diameter pores are formed on the walls of the cavities is employed. When using a porous metal sintered body as a filter, in order to increase the probability that fine objects to be removed, such as soot, will be adsorbed to the filter, the object to be removed in the gas passes through the inside of the sintered body. It is effective to increase the area of the sintered part that can collide. In the present invention, the specific surface area is improved by using a wall surface formed by dispersing a hollow space instead of a conventional mesh structure having a thin skeleton, where the object to be removed collides and is adsorbed. In addition, by forming pores on the wall surface constituting the space, the surface roughness of the wall surface is increased, and by achieving a higher specific surface area, the probability of adsorption is further increased. When the above characteristics are specifically evaluated as, for example, the specific surface area by the BET method, a high specific surface area of 700 cm 2 / cm 3 or more, which is difficult in the present invention with a metal porous body having a conventional three-dimensional network structure, is assumed. Can do. This increases the probability that the object to be removed is adsorbed, and improves the capture performance of the object to be removed. The specific surface area according to the BET method is preferably 900 cm 2 / cm 3 or more.
[0008]
In addition, the pores formed on the wall surface increase the specific surface area and become uneven on the wall surface, making it easier to attach the object to be removed. Add the function. At this time, the average pore diameter (diameter) of the pores formed on the wall surface by the mercury intrusion method needs to be 1 μm or more. This is because the trapping rate tends to decrease when it is smaller than 1 μm. This is because if the pores on the wall surface are small, the gas will not easily permeate the wall surface, and the gas will flow along the wall surface. This is thought to be due to an increase in the rate of outflow. Preferably it is 10 micrometers or more, More preferably, it is 20 micrometers or more. In the present invention, the thickness is 29.4 μm or less.
[0009]
The hollow space formed inside the porous metal sintered body of the present invention described above needs to be partially or entirely connected.
When using a metal porous sintered body as a filter, a gas containing an object to be removed passes through the inside of the sintered body. If each cavity is isolated, gas etc. must permeate | transmit the wall surface which comprises a hollow space. In the present invention, since there are pores on the wall surface, there is air permeability, but if the gas path is only pores, the pressure loss of the gas when passing through the filter may be too high. In particular, when used as a filter such as a DPF, a sudden increase in pressure loss due to clogging of pores occurs with an increase in the amount of trapped objects such as soot. Accordingly, it is necessary that a part or all of the hollow space communicates. The pressure loss decreases as the opening size of the communicating space increases and the frequency of communication increases.
By satisfying the above conditions, each hollow space of the porous body functions as a trap for the object to be removed.
[0010]
In the present invention, in order to prevent damage caused by vibration or thermal shock when using a sintered body, cracks due to heat spots at the time of burning soot when used as a filter for DPF, and melting damage, compared with ceramics, Uses a sintered metal that is resistant to impacts and has high heat conductivity, so it is difficult for heat to accumulate. At this time, the filter is heated by the exhaust gas, and depending on the DPF method, the filter may be heated to a high temperature of 600 ° C. or more, which is the ignition temperature of the soot, because corrosion resistance at high temperature is required. Therefore, it is necessary to select a material that meets the usage conditions.
[0011]
In the porous metal sintered body of the present invention, the porosity is preferably 85% or more and 95% or less.
In the porous metal sintered body of the present invention constituted by a hollow space and its wall surface, when the porosity is lower than 85%, the communication between the cavities is insufficient, so that when used as a filter, there is no pressure loss. Get higher. On the other hand, if it is higher than 95%, the wall surface is reduced, the strength of the porous metal sintered body is insufficient, and the capture performance of the object to be removed when used as a filter is lowered, and the characteristics of the present material are lost.
[0012]
Moreover, in the metal porous sintered body of the present invention having a thickness of 10 mm, the pressure loss when flowing air at a flow rate of 5 m / s at 23 ° C. is preferably 1 kPa or more and 10 kPa or less.
The degree of communication of the cavity of the metal porous sintered body can be evaluated as the above-mentioned pressure loss on a macro scale. If the pressure is less than 1 kPa, the degree of communication is too high, and when used as a filter, the frequency of collision between the object to be removed and the wall surface is reduced, and the capture rate is reduced. On the other hand, when the pressure is higher than 10 kPa, since the degree of communication of the cavity is low, when used as a filter, clogging due to an object to be removed occurs from an early stage, and the increase in pressure loss is high. For example, as a filter for DPF If used, it may cause a reduction in engine output.
[0013]
As a manufacturing method of the metal porous sintered body applied to the present invention described above, for example, the following method can be applied.
First, metal powder is prepared. When using a porous metal sintered body as a DPF filter, stainless steel containing Cr: 16 wt% or more or alumina at a high temperature is used in order to make it compatible with filter applications where the filter is heated and regenerated at a high temperature of 600 ° C or higher. Metal powders such as heat-resisting steel containing Al: 1 to 10 wt% and Cr: 5 to 30 wt% for forming a film are effective. The particle size is preferably an average particle size of 200 μm or less. Resin particles and a binder are mixed with the metal powder. The resin particles are mixed for the purpose of forming a cavity in the sintered body, and the average particle size is 0.1 mm to 10 mm. The resin particles are vaporized at the time of sintering, or after forming a metal powder into a molded body, the resin particles are dissolved and removed using a solvent before sintering. When the deformation or collapse of the sintered body accompanying the melting or vaporization of the resin particles during sintering becomes a problem, the latter removal by dissolution is preferable.
[0014]
In addition, the latter method of dissolving and removing the resin particles is an effective production method because a stable production of a porous sintered body having a thickness of 10 mm or more is possible and the degree of freedom with respect to the thickness is increased. Also, in terms of process, depending on the combination of the solvent and the resin, there is an advantage that both the resin and the solvent can be recycled by distillation.
Although a resin can be used as the binder, in the case of applying a method of removing resin particles with a solvent, it is effective to use, for example, a binder mainly composed of methylcellulose and water that does not dissolve in the solvent.
[0015]
Subsequently, a molded object is produced. At the time of molding, it is preferable to increase the contact area between the resin particles by applying a pressure that does not pulverize the resin particles. Thereby, the opening dimension of the communication part of the space in the completed porous body becomes large, and the frequency of communication also increases. Thereafter, the molded body is heated and degreased and sintered. When water is put into the binder, it is preferable to put a drying step after molding, and when the resin particles are removed with a solvent, it is preferable to give a solvent extraction and drying step before heat degreasing.
[0016]
Metal porous sintered body of large present invention and a specific surface area has a relatively large diameter pores on the wall surface of the cavity mentioned above, a large specific surface area, the use as this Toka et filter breathable In addition, it can be used for a catalyst carrier. In addition, the pores of the cavities and wall surfaces are characterized by absorbing and holding liquids by capillarity and condensing steam such as water vapor into capillaries. It is also suitable for applications such as an absorber for water vapor and a separation member for water vapor in gas.
[0017]
【Example】
(Preparation of test piece)
SUS316L water atomized powder with an average particle size of 60 μm, commercially available methylcellulose, and paraffin wax particles with an irregular average particle size of 2.5 mm are mixed as resin particles, and water and a plasticizer are added and mixed and kneaded to produce a kneaded body. did. The mixing amount of the resin particles was set so that the volume ratio of the resin particles was 90% when the total volume of the metal powder and the resin particles was 100%.
[0018]
Then, the kneaded body was press-molded with a press at a pressure of 0.7 MPa to produce a disk, and dried at 50 ° C. Next, paraffin wax particles in the molded body were extracted from the molded body with a solvent and dried at 90 ° C. Subsequently, after heating and degreasing in nitrogen at 600 ° C., sintering was performed in a vacuum of 1200 ° C., thereby producing two kinds of disk-shaped test pieces having thicknesses of 7 mm and 10 mm, respectively, and a diameter of φ144 mm. Hereinafter, a test piece having a thickness of 7 mm is referred to as Invention Example 1, and a test piece having a thickness of 10 mm is referred to as Invention Example 2.
[0019]
The kneaded body produced under the same conditions as in the case of Invention Examples 1 and 2 was formed by extending with a roller, and the formed body was processed again in the same process as in Invention Examples 1 and 2, and a disk having a thickness of 10 mm and a diameter of 144 mm A test piece was prepared. Hereinafter, this test piece is referred to as Invention Example 3.
Further, as a comparative example, a test piece of a metallic porous body having a three-dimensional network structure of Ni—Cr alloy was produced by plating on a urethane foam subjected to conductive treatment. This was processed into a disk shape having a thickness of 10 mm and a diameter of 144 mm.
[0020]
(Comparison of cross-sectional forms)
Scanning electron micrographs (SEM photographs) and optical micrographs, which are examples of cross-sectional forms of Examples 1 and 3 of the present invention and comparative examples, are shown in FIGS. The SEM photograph was obtained by observing a fractured surface obtained by dividing the test piece in two, and the cross-sectional structure photograph (optical micrograph) was obtained by observing the cross section of the test piece by polishing the test piece embedded in the resin. Is.
In Example 1 of this invention, it turns out that the communicating hole has opened in the adjacent cavity. The wall surface has a structure in which metal powder is sintered, and irregularities and pores are seen. In addition, the same form could be confirmed also in Invention Example 2.
It can be seen that Example 3 also has a communication hole in an adjacent cavity, although the degree of communication of the cavity is small compared to Example 1 of the invention. The wall surface has a structure in which metal powder is sintered in the same manner as Example 1 of the present invention, and irregularities and pores are observed.
In contrast to these inventive examples, the comparative examples have a thin skeleton, a hollow structure, a smooth surface, and no pores.
[0021]
(Comparison of surface area etc.)
The surface area per unit volume (BET surface area), the pore diameter (average diameter), the porosity, and the pressure loss when permeating the atmosphere in the inventive examples 1 to 3 and the comparative example were measured. Surface area per unit volume BET method, the average diameter of the pore diameter mercury porosimetry, the pressure loss was measured by the differential pressure at the time of passing through the air flow rate 5 m / s at 23 ° C..
In the comparative example having a smooth surface, the pore size was not measured. Regarding the BET specific surface area, the specific surface area per 1 g of the sintered body portion constituting the wall surface in the present invention example and the skeleton portion in the comparative example is measured, and the specific surface area per 1 cm 3 of the porous body is measured using the porosity. It is converted to. Further, the comparative example shows a value corrected by subtracting the surface area of the hollow portion that does not contribute to the filter performance using the image processing data of the cross-sectional structure because the skeleton portion is hollow. The results are shown in Table 1.
[0022]
It can be seen that the inventive example has the same porosity as the comparative example, but the specific surface area of the present invention is nearly twice as large. Moreover, from the cross-sectional form shown above and the result of Table 1, in the example of the present invention, it can be seen that the pressure loss decreases as the degree of communication of the hollow portion increases and the thickness of the porous body decreases.
Moreover, it turns out that the pressure loss of a comparative example is very low compared with the example of this invention. This is presumably because the resistance of the porous body to the gas flow permeated through the porous body is smaller than that of the above-described structure of the present invention because the structure of the comparative example is a network structure with a smooth and thin skeleton.
[0023]
[Table 1]
Figure 0004187154
[0024]
(Evaluation of filter characteristics)
The present invention examples 1 to 3 and the comparative example were used as filters, and the relationship between the amount of carbon fine particles charged and the pressure loss and the carbon fine particle capture rate were evaluated.
[0025]
-Evaluation method-
First, the test piece is previously dried at 130 ° C. for 2 hours and then weighed. Next, as shown in FIG. 4, the test piece 2 is set in the holder 1 through the sealing material 3, sucked from one side so that the flow rate is constant at 5 m / s, and the average particle size is 0.042 μm from the other side. Of carbon fine particles were added at a rate of 0.1 g / min, and the change in pressure loss of the test piece with respect to the input amount was investigated. The ventilation portion of the test piece at this time was φ139.5 at the center of the test piece. The pressure loss was determined from the differential pressure before and after the test piece. The test was conducted in a room where the temperature was maintained at 23 ° C.
[0026]
The test ends when the flow rate cannot be controlled at a constant 5 m / s, and the test piece is taken out of the holder. Then, after drying at 130 ° C. for 2 hours, weighing is performed, the amount of carbon fine particles captured is determined from the increased amount of the test piece, and the value obtained by dividing the amount captured by the total input amount of carbon fine particles under test is the capture rate of the test piece. It was. Further, the adhesion state of the carbon fine particles to the test piece was also investigated.
[0027]
-Evaluation results-
FIG. 5 shows the relationship between the amount of carbon fine particles introduced and the pressure loss, and Table 2 shows the capture rate measured after the test of each test piece.
[0028]
[Table 2]
Figure 0004187154
[0029]
When comparing specimens of (Invention Example 2) and (Invention Example 3) having the same thickness of 10 mm, the pressure loss is lower when the degree of penetration of the cavity is higher (Invention Example 2), and the capture rate is lower. It can be seen that the degree of penetration of the cavity is lower (Invention Example 3).
In addition, when the test pieces of 7 mm thickness (Invention Example 1) and 10 mm (Invention Example 2) are compared, the pressure loss is lower in the thinner thickness (Invention Example 1), and the capture rate is thicker. It can be seen that the thicker one (Invention Example 2) is higher.
Further, when three sheets of (Invention Example 1) having a thickness of 7 mm are stacked with a 3 mm gap as shown in FIG. 4, the pressure loss is lower than that of (Invention Example 3), but the capture rate is 95. It can be seen that the value is as high as 2% (invention example 3).
[0030]
From the above, it can be seen that the pressure loss and the capture rate can be controlled by the degree of communication of the cavities, the thickness of the metal porous sintered body, and the number of stacked layers.
[0031]
On the other hand, (Comparative Example) has a lower pressure loss than (Invention Example 1) to (Invention Example 3), and no increase in pressure loss is observed with respect to the amount of carbon fine particles added, but the capture rate is 2 It can be seen that it is very low at 7%. In order to increase the capture rate to a level equivalent to (Example of the present invention), it is presumed that a considerable thickness is required. Therefore, when used as a filter that requires a high capture rate, the volume becomes very large.
[0032]
FIG. 6 shows SEM photographs of the surface (front surface) of the fracture surface of the 7 mm-thick (invention example 1) after the test, near the surface (front surface) of the carbon particulate input side, and near the back surface. The SEM photograph which expanded the fracture | rupture part (cross section of a wall surface) of the wall surface which shows is shown in FIG. Moreover, the optical micrograph which observed the adhesion state of the carbon microparticles | fine-particles to the internal frame | skeleton from the surface and back surface after a test (comparative example) is shown in FIG.
(Invention Example 1), it was confirmed from FIG. 6 that carbon fine particles were accumulated on the wall surface of each cavity facing the flow of the carbon fine particles from the carbon fine particle charging side to the opposite side. Further, the fine particles that appear white in FIG. 7 are carbon fine particles. From now on (Example 1 of the present invention), the fine particles are deposited on the wall surfaces forming the hollow space where the carbon fine particles communicate with each other, and at the same time in the pores. It was confirmed that it was deposited.
On the other hand, it can be seen from FIG. 8 that (Comparative Example) is attached to the surface of the carbon fine particle input side of an elongated and smooth skeleton. It can also be seen that there is a portion that is not attached to the input side surface.
[0033]
From the above, in the present invention, each cavity inside the porous metal sintered body functions as a trap, and further, the wall surface having the pores of the cavity contributes greatly to capturing the object to be removed as a filter. I understand. In addition, it can be seen that the object to be removed after capture has a wall surface having a sufficient area and has large unevenness due to the sintered structure, so that it adheres more stably than the comparative example.
On the other hand, in the comparative example, it is considered that the amount of adhesion is quickly saturated because the surface on which graphite fine particles collide and adhere is thin and narrow. Further, since the skeleton surface is smooth, it may be peeled off if attached to some extent. For this reason, it is considered that the pressure loss is constant at a low value regardless of the input amount of the carbon fine particles, and the capture rate is low.
[0034]
【The invention's effect】
According to the present invention, it is possible to provide a porous metal sintered body that can be used for a filter having a high capture rate of fine objects to be removed such as soot. Moreover, the relatively large diameter of the metal porous sintered body of large present invention and specific surface area have pores, other applications of the filter, a large specific surface area, used in this Toka et catalyst carrier breathable be able to. Furthermore, the pores of the cavities and wall surfaces are characterized by the ability to absorb and retain liquids by capillarity and capillaries to condense vapors such as water vapor. It can also be suitable for use as a member.
[Brief description of the drawings]
FIG. 1 is a scanning electron micrograph (SEM photo) and an optical micrograph showing the cross-sectional form of Example 1 of the present invention.
2 is a scanning electron micrograph (SEM photo) and an optical micrograph showing a cross-sectional form of Example 3 of the present invention. FIG.
FIG. 3 is a scanning electron micrograph (SEM photo) and an optical micrograph showing a cross-sectional form of a comparative example.
FIG. 4 is a schematic diagram showing a filter characteristic evaluation method (a state in which a test piece is set).
FIG. 5 is a graph showing the relationship between the amount of carbon fine particles charged and the pressure loss, and the capture rate.
FIG. 6 is a scanning electron micrograph (SEM photograph) showing the adhesion state of carbon fine particles to the test piece after the capture rate evaluation test (Invention Example 1).
FIG. 7 is a scanning electron micrograph (SEM photograph) showing the state of adhesion of carbon fine particles to the wall surface of a test piece (Invention Example 1).
FIG. 8 is an optical micrograph showing the adhesion of carbon fine particles to a test piece after a capture rate evaluation test (Comparative Example).
[Explanation of symbols]
1. Holder 2. Test piece 3. Sealing material

Claims (3)

内部に一部もしくは全部が連通する、平均粒径が0.1mm〜10mmの樹脂粒が除去されてなる、空洞状の空間が分散しており、該空間を構成する壁面に細孔が形成された金属多孔質焼結体であって、BET表面積が700cm/cm以上、水銀圧入法により測定する壁面の細孔の平均直径が1μm以上29.4μm以下であることを特徴とする金属多孔質焼結体。A hollow space is dispersed in which a part or all of the inside communicates, resin particles having an average particle diameter of 0.1 mm to 10 mm are removed, and pores are formed on the wall surfaces constituting the space. A porous metal sintered body having a BET surface area of 700 cm 2 / cm 3 or more and an average diameter of pores on the wall surface measured by mercury porosimetry of 1 μm or more and 29.4 μm or less. Sintered material. 空隙率が85%以上から95%以下であることを特徴とする請求項1に記載の金属多孔質焼結体。  The porous metal sintered body according to claim 1, wherein the porosity is 85% to 95%. 請求項1または2に記載の金属多孔質焼結体を用いてなるフィルター。  A filter using the porous metal sintered body according to claim 1.
JP2003095376A 2002-07-15 2003-03-31 Metal porous sintered body and filter Expired - Fee Related JP4187154B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003095376A JP4187154B2 (en) 2003-03-31 2003-03-31 Metal porous sintered body and filter
US10/617,872 US6964817B2 (en) 2002-07-15 2003-07-14 Porous sintered metal and filter thereof, and method for producing porous sintered metal
EP20030015992 EP1382408B1 (en) 2002-07-15 2003-07-14 Method for producing porous sintered metals for filters
DE60333058T DE60333058D1 (en) 2002-07-15 2003-07-14 Process for producing porous, sintered metals for filters
CNB031476589A CN100516263C (en) 2002-07-15 2003-07-15 Porous sintered metal and its filter, and method for preparing the porous sintered metal
US11/104,490 US7195735B2 (en) 2002-07-15 2005-04-13 Porous sintered metal and filter thereof, and method for producing porous sintered metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095376A JP4187154B2 (en) 2003-03-31 2003-03-31 Metal porous sintered body and filter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008149572A Division JP5430081B2 (en) 2008-06-06 2008-06-06 Method for producing porous metal sintered body

Publications (2)

Publication Number Publication Date
JP2004300526A JP2004300526A (en) 2004-10-28
JP4187154B2 true JP4187154B2 (en) 2008-11-26

Family

ID=33407722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095376A Expired - Fee Related JP4187154B2 (en) 2002-07-15 2003-03-31 Metal porous sintered body and filter

Country Status (1)

Country Link
JP (1) JP4187154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578078B (en) * 2006-11-22 2013-01-02 印斯拜尔Md有限公司 Optimized stent jacket

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072764A (en) * 2007-09-21 2009-04-09 Waertsilae Schweiz Ag Exhaust gas particle filter and method for manufacturing exhaust gas particle filter
JP5657275B2 (en) * 2009-10-31 2015-01-21 株式会社Uacj Porous metal and method for producing the same
JP6934436B2 (en) * 2018-03-02 2021-09-15 日本碍子株式会社 A method for preparing a sample for cross-section observation of a collection filter and a method for evaluating the collection state of particulate matter in the collection filter.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578078B (en) * 2006-11-22 2013-01-02 印斯拜尔Md有限公司 Optimized stent jacket

Also Published As

Publication number Publication date
JP2004300526A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US6964817B2 (en) Porous sintered metal and filter thereof, and method for producing porous sintered metal
EP2106835B1 (en) System comprising a ceramic honeycomb filter and method for manufacturing the same
EP1184066B1 (en) Exhaust gas purifying filter
CN102762273B (en) Ceramic honeycomb structural body and manufacture method thereof
EP1493724B1 (en) Porous material and method for production thereof
WO2006041174A1 (en) Ceramic honeycomb structure
GB2212799A (en) Porous ceramic article for use as a filter
JP4187154B2 (en) Metal porous sintered body and filter
JP5430081B2 (en) Method for producing porous metal sintered body
JP2013144847A (en) Method for producing metallic porous sintered body
JP2006306633A (en) Ceramic filter for molten metal filtration, and molten metal filtration method
JP2009517208A5 (en)
JP2007296431A (en) Metal porous sintered member filter
JP2020062594A (en) Filter for collecting particulate matter using silicon carbide porous body
JP4381011B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP3784314B2 (en) Ceramic filter for dust collection and manufacturing method thereof
JP7215636B1 (en) Silicon carbide ceramic honeycomb structure and manufacturing method thereof
JP6499469B2 (en) Manufacturing method of honeycomb structure
JP6400395B2 (en) Manufacturing method of honeycomb structure
JP2013144640A (en) Honeycomb structure
JP2009226390A (en) Ceramic filter, ceramic filter for exhaust gas purification, diesel particulate filter, and manufacturing method of ceramic filter
CN113508219B (en) Exhaust gas purifying filter
JP3689408B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP4773043B2 (en) Ceramic filter structure
JP2010201363A (en) Honeycomb structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080503

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4187154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees