JPH1155109A - Current source circuit - Google Patents

Current source circuit

Info

Publication number
JPH1155109A
JPH1155109A JP9206312A JP20631297A JPH1155109A JP H1155109 A JPH1155109 A JP H1155109A JP 9206312 A JP9206312 A JP 9206312A JP 20631297 A JP20631297 A JP 20631297A JP H1155109 A JPH1155109 A JP H1155109A
Authority
JP
Japan
Prior art keywords
current
current source
temperature
resistor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9206312A
Other languages
Japanese (ja)
Inventor
Hideshi Yamamoto
日出士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9206312A priority Critical patent/JPH1155109A/en
Publication of JPH1155109A publication Critical patent/JPH1155109A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a current source circuit with which the temperature fluctuations of a current for regulating the center frequency of a voltage controlled oscillator(VCO) is compensated against with respect to the change in a surrounding temperature, while using a resistor of the same kind as a resistor of serial monolithic IC electronic circuit in a frequency modulating system. SOLUTION: A current source 1 which does not fluctuate in current value due to temperature and a current source 2 with current values proportional to temperatures are connected serially, and a correction current source circuit, which is provided with a diode 6 for limiting the direction of a differential current generated between them and a PNP transistor 4 for preventing the saturation of a current source 1, is added to a known current source circuit to be corrected for generating a current with a resistance value and a control voltage. Thus, the temperature fluctuation of a center frequency f0 due to a secondary temperature coefficient of resistance is corrected by first-order diagonal approximation, and the temperature fluctuation can be decreased significantly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にVTRのステ
レオ音声信号処理の周波数変調を行う電圧制御発振器
(VCO)に供給され中心周波数(以下、f0と記す)の値
を決定する電流の温度補償を行うための電流源回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage controlled oscillator which mainly performs frequency modulation for processing a stereo audio signal of a VTR.
The present invention relates to a current source circuit for performing temperature compensation of a current supplied to a (VCO) and determining a value of a center frequency (hereinafter, referred to as f 0 ).

【0002】[0002]

【従来の技術】VTRのステレオ音声信号処理に使用さ
れるVCOのf0は、VHS規格の中で、TYP±10kHz
と定められており、一番厳しいPAL方式では、±0.56
%以内に収める精度が要求される。近年はその必要な精
度を保ちつつ無調整化を具現しようとの傾向にあり、そ
のためにPLLすなわちフェーズロックループやツェナ
ーザッピング技術が用いられている。ツェナーザッピン
グ技術は、バイポーラトランジスタに内在するエミッタ
・ベースダイオード部分に逆バイアスを印加し、強い電
界によりエミッタ−ベース間の接合を破壊して短絡させ
る技術で、これにより、バイポーラのROMを構成する
ことを可能にするものである。すなわち、図5に示す回
路システムではROMに書き込むことにより前述の無調
整が可能となる。その無調整を実現する中でVCOのf
0の温度補償を同時に行うには、従来は図5に示す抵抗1
9として温度係数が小さくかつ高精度の抵抗を使用し
て、VCOの調整電流源を構成していた。以下に、従来
のVCOのf0の温度補償方法について説明する。
F 0 of the Related Art VCO used in stereo audio signal processing of the VTR is in the VHS standard, TYP ± 10 kHz
The strictest PAL method is ± 0.56
% Accuracy is required. In recent years, there has been a tendency to realize non-adjustment while maintaining the required accuracy. For this purpose, a PLL, that is, a phase locked loop or a zener zapping technique has been used. Zener zapping technology is a technology that applies a reverse bias to the emitter-base diode part inside the bipolar transistor and destroys the emitter-base junction with a strong electric field to short-circuit. Is what makes it possible. That is, in the circuit system shown in FIG. 5, the above-mentioned non-adjustment becomes possible by writing data into the ROM. VCO f
In order to simultaneously perform the temperature compensation of 0, the resistance 1 shown in FIG.
9, a VCO adjustment current source is configured by using a resistor having a small temperature coefficient and high precision. Hereinafter, a description will be given of a temperature compensation method for f 0 of the conventional VCO.

【0003】図5において、7はVCOのf0の調整電
流源出力端子、19は温度係数が小さく且つ高精度な抵抗
である。被変調電流信号は、被変調電流信号入力端子12
より入力され、前述のf0調整電流と混合され、VCO1
5に入力される。VCO15は、被変調電流信号の振幅に
比例して発振周波数が変化するので、f0を中心として
周波数変調された信号として周波数変調出力端子16より
出力される。
[0003] In FIG. 5, the adjustment current source output terminal of the f 0 of VCO 7, 19 are and accurate resistance small temperature coefficient. The modulated current signal is input to the modulated current signal input terminal 12.
Is more input, is mixed with the aforementioned f 0 adjustment current, VCO 1
Entered in 5. Since the oscillation frequency of the VCO 15 changes in proportion to the amplitude of the modulated current signal, it is output from the frequency modulation output terminal 16 as a frequency-modulated signal centered at f 0 .

【0004】f0の調整は、被変調信号が無入力の時に
周波数変調出力端子16をモニターし、f0が前述の規格
内に収まるように、D/A変換器17の出力を決定付ける
値を、ROM18に書き込むことでもって完了する。
[0004] Adjustment of f 0, the modulated signal is monitored frequency modulation output terminal 16 when the no input, so that f 0 is within the standards listed above, a value that determines the output of the D / A converter 17 Is written in the ROM 18 to complete the process.

【0005】一般的にVCOの発振周波数出力fについ
ては、VCO入力電流Iと充放電される容量値Cに対し
て次式の関係が成立する。
In general, as for the oscillation frequency output f of the VCO, the following relationship is established between the VCO input current I and the capacity value C charged and discharged.

【0006】[0006]

【数1】f∝I/C VCO入力電流Iは、被変調信号入力I1とf0調整電流
0の和で表され、被変調信号が無入力の時には、(数
1)より次式が成り立つ。
F∝I / C The input current I of the VCO is represented by the sum of the modulated signal input I 1 and the f 0 adjustment current I 0. When the modulated signal is not input, the following equation is obtained from (Expression 1). Holds.

【0007】[0007]

【数2】f0∝I0/C 一方、f0が調整された時点のD/A変換器の電流調整
端子11のf0制御電圧をV 0とし、電流変換する抵抗19の
抵抗値をRとすると、f0の調整電流I0は次式で示され
る。
## EQU2 ## f0∝I0/ C On the other hand, f0Adjustment of the D / A converter at the time when is adjusted
Terminal 11 f0Control voltage to V 0And the current converting resistor 19
Assuming that the resistance value is R, f0Adjustment current I0Is given by
You.

【0008】[0008]

【数3】I0=V0/R よって、(数2)は(数3)を用いて、次式に書き換えられ
る。
I 0 = V 0 / R Therefore, (Equation 2) can be rewritten into the following equation using (Equation 3).

【0009】[0009]

【数4】f0∝V0/(R×C) V0及びCの温度変動は無視できるので、抵抗19に温度
係数の小さな抵抗を使用することによって、f0の温度
補償が行われることとなる。
F 0 4V 0 / (R × C) Since the temperature fluctuations of V 0 and C can be ignored, the temperature compensation of f 0 is performed by using a resistor having a small temperature coefficient as the resistor 19. Becomes

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
構成では、前述したように抵抗として極端に温度係数の
小さな素子を選択する必要があり、必然的にモノリシッ
クIC化する上で、外付けの部品とならざるをえなかっ
た。また、この外付け部品化された抵抗は、前述の精度
のf0規格を満たしつつ、データの互換性を確保するた
めに±0.1%程度の高精度が要求され、そのために必然
的に部品として高価な物となった。
However, in the conventional configuration, it is necessary to select an element having an extremely small temperature coefficient as a resistor as described above. Inevitably, when a monolithic IC is formed, external components are required. I had to be. Also, the external components of a resistor, while satisfying the f 0 standard of the aforementioned accuracy, precision of approximately ± 0.1% is required in order to ensure compatibility of the data, as inevitably parts to its It became expensive.

【0011】かくして本発明は従来の技術における上述
の問題点を解決することに指向するもので、その主要な
目的は、周波数変調方式を構成する一連のモノリシック
IC化電子回路に含まれる抵抗と同一種類の抵抗を使用
しても尚、周囲温度の変化に対してf0調整用電流の温
度変動を補償することのできる、新規にして有用性のあ
る温度補償用電流源回路を提供することにある。
Thus, the present invention is directed to overcoming the above-mentioned problems in the prior art, and has as its main object the same as the resistors included in a series of monolithic IC electronic circuits constituting a frequency modulation system. be used type of resistor Incidentally, to provide a f 0 can be compensated for temperature variations of the adjustment current, temperature compensation current source circuit with utility in the new to changes in ambient temperature is there.

【0012】[0012]

【課題を解決するための手段】前述の課題を解決するた
めの本発明に係る温度補償用電流源回路は、第1に、少
なくとも1次の温度係数を有する抵抗の両端に電圧を印
加して出力端子対に前記電圧の値に応じた電流を取り出
す電流源回路において、前記出力端子対の電流を、所定
の温度を境にして固定電流と前記1次の温度係数に応じ
て変化する1次温度変化電流とで近似し、前記温度の変
化に対する増減の方向が前記1次温度変化電流のそれと
逆であり、かつ前記固定電流と前記1次温度変化電流の
差電流値にほぼ等しい電流を出力する温度補償用回路
を、前記抵抗もしくは前記出力端子対に並列に接続して
なるものであり、さらに第2に、前記温度補償用回路
が、温度に対してほぼ固定の電流を出力する第1の電流
源と、第1の電流源と縦続接続され温度に比例した電流
を出力する第2の電流源と、第1及び第2の電流源の接
続部に一端が接続され前記接続部に発生する差電流の方
向を制限するダイオードとを備え、前記ダイオードの他
端を前記抵抗の一端に接続したことを特徴とする。
SUMMARY OF THE INVENTION A temperature compensation current source circuit according to the present invention for solving the above-mentioned problem firstly applies a voltage to both ends of a resistor having at least a first-order temperature coefficient. In a current source circuit for taking out a current corresponding to the value of the voltage to an output terminal pair, the current of the output terminal pair is changed at a predetermined temperature as a fixed current and according to the first-order temperature coefficient. Outputs a current that is approximated by a temperature change current, the direction of increase or decrease with respect to the temperature change is opposite to that of the primary temperature change current, and is substantially equal to the difference current value between the fixed current and the primary temperature change current. A temperature compensating circuit connected in parallel to the resistor or the output terminal pair, and secondly, the temperature compensating circuit outputs a current substantially fixed with respect to temperature. And a first current source A second current source connected in series and outputting a current proportional to the temperature, and a diode connected at one end to a connection between the first and second current sources and limiting a direction of a difference current generated at the connection. And the other end of the diode is connected to one end of the resistor.

【0013】これにより、周波数変調を行う一連の回路
の抵抗と同一種類の抵抗を使用し、周囲温度の変化に対
してf0調整用電流の温度変動を補償する温度補償機能
を有する電流源回路が得られる。
[0013] Thus, using a series resistor of the same type of circuit of resistors for performing frequency modulation, the current source circuit having a temperature compensation function of compensating for temperature variations of f 0 adjusting current to a change in ambient temperature Is obtained.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、補償対象である電流源回路はそれ自体公知のように
温度係数の大きな通常の抵抗を使用して構成するととも
に、電流値が温度変動しない第1の電流源と電流値が温
度に比例する第2の電流源を縦続に接続して設け、その
間に発生する差電流の方向を制限するダイオードと電流
源1の飽和を防ぐPNPトランジスタを備えた補正電流
源回路をこの被補正電流源回路と並列に付加してなるも
のであり、従来の電流源部分で発生するf0調整用電流
の温度変動を有効に補償するという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the first aspect of the present invention, the current source circuit to be compensated for is formed by using an ordinary resistor having a large temperature coefficient as known per se, Is provided with a first current source that does not fluctuate in temperature and a second current source whose current value is proportional to the temperature are cascaded to prevent saturation of the diode and the current source 1 that limit the direction of a difference current generated therebetween. are those obtained by adding the correction current source circuit having a PNP transistor in parallel with this the correction current source circuit, the action that effectively compensate for temperature variations of f 0 adjustment current generated in a conventional current source part Having.

【0015】以下、本発明の実施の形態について、図面
を参照しながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0016】図1は本発明の温度補償機能を有する電流
源回路の一実施の形態を示すものであり、図1におい
て、1は温度変動しない電流源、2は電流値が温度に比
例する電流源、3,5は基準電圧端子、4は電流源1の
飽和を防止するPNPトランジスタ、6は電流出力の方
向を制限するダイオード、7は電流源の出力端子、8は
NPNトランジスタ、9は抵抗、10は演算増幅器、11は
電流調整端子である。
FIG. 1 shows an embodiment of a current source circuit having a temperature compensation function according to the present invention. In FIG. 1, reference numeral 1 denotes a current source which does not fluctuate in temperature, and 2 denotes a current source whose current value is proportional to temperature. 3, 3 and 5 are reference voltage terminals, 4 is a PNP transistor for preventing saturation of the current source 1, 6 is a diode for limiting the direction of current output, 7 is an output terminal of the current source, 8 is an NPN transistor, and 9 is a resistor. , 10 are operational amplifiers, and 11 is a current adjustment terminal.

【0017】NPNトランジスタ8と、抵抗9及び演算
増幅器10で構成される電流源、つまり被補正電流源回路
は従来と同じ構成であるが、使用される抵抗9の温度変
動によって発生するf0調整電流の温度変動に対して、
電流源1及び電流源2の差電流をダイオード6で一方向
に限定して被補正電流源に加算して補正する補正電流源
を構成している。
The current source comprising the NPN transistor 8, the resistor 9 and the operational amplifier 10, that is, the current source circuit to be corrected has the same configuration as the conventional one, but the f 0 adjustment generated by the temperature fluctuation of the resistor 9 used. For current temperature fluctuation,
A correction current source configured to limit the difference current between the current sources 1 and 2 in one direction by the diode 6 and to add the current to the current source to be corrected for correction.

【0018】以上のように構成された本発明の温度補償
機能を有する電流源回路について、以下その動作を説明
する。
The operation of the current source circuit having the temperature compensation function of the present invention configured as described above will be described below.

【0019】まず、温度に対する補正電流を出力する補
正電流源回路を除いた従来の電流源構成部分、すなわち
被補正電流源回路において温度係数の無視できない抵抗
を使用した場合のf0調整電流の温度変動は以下のよう
に示される。
Firstly, conventional current source arrangement portion excluding the correction current source circuit for outputting a correction current to the temperature, i.e. the temperature of the f 0 adjustment current when using the resistance is not negligible temperature coefficient in the correction current source circuit The variation is shown as follows.

【0020】モノリシックIC上で形成される拡散抵抗
の周囲温度Taに対する抵抗値の変化は、基準温度25℃
の抵抗値を基準抵抗R1として次式で一般的に示され
る。
The change in the resistance value with respect to the ambient temperature T a of the diffusion resistance that is formed on the monolithic IC, the reference temperature 25 ° C.
The resistance value as the reference resistor R 1 is generally represented by the following equation.

【0021】[0021]

【数5】 R=R1×{Tc1×(Ta−25)+Tc2×(Ta−25)2} ここで、Tc1は1次の温度係数、Tc2は2次の温度係数
である。
R = R 1 × {T c1 × (T a −25) + T c2 × (T a −25) 2で where T c1 is a first-order temperature coefficient, and T c2 is a second-order temperature coefficient. It is.

【0022】補正電流の付加を無視した場合の図1の電
流源出力端子7の出力電流は、(数3)で計算され図3の
ような周囲温度に対して2次関数の特性となる。
The output current of the current source output terminal 7 in FIG. 1 when the addition of the correction current is neglected is calculated by equation (3) and has a quadratic function characteristic with respect to the ambient temperature as shown in FIG.

【0023】実使用上の周囲温度範囲をTa1からTa2
でとすれば、この2次関数の特性はTa1時の調整電流値
01とTa=25℃時の調整電流値I0(25)とTa2時の調整
電流値I02を用いて折れ線を持つ1次の関数で図3の破
線のように近似される。I01で正規化すると温度特性
を持つ1次関数部分のf調整電流は次式で示される。
[0023] If the ambient temperature range of practical use from T a1 to T a2, adjusting the current value I 01 properties o'clock T a1 The quadratic function and T a = 25 ° C. during the adjustment current I 0 (25) to be approximated as a broken line in FIG. 3 by a linear function with a line using the adjustment current I 02 o'clock T a2. F 0 Adjustment current in the primary function part having the temperature characteristics when normalized by I 01 is expressed by the following equation.

【0024】[0024]

【数6】I0=a×(Ta−25)/(Ta2−25)+b ここで、a=I0(25)−I02、b=I01−I0(25)であ
る。
I 0 = a × (T a −25) / (T a2 −25) + b where a = I 0 (25) −I 02 and b = I 01 −I 0 (25) .

【0025】この電流式の逆極性の電流は図4に示され
るが、これを補正電流として加えれば、実使用上の温度
範囲でf0調整電流の温度変化を大幅に減少させること
が可能となる。そこで、以下において、付加される補正
電流源回路部分について説明する。
The opposite polarity of the current of the current type is shown in Figure 4, be added to this as a correction current, it can greatly reduce the temperature change of the f 0 adjustment current in the temperature range of practical use and Become. Therefore, the added correction current source circuit will be described below.

【0026】図1における第1の電流源1は、温度変動
を持たない電流源で、一般的にバンドギャップ基準電圧
回路を用いて容易に作られる。一方、温度に比例する電
流源2は、前述のバンドギャップ基準電圧回路の回路電
流をカレントミラーで抽出することにより容易に作るこ
とができる。なお、図2は、これらの電流源の一構成例
を示したもので、電流源出力端子20が図1の第1の電流
源1の出力部の端子20に相当し、電流源出力端子21が図
1の第2の電流源2の出力部の端子21に相当する。
The first current source 1 in FIG. 1 is a current source having no temperature fluctuation, and is generally easily formed using a bandgap reference voltage circuit. On the other hand, the current source 2 proportional to the temperature can be easily formed by extracting the circuit current of the above-described bandgap reference voltage circuit with a current mirror. FIG. 2 shows an example of the configuration of these current sources. The current source output terminal 20 corresponds to the terminal 20 of the output section of the first current source 1 in FIG. Corresponds to the terminal 21 of the output section of the second current source 2 in FIG.

【0027】図1において、電流源1及び電流源2間の
差電流は、電流源1の電流値よりも電流源2の電流値が
多い場合にのみ、ダイオード6を通って、電流が供給さ
れる。つまり、前記の1次の補正電流に折れ線特性を持
たせるためにある。
In FIG. 1, the difference current between the current source 1 and the current source 2 is supplied through the diode 6 only when the current value of the current source 2 is larger than the current value of the current source 1. You. That is, this is for giving the linear correction characteristic to the primary correction current.

【0028】温度に比例する電流源2の電流値ITは、
バンドギャップ回路に流れ温度に比例する電流を利用す
ることにより一般的に次式で示される。
The current I T of the current source 2, which is proportional to the temperature,
The use of a current proportional to the flow temperature in a bandgap circuit is generally represented by the following equation.

【0029】[0029]

【数7】 IT=K×VT/RT×lnN=K′×(Ta−25)+b ここで、RTは、バンドギャップ回路の接地エミッタ抵
抗、Nはトランジスタ面積比であり、kをボルツマン定
数、Tを絶対温度、qを電子の電荷量としたとき、電圧
Tは、VT=kT/qで与えられる。また、Kはバンド
ギャップ電流値から最終の電流源出力までの増減率つま
り抵抗RTとRXの比で概略決定されるカレントミラー比
に相当する。K′は25℃を基準とした時の定数、電流源
1の固定電流値をICとすると、補正電流である差電流
Hは以下の式で表される。
I T = K × V T / R T × InN = K ′ × (T a −25) + b where R T is the ground emitter resistance of the bandgap circuit, and N is the transistor area ratio; k the Boltzmann constant, when the absolute temperature, and electron charge amount q T, the voltage V T is given by V T = kT / q. Also, K is equivalent to the current mirror ratio which is schematically decided by a ratio of percentage change clogging resistance from the band gap current value to a final current source output of R T and R X. Assuming that K ′ is a constant based on 25 ° C. and that the fixed current value of the current source 1 is I C , the difference current I H, which is the correction current, is expressed by the following equation.

【0030】[0030]

【数8】IH=K′×(Ta−25)+b−IC 折れ線1次の補正電流は、差電流の温度に対する傾きを
電流源2の電流値で作成し、補正電流を0とする接点ポ
イントを電流源1の電流値で設定する。
I H = K ′ × (T a −25) + b−I C For the correction current of the first-order polygonal line, the gradient of the difference current with respect to the temperature is created by the current value of the current source 2, and the correction current is set to 0. Is set by the current value of the current source 1.

【0031】図1のPNPトランジスタ4は、電流源1
の電流値が電流源2の電流値より多い時に、電流源1が
飽和しないように、差電流の迂回先となる、つまり、電
流源接続の電位をPNPトランジスタ4を介して基準電
圧端子5の電圧に応じた値に固定するものである。
The PNP transistor 4 shown in FIG.
Is larger than the current value of the current source 2, the current source 1 does not saturate, so that the difference current is bypassed, that is, the potential of the current source connection is connected via the PNP transistor 4 to the reference voltage terminal 5. This is fixed at a value corresponding to the voltage.

【0032】以上のように本実施の形態によれば、電流
値が温度変動しない第1の電流源と電流値が温度に比例
する第2の電流源を縦続に接続して発生する差電流の方
向を制限するダイオードと電流源1の飽和を防ぐPNP
トランジスタを備えた補正電流源回路を、抵抗値と制御
電圧で電流を発生する被補正電流源回路に付加したこと
により、抵抗の2次の温度係数によって生ずる電流の温
度変動を、1次折れ線で近似し補正して、f0の温度変
動を大幅に減少させることができる。
As described above, according to the present embodiment, the first current source whose current value does not fluctuate with temperature and the second current source whose current value is proportional to temperature are connected in cascade, and the difference Diode for limiting direction and PNP for preventing saturation of current source 1
By adding a corrected current source circuit having a transistor to a corrected current source circuit that generates a current with a resistance value and a control voltage, the temperature variation of the current caused by the second-order temperature coefficient of the resistance is represented by a linear line. By approximation and correction, the temperature fluctuation of f 0 can be greatly reduced.

【0033】[0033]

【発明の効果】以上の説明を通じて明らかとなったよう
に本発明は、電流値が温度により変動しない第1の電流
源と電流値が温度に比例する第2の電流源を縦続に接続
して、発生する差電流の方向を制限するダイオードと電
流源の飽和を防ぐPNPトランジスタを備えた補正電流
源回路を、抵抗値と制御電圧で電流を発生する被補正電
流源回路に付加したことにより、抵抗の2次の温度係数
によって生ずる中心周波数f0調整用電流の温度変動
を、1次折れ線近似で補正し、温度変動を大幅に減少さ
せることができる有用性に優れた温度補償機能を有する
電流源回路を実現するものである。
As apparent from the above description, the present invention comprises a cascade connection of a first current source whose current value does not fluctuate with temperature and a second current source whose current value is proportional to temperature. By adding a correction current source circuit having a diode for limiting the direction of the generated difference current and a PNP transistor for preventing the saturation of the current source to a current source circuit to be corrected for generating a current with a resistance value and a control voltage, A current having a temperature compensation function excellent in usefulness, in which the temperature fluctuation of the center frequency f 0 adjusting current caused by the secondary temperature coefficient of the resistor is corrected by a first-order linear approximation and the temperature fluctuation can be greatly reduced. This realizes a source circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の典型的な一実施の形態における温度補
償機能を有する電流源回路を示す回路図である。
FIG. 1 is a circuit diagram showing a current source circuit having a temperature compensation function according to an exemplary embodiment of the present invention.

【図2】本発明の実施の形態において使用される電流源
の具体的回路図の一例である。
FIG. 2 is an example of a specific circuit diagram of a current source used in the embodiment of the present invention.

【図3】本発明の一実施の形態における折れ線近似され
たf0の調整電流特性図である。
FIG. 3 is an adjusted current characteristic diagram of f 0 approximated by a broken line in one embodiment of the present invention.

【図4】本発明における温度補償電流部分の特性図であ
る。
FIG. 4 is a characteristic diagram of a temperature compensation current portion according to the present invention.

【図5】従来のこの種の温度補償方法を示す周波数変調
方式のブロック図である。
FIG. 5 is a block diagram of a frequency modulation method showing a conventional temperature compensation method of this kind.

【符号の説明】[Explanation of symbols]

1,2…電流源、 3,5…基準電圧端子、 4…PN
Pトランジスタ、 6…ダイオード、 7…電流源出力
端子、 8…NPNトランジスタ、 9,19…抵抗、
10…演算増幅器、 11…電流調整端子、 12…被変調信
号入力端子、 13…混合回路、 14…容量、 15…VC
O、 16…周波数変調出力端子、 17…D/A変換器、
18…ROM、 20,21…電流源出力端子。
1, 2, current source 3, 5, reference voltage terminal 4, PN
P transistor, 6 diode, 7 current source output terminal, 8 NPN transistor, 9, 19 resistor
10: operational amplifier, 11: current adjustment terminal, 12: modulated signal input terminal, 13: mixed circuit, 14: capacitance, 15: VC
O, 16: frequency modulation output terminal, 17: D / A converter,
18… ROM, 20, 21… Current source output terminals.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1次の温度係数を有する抵抗
の両端に電圧を印加して出力端子対に前記電圧の値に応
じた電流を取り出す電流源回路において、前記出力端子
対の電流を、所定の温度を境にして固定電流と前記1次
の温度係数に応じて変化する1次温度変化電流とで近似
し、前記温度の変化に対する増減の方向が前記1次温度
変化電流のそれと逆であり、かつ前記固定電流と前記1
次温度変化電流の差電流値にほぼ等しい電流を出力する
温度補償用回路を、前記抵抗もしくは前記出力端子対に
並列に接続してなることを特徴とする電流源回路。
1. A current source circuit for applying a voltage to both ends of a resistor having at least a first-order temperature coefficient and extracting a current corresponding to a value of the voltage to an output terminal pair, wherein the current of the output terminal pair is set to a predetermined value. Approximate with a fixed current and a primary temperature change current that changes according to the primary temperature coefficient at the boundary of the temperature, and the direction of increase or decrease with respect to the temperature change is opposite to that of the primary temperature change current. And the fixed current and the 1
A current source circuit comprising: a temperature compensating circuit that outputs a current substantially equal to a difference current value of a next temperature change current, connected in parallel to the resistor or the output terminal pair.
【請求項2】 前記温度補償用回路が、温度に対してほ
ぼ固定の電流を出力する第1の電流源と、第1の電流源
と縦続接続され温度に比例した電流を出力する第2の電
流源と、第1及び第2の電流源の接続部に一端が接続さ
れ前記接続部に発生する差電流の方向を制限するダイオ
ードとを備え、前記ダイオードの他端を前記抵抗の一端
に接続したことを特徴とする請求項1記載の電流源回
路。
2. The temperature compensation circuit according to claim 1, wherein the first current source outputs a current substantially fixed with respect to the temperature, and a second current source connected in cascade with the first current source and outputs a current proportional to the temperature. A current source; and a diode having one end connected to a connection portion of the first and second current sources and limiting a direction of a difference current generated in the connection portion, and the other end of the diode connected to one end of the resistor. 2. The current source circuit according to claim 1, wherein:
JP9206312A 1997-07-31 1997-07-31 Current source circuit Pending JPH1155109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9206312A JPH1155109A (en) 1997-07-31 1997-07-31 Current source circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9206312A JPH1155109A (en) 1997-07-31 1997-07-31 Current source circuit

Publications (1)

Publication Number Publication Date
JPH1155109A true JPH1155109A (en) 1999-02-26

Family

ID=16521224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9206312A Pending JPH1155109A (en) 1997-07-31 1997-07-31 Current source circuit

Country Status (1)

Country Link
JP (1) JPH1155109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176702A (en) * 2007-01-22 2008-07-31 Matsushita Electric Ind Co Ltd Constant current source
JP2010152566A (en) * 2008-12-24 2010-07-08 Fujitsu Semiconductor Ltd Current producing circuit, current producing method and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176702A (en) * 2007-01-22 2008-07-31 Matsushita Electric Ind Co Ltd Constant current source
JP2010152566A (en) * 2008-12-24 2010-07-08 Fujitsu Semiconductor Ltd Current producing circuit, current producing method and electronic device

Similar Documents

Publication Publication Date Title
US5311146A (en) Current mirror for low supply voltage operation
US4587478A (en) Temperature-compensated current source having current and voltage stabilizing circuits
US5258658A (en) Gamma correction circuit
JPH1155109A (en) Current source circuit
JPH06244655A (en) Circuit and method for stabilizing secondarily tunable active filter
US6046639A (en) Amplifier/oscillator circuit with common-emitter amplifier and differential amplifier
JPH0449780A (en) Video signal clamping circuit
GB2263207A (en) Voltage controlled oscillator using negative - resistive feedback
JPH0352405A (en) Non-adjusting frequency modulator for frequency deviation quantity
JP3326286B2 (en) PLL frequency synthesizer circuit
US4439745A (en) Amplifier circuit
JP2896029B2 (en) Voltage-current converter
JP3430415B2 (en) Differential amplifier
JP2937316B2 (en) FM modulator
JPS6222284B2 (en)
JPH08167819A (en) Transmitting circuit
JP4077242B2 (en) Constant voltage constant current control circuit
JPS60212068A (en) Feedback clamp circuit
JP3398907B2 (en) Bias current control device
JPH0837430A (en) Operational amplifier
JP2573172B2 (en) Voltage controlled oscillator
JPH02135810A (en) Gain control circuit
JP3503297B2 (en) Voltage-current conversion circuit
JP3292541B2 (en) Voltage-current converter
JP2000077950A (en) Stabilized current source and data receiving circuit