JPH1154937A - Insulation adhesive for multilayered printed wiring board - Google Patents

Insulation adhesive for multilayered printed wiring board

Info

Publication number
JPH1154937A
JPH1154937A JP20348897A JP20348897A JPH1154937A JP H1154937 A JPH1154937 A JP H1154937A JP 20348897 A JP20348897 A JP 20348897A JP 20348897 A JP20348897 A JP 20348897A JP H1154937 A JPH1154937 A JP H1154937A
Authority
JP
Japan
Prior art keywords
resin
layer
copper foil
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20348897A
Other languages
Japanese (ja)
Inventor
Toyoaki Kishi
豊昭 岸
Takeshi Hozumi
猛 八月朔日
Sei Nakamichi
聖 中道
Tetsuji Yamamoto
哲司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP20348897A priority Critical patent/JPH1154937A/en
Publication of JPH1154937A publication Critical patent/JPH1154937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board with an insulation layer without glass cloth wherein layer insulation resin thickness varies a little. SOLUTION: In insulation adhesive formed by applying an insulation resin composition wherein borominated bisphenol type epoxy resin or borominated phenoxy resin of weight average molecular weight of 10000 or more of which boromination rate is 20% or more and bisphenol type epoxy resin of epoxy equivalent of 1000 or less are incorporated as essential elements to a copper foil 1, at least two resin layers are formed, flow in a resin layer 2 at the closest side to a copper foil is made practically zero, and a softening point of the outermost resin layer 3 is made 60 to 90 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層プリント配線
板の層間絶縁材料として好適な絶縁接着剤に関し、特に
層間絶縁層厚を一定に確保でき、難燃性で、保存安定性
にすぐれ、かつ、100℃以上の高温で速やかに硬化し
うるエポキシ樹脂系絶縁接着剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating adhesive suitable as an interlayer insulating material of a multilayer printed wiring board, and more particularly, it can secure a constant interlayer insulating layer thickness, is flame retardant, has excellent storage stability, and And an epoxy resin-based insulating adhesive which can be rapidly cured at a high temperature of 100 ° C. or higher.

【0002】[0002]

【従来の技術】従来、多層プリント配線板を製造する場
合、回路が形成された内層回路基板上にガラスクロス基
材にエポキシ樹脂を含浸して半硬化させたプリプレグシ
ートを1枚以上重ね、更にその上に銅箔を重ね熱板プレ
スにて加圧一体成形するという工程を経ている。このよ
うにして得られた多層プリント配線板は、多層積層プレ
ス時に内層回路板にガラスクロスプリプレグと銅箔とを
セットする工程、及びガラスクロスプリプレグのコスト
等により高コストとなっている。また、プレス時に樹脂
をフローさせて内層回路間を埋め込み、樹脂フローによ
ってボイドを追い出す成形方法が取られるため層間絶縁
樹脂厚を一定に保つのが難しい。加えて、回路層間にガ
ラスクロスがあることにより樹脂のガラスクロスに対す
る含浸度合いにより耐吸湿性、耐マイグレーション性に
影響がでる場合がある。
2. Description of the Related Art Conventionally, when a multilayer printed wiring board is manufactured, one or more prepreg sheets obtained by impregnating a glass cloth base material with an epoxy resin and semi-curing are laminated on an inner circuit board on which a circuit is formed. A process of laminating a copper foil thereon and integrally press-molding with a hot plate press is performed. The multilayer printed wiring board thus obtained is expensive due to the step of setting the glass cloth prepreg and the copper foil on the inner layer circuit board at the time of multilayer laminating press and the cost of the glass cloth prepreg. In addition, it is difficult to keep the thickness of the interlayer insulating resin constant because a molding method is employed in which a resin is caused to flow at the time of pressing to bury the space between the inner layer circuits and to expel voids by the resin flow. In addition, the presence of glass cloth between circuit layers may affect moisture absorption resistance and migration resistance depending on the degree of impregnation of the resin with the glass cloth.

【0003】近年、これらの問題を解決するため、既存
のプレス設備を用いガラスクロスを使用しないで多層プ
リント配線板を製造する技術が改めて注目されている。
しかし、プレス方式においては従来の技術ではガラスク
ロス基材がないため回路層間絶縁厚のバラツキを小さく
するのは難しい。
In recent years, in order to solve these problems, a technique for manufacturing a multilayer printed wiring board using existing press equipment without using a glass cloth has been renewed.
However, in the pressing method, it is difficult to reduce the variation in the insulation thickness between circuit layers because there is no glass cloth substrate in the conventional technique.

【0004】[0004]

【発明が解決しようとする課題】本発明者は、ガラスク
ロスのない回路層間絶縁層を有し、問題となる層間絶縁
樹脂厚のバラツキが小さいプリント配線板を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a printed wiring board having a circuit interlayer insulating layer having no glass cloth and having a small variation in the thickness of the interlayer insulating resin which is a problem.

【0005】ビルドアップ方式による多層プリント配線
板において、フィルム状の層間絶縁樹脂を用いた場合、
ガラスクロス基材がないためプレス成形した後の層間厚
みのバラツキが大きく、成形条件の幅が小さくなり成形
が非常に難しい。
In the case of using a film-like interlayer insulating resin in a multilayer printed wiring board by a build-up method,
Since there is no glass cloth base material, there is a large variation in the interlayer thickness after press molding, and the range of molding conditions is small, so that molding is very difficult.

【0006】このようなプロセスにおいて、銅箔の粗化
面へ絶縁樹脂をコーティングする場合、軟化点が高い樹
脂をコーティングすると成形時のフローが少なく内層回
路の凹凸を埋め込むだけのフロー量を確保することが困
難である。また樹脂の軟化点を低くくして成形時のフロ
ーを大きくすると内層回路の凹凸は埋め込むことはでき
るが、フロー量が多すぎ絶縁層間厚を一定に確保するの
が難しくなる。本発明はかかる問題を改善するために検
討し、完成されたものである。
In such a process, when a roughened surface of a copper foil is coated with an insulating resin, if a resin having a high softening point is coated, the flow at the time of molding is small, and a flow amount sufficient to embed irregularities in an inner layer circuit is secured. It is difficult. In addition, if the softening point of the resin is lowered to increase the flow at the time of molding, the irregularities of the inner layer circuit can be buried, but the flow amount is too large and it is difficult to secure a constant insulating interlayer thickness. The present invention has been studied and completed in order to improve such a problem.

【0007】[0007]

【課題を解決するための手段】本発明は、(1)臭素化
率20%以上である、重量平均分子量10000以上の
臭素化ビスフェノール型エポキシ樹脂または臭素化フェ
ノキシ樹脂(A)及び(2)エポキシ当量1000以下
のビスフェノール型エポキシ樹脂(B)を必須成分とし
て含有する絶縁樹脂組成物を、銅箔に塗布してなる絶縁
接着剤において、樹脂層を2層以上とし、最銅箔側樹脂
層を実質的にフローをゼロとし最外樹脂層を軟化点60
〜90℃とすることを特徴とする絶縁接着剤に関するも
のである。
The present invention relates to (1) a brominated bisphenol type epoxy resin or a brominated phenoxy resin (A) having a bromination ratio of 20% or more and a weight average molecular weight of 10,000 or more, and (2) an epoxy resin. In an insulating adhesive obtained by applying an insulating resin composition containing a bisphenol-type epoxy resin (B) having an equivalent weight of 1000 or less as an essential component to a copper foil, the resin layer is made two or more layers, and the resin layer on the most copper foil side is formed. With the flow substantially zero, the outermost resin layer has a softening point of 60.
To 90 ° C.

【0008】本発明の多層プリント配線板用絶縁接着剤
の一例を図1に示す。図1は樹脂を2層に塗布した場合
であり、(1)は銅箔、(2)は最銅箔側の実質的にフ
ローゼロの樹脂層、(3)は最外層の軟化点60〜90
℃の樹脂層である。なお、3層以上の場合、中間の層
は、両者の中間的性能のものであればよい。本発明にお
いて、最銅箔側樹脂層(2)は成形時フローが実質的に
ゼロである。フローゼロとは、加熱したときに樹脂が溶
融しても溶融粘度が低下せず、成形圧力をかけたときに
流動性を有しないことである。主要成分である、臭素化
率20%以上で重量平均分子量10000以上の臭素化
エポキシ樹脂または臭素化フェノキシ樹脂は、成形時の
樹脂流れを小さくし、絶縁層の厚みを維持すること、お
よび組成物に可とう性を付与すると共に、得られた多層
プリント配線板の難燃化を達成する目的で配合されてい
る。かかるエポキシ樹脂またはフェノキシ樹脂としては
臭素化ビスフェノールA型エポキシ樹脂、臭素化ビスフ
ェノールF型エポキシ樹脂、臭素化フェノキシ樹脂等が
あるが、上記の目的のためには臭素化ビスフェノールA
型エポキシ樹脂又は臭素化フェノキシ樹脂が好ましい。
この高分子量エポキシ樹脂またはフェノキシ樹脂の割合
は樹脂全体に対して55〜90重量%であることが好ま
しい。55重量%より少ないと、粘度が高くならずノン
フロー樹脂として厚みを保つことが不十分となり、従っ
てラミネートした後の絶縁層間厚の確保が困難となり、
外層回路の平滑性が劣るようになる。一方、90重量%
より多いと、粘度が高くなりすぎ、銅箔への塗布が容易
でなく、所定樹脂厚を保つことが困難となることがあ
る。
FIG. 1 shows an example of the insulating adhesive for a multilayer printed wiring board according to the present invention. FIG. 1 shows the case where the resin is applied to two layers, (1) is a copper foil, (2) is a resin layer having substantially zero flow on the copper foil side, and (3) is a softening point of the outermost layer of 60 to 90.
It is a resin layer of ° C. In the case of three or more layers, the intermediate layer may have an intermediate performance between the two. In the present invention, the flow at the time of molding of the copper foil side resin layer (2) is substantially zero. The term “zero flow” means that the melt viscosity does not decrease even when the resin is melted when heated, and has no fluidity when a molding pressure is applied. The main component, a brominated epoxy resin or brominated phenoxy resin having a bromination ratio of 20% or more and a weight average molecular weight of 10,000 or more, reduces the resin flow during molding and maintains the thickness of the insulating layer, and the composition It is blended for the purpose of imparting flexibility to the composition and achieving flame retardancy of the obtained multilayer printed wiring board. Such epoxy resins or phenoxy resins include brominated bisphenol A type epoxy resins, brominated bisphenol F type epoxy resins, brominated phenoxy resins, and the like.
Type epoxy resins or brominated phenoxy resins are preferred.
The proportion of the high molecular weight epoxy resin or phenoxy resin is preferably 55 to 90% by weight based on the whole resin. When the amount is less than 55% by weight, the viscosity does not increase and the thickness of the non-flow resin cannot be maintained sufficiently. Therefore, it is difficult to secure the thickness of the insulating layer after lamination.
The outer circuit becomes less smooth. On the other hand, 90% by weight
If it is larger, the viscosity becomes too high, the application to the copper foil is not easy, and it may be difficult to maintain a predetermined resin thickness.

【0009】上記高分子量エポキシ樹脂単独では、硬化
後の架橋密度が低く、可とう性が大きすぎること、及び
銅箔に塗布するために溶剤に溶解して所定温度のワニス
としたときに、粘度が高く、塗布時の作業性が良くな
い。このような欠点を改善するためにエポキシ当量10
00以下のビスフェノール型エポキシ樹脂を配合する。
この配合割合は樹脂全体の10〜45重量%である。こ
のような樹脂の配合により成形時のフローを実質的にゼ
ロにすることができるが、塗布乾燥後フローがゼロでな
い場合、加熱により反応を進めてフローをゼロにするこ
とができる。ただし、硬化が進みすぎて第2の層との接
着性が損なわれることのないようにする。
The high-molecular-weight epoxy resin alone has a low crosslinking density after curing and is too flexible, and has a low viscosity when dissolved in a solvent to form a varnish at a predetermined temperature for coating on a copper foil. And the workability during coating is not good. In order to improve such a defect, an epoxy equivalent of 10
No more than 00 bisphenol type epoxy resin is blended.
This mixing ratio is 10 to 45% by weight of the whole resin. Although the flow at the time of molding can be substantially reduced to zero by blending such a resin, when the flow after coating and drying is not zero, the reaction can be advanced by heating to reduce the flow to zero. However, it is set so that the curing does not proceed excessively and the adhesiveness to the second layer is not impaired.

【0009】最外樹脂層(2)は、軟化点が60〜90
℃である。即ち、臭素化率20%以上で重量平均分子量
10000以上の臭素化エポキシ樹脂または臭素化フェ
ノキシ樹脂とエポキシ当量が1000以下のビスフェノ
ール型エポキシ樹脂とを混合して軟化点が60〜90℃
に調整する。このようにして、内層回路の凹凸を埋め込
むためのフロー量を確保する。使用するビスフェノール
型エポキシ樹脂の種類、配合量は、混合した樹脂の軟化
点が60〜90℃にできる範囲であれば種類及び量は問
わない。但し、常温で液状であるエポキシ樹脂を多量に
配合すると常温において樹脂層から液状エポキシ樹脂の
シミ出しがおこり好ましくない。そのため液状エポキシ
樹脂配合量としては10〜45重量%が好ましい。以
下、最銅箔側樹脂層と最外樹脂層に使用する各成分につ
いて説明する。前記臭素化エポキシ樹脂又は臭素化フェ
ノキシ樹脂の臭素化率は20%以上である。臭素化率2
0%未満であると、得られた多層プリント配線板が難燃
性V−0を達成することが出来ない。
The outermost resin layer (2) has a softening point of 60 to 90.
° C. That is, a brominated epoxy resin or brominated phenoxy resin having a bromination ratio of 20% or more and a weight average molecular weight of 10,000 or more and a bisphenol-type epoxy resin having an epoxy equivalent of 1000 or less are mixed to have a softening point of 60 to 90 ° C.
Adjust to In this way, a flow amount for embedding the unevenness of the inner layer circuit is secured. The type and amount of the bisphenol-type epoxy resin to be used are not particularly limited as long as the softening point of the mixed resin can be set to 60 to 90 ° C. However, if a large amount of the epoxy resin that is liquid at room temperature is mixed, the liquid epoxy resin is stained from the resin layer at room temperature, which is not preferable. Therefore, the amount of the liquid epoxy resin is preferably 10 to 45% by weight. Hereinafter, each component used in the copper foil side resin layer and the outermost resin layer will be described. The bromination ratio of the brominated epoxy resin or brominated phenoxy resin is 20% or more. Bromination rate 2
When it is less than 0%, the obtained multilayer printed wiring board cannot achieve the flame retardancy V-0.

【0011】配合するエポキシ樹脂としてはビスフェノ
ールA型エポキシ樹脂、ビスフェノールF型エポキシ樹
脂等であり、臭素化したものを使用すれば、多層プリン
ト配線板の難燃化がより効果的に行われる。より具体的
には、エポキシ当量200程度のもの、エポキシ当量4
50程度のものを銅箔へ塗布するときの作業性等を考慮
してこれらを単独または併用して使用する。
The epoxy resin to be compounded is bisphenol A type epoxy resin, bisphenol F type epoxy resin or the like. If a brominated resin is used, the flame retardancy of the multilayer printed wiring board can be more effectively achieved. More specifically, epoxy equivalent of about 200, epoxy equivalent of 4
These are used alone or in combination in consideration of workability when applying about 50 to a copper foil.

【0012】次に、エポキシ樹脂硬化剤はアミン化合
物、イミダゾール化合物、酸無水物など、特に限定され
るものではないが、イミダゾール化合物は配合量が少な
くてもエポキシ樹脂を十分に硬化させることができ、臭
素化エポキシ樹脂の難燃性を発揮できるので好ましいも
のである。イミダゾール化合物は、融点130℃以上の
常温で固形であり、エポキシ樹脂への溶解性が小さく、
150℃以上の高温になって、エポキシ樹脂と速やかに
反応する物が特に好ましい。具体的には2−メチルイミ
ダゾール、2−フェニルイミダゾール、2−フェニル−
4−メチルイミダゾール、ビス(2−エチル−4−メチ
ル−イミダゾール)、2−フェニル−4−メチル−5−
ヒドロキシメチルイミダゾール、2−フェニル−4,5
−ジヒドロキシメチルイミダゾール、あるいは、トリア
ジン付加型イミダゾール等がある。これらのイミダゾー
ルは微粉末としてエポキシ樹脂ワニス中に均一に分散さ
れる。エポキシ樹脂との相溶性が小さいので、常温〜1
00℃では反応が進行せず、従って保存安定性を良好に
保つことができる。
Next, the epoxy resin curing agent is not particularly limited, such as an amine compound, an imidazole compound, and an acid anhydride. However, the imidazole compound can sufficiently cure the epoxy resin even if the compounding amount is small. It is preferable since the brominated epoxy resin can exhibit flame retardancy. The imidazole compound is solid at room temperature with a melting point of 130 ° C. or higher, has low solubility in epoxy resin,
Particularly preferred are those which reach a high temperature of 150 ° C. or higher and react quickly with the epoxy resin. Specifically, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-
4-methylimidazole, bis (2-ethyl-4-methyl-imidazole), 2-phenyl-4-methyl-5-
Hydroxymethylimidazole, 2-phenyl-4,5
-Dihydroxymethyl imidazole or triazine addition type imidazole. These imidazoles are uniformly dispersed as fine powder in the epoxy resin varnish. Low compatibility with epoxy resin, so
At 00 ° C., the reaction does not proceed, so that good storage stability can be maintained.

【0013】前記樹脂配合物を2層以上塗布するにおい
て、第1層を塗布乾燥後第2層を塗布するとき、第1層
はほとんど未硬化の状態であるので、両層間の密着は良
好である。同様に第3層を塗布するとき、第2層との密
着は良好である。このようにして、初めに塗布した層の
乾燥時に受ける熱量が多くなっても層を重ねて塗布する
ことが可能である。また、銅箔にフローが小さい樹脂を
塗布し、一方、軟化点を60〜90℃に調整した樹脂を
離型キャリアに塗布し、これらを塗布樹脂を内側にして
熱ロールにより圧着して絶縁接着剤層を形成することも
可能である。そしてプレス成形時に150℃以上に加熱
すると、エポキシ樹脂と反応し、均一な硬化物が得られ
る。
In applying two or more layers of the resin composition, when the first layer is applied and dried and then the second layer is applied, the first layer is almost uncured, so that the adhesion between the two layers is good. is there. Similarly, when the third layer is applied, adhesion to the second layer is good. In this way, even when the amount of heat received during drying of the initially applied layer increases, it is possible to apply the layers in layers. In addition, a resin having a small flow is applied to a copper foil, while a resin whose softening point is adjusted to 60 to 90 ° C. is applied to a release carrier, and these are pressure-bonded by a hot roll with the applied resin inside, and insulation bonding is performed. It is also possible to form an agent layer. When heated to 150 ° C. or higher during press molding, it reacts with the epoxy resin to obtain a uniform cured product.

【0015】上記成分の他に、線膨張率、耐熱性、耐燃
性などの向上のために、溶融シリカ、結晶性シリカ、炭
酸カルシウム、水酸化アルミニウム、アルミナ、クレ
ー、硫酸バリウム、マイカ、タルク、ホワイトカーボ
ン、Eガラス微粉末などを樹脂分に対して40重量%以
下配合しても良い。40重量%より多く配合すると、層
間絶縁樹脂の粘性が高くなり、内層回路間への埋込性が
低下するようになる。
In addition to the above components, fused silica, crystalline silica, calcium carbonate, aluminum hydroxide, alumina, clay, barium sulfate, mica, talc, and the like are used for improving the coefficient of linear expansion, heat resistance, and flame resistance. White carbon, E glass fine powder and the like may be blended in an amount of 40% by weight or less based on the resin component. If the content is more than 40% by weight, the viscosity of the interlayer insulating resin increases, and the embedding property between the inner layer circuits is reduced.

【0016】さらに、銅箔や内層回路基板との密着力を
高めたり、耐湿性を向上させるためにエポキシシラン等
のシランカップリング剤あるいはチタネート系カップリ
ング剤、ボイドを防ぐための消泡剤、あるいは液状又は
微粉末タイプの難燃剤の添加も可能である。
Further, a silane coupling agent such as epoxy silane or a titanate coupling agent for improving adhesion to a copper foil or an inner layer circuit board or improving moisture resistance, an antifoaming agent for preventing voids, Alternatively, a liquid or fine powder type flame retardant can be added.

【0017】溶剤としては、接着剤を銅箔に塗布し80
℃〜130℃で乾燥した後において、接着剤中に残らな
いものを選択しなければならない。例えば、アセトン、
メチルエチルケトン、トルエン、キシレン、n−ヘキサ
ン、メタノール、エタノール、メチルセルソルブ、エチ
ルセルソルブ、メトキシプロパノール、シクロヘキサノ
ンなどが用いられる。
As a solvent, an adhesive is applied to a copper foil and
After drying at <RTIgt; C-130 C, </ RTI> those that do not remain in the adhesive must be selected. For example, acetone,
Methyl ethyl ketone, toluene, xylene, n-hexane, methanol, ethanol, methyl cellosolve, ethyl cellosolve, methoxypropanol, cyclohexanone and the like are used.

【0018】層間絶縁接着剤付き銅箔は、接着剤成分を
所定の溶剤に所定の濃度で溶解した接着剤ワニスを銅箔
のアンカー面に塗布後80℃〜130℃で乾燥して1層
目を作製する。乾燥は、接着剤中に揮発成分が樹脂に対
して1.0%以下、好ましくは0.1〜0.5%になる
ように行う。0.1%より小さくするとき硬化反応が進
み成形性に悪影響を及ぼすことがある。また1層目(最
銅箔側)の樹脂厚みは15μm〜70μmが好ましい。
15μmより薄いと乾燥過剰となることがある。70μ
mより厚いと樹脂中の揮発成分が1.0%を越えるよう
になりやすい。上記と同様の条件で2層目以降を塗布し
ていくと厚さによるばらつきなく樹脂のタック性、保存
安定性、引き剥がし強さ等の性能を確保することができ
る。
The copper foil with an interlayer insulating adhesive is prepared by applying an adhesive varnish obtained by dissolving an adhesive component in a predetermined solvent at a predetermined concentration to an anchor surface of a copper foil, and then drying at 80 ° C. to 130 ° C. to form a first layer. Is prepared. Drying is performed so that the volatile component in the adhesive is 1.0% or less, preferably 0.1 to 0.5% with respect to the resin. When the content is less than 0.1%, the curing reaction proceeds, which may adversely affect the moldability. The resin thickness of the first layer (most copper foil side) is preferably 15 μm to 70 μm.
If the thickness is less than 15 μm, drying may be excessive. 70μ
When it is thicker than m, the volatile component in the resin tends to exceed 1.0%. When the second and subsequent layers are applied under the same conditions as described above, it is possible to ensure the properties of the resin such as tackiness, storage stability, and peel strength without variation due to the thickness.

【0019】この絶縁接着剤付き銅箔は、通常の真空プ
レスにより内層回路基板にラミネートし硬化させて、容
易に外層回路を有する多層プリント配線板を形成するこ
とができる。
The copper foil with an insulating adhesive is laminated on an inner circuit board by a normal vacuum press and cured, so that a multilayer printed wiring board having an outer circuit can be easily formed.

【0020】[0020]

【実施例】【Example】

<実施例1>臭素化フェノキシ樹脂(臭素化率25%、
重量平均分子量30000)100重量部(以下、配合
量は全て重量部を表す)とビスフェノールF型エポキシ
樹脂(エポキシ当量175、大日本インキ化学(株)製
エピクロン830)40部とをMEKに攪拌・溶解
し、硬化剤として2−メチルイミダゾール5重量部、チ
タネート系カップリング剤(味の素(株)製 KR−4
6B)0.3重量部、炭酸カルシウム30部を添加して
銅箔側樹脂ワニスを作製した。別に、臭素化フェノキシ
樹脂(臭素化率25%、重量平均分子量30000)1
00部とビスフェノールF型エポキシ樹脂(エポキシ当
量175、大日本インキ化学(株)製 エピクロン83
0)50部、エポキシ当量450の固形ビスフェノール
A型エポキシ樹脂(エポキシ当量450、油化シェル
(株)製 エピコート1001)10部とをMEKに攪
拌・溶解し、硬化剤として2−メチルイミダゾール5重
量部、チタネート系カップリング剤(味の素(株)製
KR−46B)0.3重量部、炭酸カルシウム30部を
添加して軟化点86℃の銅箔側樹脂ワニスを作製した。
<Example 1> Brominated phenoxy resin (bromination ratio 25%,
100 parts by weight (weight average molecular weight: 30,000) (hereinafter, the blending amounts are all represented by parts by weight) and 40 parts of a bisphenol F type epoxy resin (epoxy equivalent: 175, Epicron 830 manufactured by Dainippon Ink and Chemicals, Inc.) are stirred into MEK. 5 parts by weight of 2-methylimidazole as a curing agent and a titanate-based coupling agent (KR-4 manufactured by Ajinomoto Co., Inc.)
6B) A resin varnish on the copper foil side was prepared by adding 0.3 parts by weight and 30 parts of calcium carbonate. Separately, brominated phenoxy resin (bromination ratio 25%, weight average molecular weight 30,000) 1
00 parts and a bisphenol F type epoxy resin (epoxy equivalent: 175, Epicron 83 manufactured by Dainippon Ink and Chemicals, Inc.)
0) 50 parts, 10 parts of a solid bisphenol A type epoxy resin having an epoxy equivalent of 450 (epoxy equivalent: 450, Epicoat 1001 manufactured by Yuka Shell Co., Ltd.) were stirred and dissolved in MEK, and 5 parts by weight of 2-methylimidazole was used as a curing agent. Part, titanate coupling agent (manufactured by Ajinomoto Co., Inc.)
KR-46B) 0.3 part by weight and 30 parts of calcium carbonate were added to prepare a copper foil side resin varnish having a softening point of 86 ° C.

【0021】前記樹脂ワニスを厚さ18μmの銅箔
(1)のアンカー面に1層目乾燥樹脂厚50μm、2層
目乾燥樹脂厚50μmとなるようコンマコーターにて2
層塗布して乾燥全樹脂厚100μmの絶縁接着剤付き銅
箔(3)を得た。
The resin varnish is applied to the anchor surface of a copper foil (1) having a thickness of 18 μm by a comma coater so that the first layer has a dry resin thickness of 50 μm and the second layer has a dry resin thickness of 50 μm.
The layer was coated and dried to obtain a copper foil (3) with an insulating adhesive having a total resin thickness of 100 μm.

【0023】更に、基材厚0.1mm、銅箔厚35μm
のガラスエポキシ両面銅張積層板をパターン加工して内
層回路板を得た。銅箔表面を黒化処理した後、上記絶縁
接着剤付き銅箔を両面にセットした。
Further, the thickness of the base material is 0.1 mm, and the thickness of the copper foil is 35 μm.
The glass-epoxy double-sided copper-clad laminate was subjected to pattern processing to obtain an inner circuit board. After the surface of the copper foil was blackened, the copper foil with the insulating adhesive was set on both sides.

【0024】セットされた素材を、その素材間に1.6
mmステンレス製鏡面板を挟み、1段に15セット投入
し、昇温3℃〜10℃/分、圧力10〜30Kg/cm
2 、真空度−760〜−730mmHgの条件で、真空
プレスを用いて温度150℃、20分の条件で加熱成形
し、多層プリント配線板を作製した。
The set material is placed between the materials by 1.6.
mm stainless steel mirror plate, put 15 sets in one stage, raise temperature 3 ° C-10 ° C / min, pressure 10-30Kg / cm
2. Under a condition of a vacuum degree of -760 to -730 mmHg, a vacuum press was used to heat mold at a temperature of 150 ° C. for 20 minutes to produce a multilayer printed wiring board.

【0025】<実施例2>最外層樹脂に、固形エポキシ
樹脂を50部とし軟化点を70℃とした以外は実施例1
と同様にして多層プリント配線板を作製した。
<Example 2> Example 1 was repeated except that the outermost resin was 50 parts of a solid epoxy resin and the softening point was 70 ° C.
A multilayer printed wiring board was produced in the same manner as described above.

【0026】<比較例1>絶縁接着剤付き銅箔を実施例
1における最銅箔側樹脂層のみとし、乾燥樹脂厚100
μmとした以外は実施例1と同様にして多層プリント配
線板を得た。 <比較例2>絶縁接着剤付き銅箔を最外層樹脂層のみと
し、乾燥樹脂厚100μmとした以外は実施例1と同様
にして多層プリント配線板を得た。 <比較例3>通常の0.1mm厚のガラスクロスプリプ
レグと18μm厚の銅箔を用い、セットされた素材を、
その素材間に1.6mmステンレス製鏡面板を挟み、1
段に15セット投入し、昇温3℃/分、圧力35Kg/
cm2 、真空度−760〜−730mmHgの条件で、
真空プレスを用いて温度170℃、80分の条件で加熱
成形し、多層プリント配線板を作製した。
<Comparative Example 1> A copper foil with an insulating adhesive was used only in the resin layer on the side of the most copper foil in Example 1 and had a dry resin thickness of 100.
A multilayer printed wiring board was obtained in the same manner as in Example 1 except that the thickness was changed to μm. Comparative Example 2 A multilayer printed wiring board was obtained in the same manner as in Example 1 except that the outermost resin layer was made of a copper foil with an insulating adhesive and the dry resin thickness was 100 μm. <Comparative Example 3> Using a normal glass cloth prepreg having a thickness of 0.1 mm and a copper foil having a thickness of 18 μm,
A 1.6 mm stainless steel mirror plate is sandwiched between the materials.
15 sets are put in the stage, and the temperature is raised at 3 ° C./min, and the pressure is 35 kg /
cm 2 , and a degree of vacuum of −760 to −730 mmHg,
Heat molding was performed using a vacuum press at a temperature of 170 ° C. for 80 minutes to produce a multilayer printed wiring board.

【0027】得られた多層プリント配線板について、成
形ボイド、層間厚、板周辺樹脂フロー量を測定し、結果
を表1に示す。
With respect to the obtained multilayer printed wiring board, a molding void, an interlayer thickness, and a resin flow amount around the board were measured. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】(測定方法)内層回路板試験片:ライン幅
L/ライン間隔幅S=120/180(μm)、 クリアランスホール1mmφ及び3mmφ 2mmスリット。 1.成形ボイド:上記パターン線間部およびクリアラン
スホール部におけるボイドの有無を目視で観察した。 2.内層回路上の絶縁層厚:クロスセクションにより観
察、観察部位はL/S=120/180μm、2mmス
リット部の内層回路上の絶縁層厚を測定、1段内で得ら
れた15枚の製品の内、最外のものと中央のものとの差
の絶対値を求めた。 3.製品周辺樹脂フロー:内層回路板から流出した樹脂
フローの長さを測定。
(Measurement method) Inner layer circuit board test piece: line width L / line interval width S = 120/180 (μm), clearance holes 1 mmφ and 3 mmφ 2 mm slit. 1. Molded voids: The presence or absence of voids in the above-mentioned pattern line portions and clearance holes was visually observed. 2. Insulation layer thickness on inner layer circuit: Observed by cross section, L / S = 120/180 μm at the observation site, measured the insulation layer thickness on the inner layer circuit of 2 mm slit part, 15 products obtained in one stage The absolute value of the difference between the inner and outermost ones and the central one was determined. 3. Resin flow around the product: Measure the length of resin flow flowing out of the inner circuit board.

【0030】[0030]

【発明の効果】本発明の多層プリント配線板用絶縁接着
剤は、層間絶縁樹脂厚のバラツキが小さい、ガラスクロ
スのない絶縁層を有するプリント配線板を製造すること
ができる。
The insulating adhesive for a multilayer printed wiring board of the present invention can produce a printed wiring board having an insulating layer having no glass cloth and having a small variation in interlayer insulating resin thickness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の多層プリント配線板用絶縁接着剤の
一例を示す断面図
FIG. 1 is a sectional view showing an example of an insulating adhesive for a multilayer printed wiring board according to the present invention.

【符号の説明】[Explanation of symbols]

1 銅箔 2 最銅箔側樹脂層 3 最外樹脂層 1 copper foil 2 resin layer on the most copper foil side 3 outermost resin layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 哲司 東京都品川区東品川2丁目5番8号 住友 ベークライト株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tetsuji Yamamoto 2-5-8 Higashishinagawa, Shinagawa-ku, Tokyo Sumitomo Bakelite Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (1)臭素化率20%以上である、重量
平均分子量10000以上の臭素化ビスフェノール型エ
ポキシ樹脂または臭素化フェノキシ樹脂(A)及び
(2)エポキシ当量1000以下のビスフェノール型エ
ポキシ樹脂(B)を必須成分として含有する絶縁樹脂組
成物を、銅箔に塗布してなる絶縁接着剤において、樹脂
層を2層以上とし、最銅箔側樹脂層を実質的にフローを
ゼロとし最外樹脂層を軟化点60〜90℃とすることを
特徴とする絶縁接着剤。
1. A brominated bisphenol type epoxy resin or brominated phenoxy resin (A) having a bromination ratio of 20% or more and a weight average molecular weight of 10,000 or more, and (2) a bisphenol type epoxy resin having an epoxy equivalent of 1,000 or less. In an insulating adhesive obtained by applying an insulating resin composition containing (B) as an essential component to a copper foil, the number of resin layers is two or more, and the flow of the resin layer on the copper foil side is substantially zero. An insulating adhesive, wherein the outer resin layer has a softening point of 60 to 90 ° C.
【請求項2】 エポキシ硬化剤が、2−メチルイミダゾ
ール、2−フェニルイミダゾール、2−フェニル−4−
メチル−5−ヒドルキシメチルイミダゾール、2−フェ
ニル−4、5−ジヒドロキシメチルイミダゾールおよび
トリアジン付加型イミダゾールから選ばれた1種または
2種以上のイミダゾール化合物である絶縁接着剤。
2. The method according to claim 1, wherein the epoxy curing agent is 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-.
An insulating adhesive which is one or more kinds of imidazole compounds selected from methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and triazine addition type imidazole.
JP20348897A 1997-07-29 1997-07-29 Insulation adhesive for multilayered printed wiring board Pending JPH1154937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20348897A JPH1154937A (en) 1997-07-29 1997-07-29 Insulation adhesive for multilayered printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20348897A JPH1154937A (en) 1997-07-29 1997-07-29 Insulation adhesive for multilayered printed wiring board

Publications (1)

Publication Number Publication Date
JPH1154937A true JPH1154937A (en) 1999-02-26

Family

ID=16474996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20348897A Pending JPH1154937A (en) 1997-07-29 1997-07-29 Insulation adhesive for multilayered printed wiring board

Country Status (1)

Country Link
JP (1) JPH1154937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202517A (en) * 2008-02-29 2009-09-10 Sekisui Chem Co Ltd Manufacturing method of multilayer insulating film and multilayer printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202517A (en) * 2008-02-29 2009-09-10 Sekisui Chem Co Ltd Manufacturing method of multilayer insulating film and multilayer printed wiring board

Similar Documents

Publication Publication Date Title
JP2883029B2 (en) Undercoat agent for multilayer printed wiring boards
JP2005240019A (en) Thermosetting resin composition, adhesive film using the same and multi-layered printed circuit board
US5976699A (en) Insulating adhesive for multilayer printed circuit board
JPH11100562A (en) Interlayer insulation adhesive for multilayer printed wiring board and copper foil
JP3669663B2 (en) Interlayer insulation adhesive for multilayer printed wiring boards
JPH11279260A (en) Epoxy resin composition
JP3084351B2 (en) Interlayer insulating adhesive for multilayer printed wiring boards
JP2002064275A (en) Insulating resin film for multilayer printed wiring board
JP3003922B2 (en) 4-layer printed wiring board
JPH1154937A (en) Insulation adhesive for multilayered printed wiring board
JP2908258B2 (en) Light / thermosetting undercoat material and method for manufacturing multilayer printed wiring board
JPH11186725A (en) Manufacturing multilayered printed wiring board
JPH0971762A (en) Interlaminar insulating adhesive for multilayered printed circuit board
JP3703143B2 (en) Interlayer insulating adhesive for multilayer printed wiring board and copper foil with interlayer insulating adhesive for multilayer printed wiring board
JP2826091B2 (en) Insulating adhesive for multilayer printed wiring boards
JP3328122B2 (en) Manufacturing method of multilayer printed wiring board
JP2001094265A (en) Copper foil with insulation resin for multilayer printed boards
JP3095115B2 (en) Light / thermosetting undercoat agent for multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP3632823B2 (en) Interlayer insulation adhesive for multilayer printed wiring boards
JP2911778B2 (en) Manufacturing method of multilayer printed wiring board
JP2001040069A (en) Epoxy resin composition, prepreg, metal foil with resin, adhesive sheet, laminate and multi-layer board
JP3003921B2 (en) Manufacturing method of multilayer printed wiring board
JPH1046131A (en) Insulation adhesive for multilayer printed wiring board
JPH07336054A (en) Interlayer insulating resin material for multilayer board printed circuit board and manufacture of the same board
JP2006322006A (en) Interlayer insulation adhesive for multilayer printed wiring board, and copper foil