JPH1154539A - Capillary for wire bonding - Google Patents

Capillary for wire bonding

Info

Publication number
JPH1154539A
JPH1154539A JP9210801A JP21080197A JPH1154539A JP H1154539 A JPH1154539 A JP H1154539A JP 9210801 A JP9210801 A JP 9210801A JP 21080197 A JP21080197 A JP 21080197A JP H1154539 A JPH1154539 A JP H1154539A
Authority
JP
Japan
Prior art keywords
wire
face
capillary
face angle
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9210801A
Other languages
Japanese (ja)
Inventor
Yutaka Kato
豊 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9210801A priority Critical patent/JPH1154539A/en
Publication of JPH1154539A publication Critical patent/JPH1154539A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • H01L2224/78305Shape of other portions
    • H01L2224/78307Shape of other portions outside the capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase and average the resistance force of a wire to an external stress, by making the face angle value of a face in a given direction different from the face angle value in the direction vertical to the given direction. SOLUTION: Bonding is performed to a wire whose lengthwise direction is matched with the direction of ultrasonic vibration, by a face 1a where the minimum face angle α is formed. Bonding is performed to a wire whose lengthwise direction is vertical to the direction of ultrasonic vibration, by a face 1b where the maximum face angle βis formed. On faces except the faces where the maximum face angle and the minimum face angle are formed, face angles which gently change between the minimum and the maximum are formed. Hence, bonding is performed in all directions by a constant force. As a result, the resistance force of a wire to an external stress can be increased and averaged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子の組立
工程におけるワイヤーボンディングに使用されるキャピ
ラリーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capillary used for wire bonding in a process of assembling a semiconductor device.

【0002】[0002]

【従来の技術】従来より、半導体素子の組立工程におい
て、アルミニウム等の金属で形成されたシリコンチップ
の電極パッドと電気信号を外部回路に伝達する金属リー
ドとを接合するために、ワイヤーボンディング技術が広
く採用されている。とりわけ、金ワイヤーを用いるボー
ル−ウエッジボンディング法においては、セラミック材
で作られたキャピラリーが用いられる。尚、ボール−ウ
エッジボンディング法とは、現在広く用いられている技
術であるが、ワイヤーボンディングの際に、ボンディン
グされるワイヤーの端部が一部溶解,固化されることに
よりボールが形成され、このボールが接合に利用される
ものである(ボールボンドと呼ばれる)。又、前記ワイ
ヤーの他端はそのまま対象物に押し付けられて接合され
る(ウエッジボンドと呼ばれる)。
2. Description of the Related Art Conventionally, in the process of assembling a semiconductor device, a wire bonding technique has been used to join an electrode pad of a silicon chip formed of a metal such as aluminum to a metal lead for transmitting an electric signal to an external circuit. Widely adopted. In particular, in a ball-wedge bonding method using a gold wire, a capillary made of a ceramic material is used. The ball-wedge bonding method, which is currently widely used, forms a ball by partially melting and solidifying an end of a wire to be bonded during wire bonding. Balls are used for bonding (called ball bonds). Further, the other end of the wire is directly pressed against and bonded to an object (called a wedge bond).

【0003】図5(a)は従来のワイヤーボンディング
用キャピラリーの外観を示す斜視図である。又、図5
(b)は同図(a)に示された中心線Oに沿う断面図に
おけるキャピラリー先端のファイス部の構成を示す部分
拡大図である。このキャピラリー11の先端のフェイス
部12は、ボンディングの際に、実際にボールやワイヤ
ーをボンディング対象物に押し付け接合するためのもの
であるが、図示されているように、フェイス面12aは
一定のフェイス角θを有している。
FIG. 5A is a perspective view showing the appearance of a conventional capillary for wire bonding. FIG.
FIG. 2B is a partially enlarged view showing a configuration of a face portion at the tip of the capillary in a cross-sectional view along the center line O shown in FIG. The face portion 12 at the tip of the capillary 11 is used for actually pressing and bonding a ball or a wire to a bonding object at the time of bonding. As shown in the drawing, the face surface 12a has a constant face. Has an angle θ.

【0004】[0004]

【発明が解決しようとする課題】ボール−ウエッジボン
ディングでは、予めボンディング対象物を加熱してお
き、ボール又はワイヤーをボンディング対象物にボンデ
ィングするときにキャピラリーを介して超音波振動を前
記ボール又はワイヤーと対象物との接合面に印加し、そ
の超音波振動により接合が促進される。但し、この場
合、前記超音波振動は通常一つのトランスデューサーで
発振されるが、振動の方向は一方向のみである。
In ball-wedge bonding, an object to be bonded is heated in advance, and when a ball or wire is bonded to the object to be bonded, ultrasonic vibration is applied to the ball or wire via a capillary. It is applied to the surface to be joined to the object, and the ultrasonic vibrations thereof promote the joining. However, in this case, the ultrasonic vibration is normally oscillated by one transducer, but the vibration is in only one direction.

【0005】ところが、実際にボンディング対象物にボ
ンディングされるワイヤーの方向は一方向に限られず、
シリコンチップの全周にわたってあらゆる方向にボンデ
ィングされるため、各ボンディング対象物とワイヤーと
の接合部においてワイヤーの長さ方向と超音波振動の方
向とにずれが生じることが多い。
[0005] However, the direction of the wire actually bonded to the bonding object is not limited to one direction.
Since bonding is performed in all directions over the entire circumference of the silicon chip, there is often a shift between the length direction of the wire and the direction of ultrasonic vibration at the joint between each bonding object and the wire.

【0006】又、ワイヤーが外部電極のリードと接合さ
れる所謂セカンドボンドでは、通常ウエッジボンドされ
る。この場合、ワイヤーがキャピラリーのフェイス面で
潰されながら前記外部電極のリードに接合されていく
が、このときワイヤーの長さ方向と超音波振動の方向と
が同じ場合には、ワイヤーは超音波振動によってその長
さ方向にだけ押し伸ばされることになるため、ワイヤー
の潰れ幅はワイヤーの直径より少し拡がった程度とな
る。従って、図6(a)に示すように、ワイヤーの潰れ
幅γ1 は比較的小さくなる。一方、ワイヤーの長さ方向
と超音波振動の方向とが垂直である場合には、ワイヤー
の幅を押し拡げるように超音波振動が働くため、図6
(b)に示すように、ワイヤーの潰れ幅γ2 は前記の場
合よりも大きくなる。尚、ワイヤーの長さ方向と超音波
振動の方向とが平行又は垂直となっていない場合には、
ワイヤーの潰れ幅は前記各場合の中間域の大きさにな
る。
In a so-called second bond in which a wire is joined to a lead of an external electrode, a wedge bond is usually used. In this case, the wire is joined to the lead of the external electrode while being crushed by the face surface of the capillary. At this time, if the length direction of the wire is the same as the direction of the ultrasonic vibration, the wire is subjected to the ultrasonic vibration. As a result, the wire is pushed and stretched only in its length direction, so that the crushed width of the wire is slightly larger than the diameter of the wire. Accordingly, as shown in FIG. 6 (a), crushed width gamma 1 wire will be relatively small. On the other hand, when the length direction of the wire is perpendicular to the direction of the ultrasonic vibration, the ultrasonic vibration works so as to push and expand the width of the wire.
(B), the crushed width gamma 2 wire is larger than that of the. If the length direction of the wire and the direction of the ultrasonic vibration are not parallel or perpendicular,
The crush width of the wire is the size of the intermediate region in each case.

【0007】又、図7(a),(b)、図8(a),
(b)は夫々キャピラリーのフェイス角の大きさとこの
キャピラリーによりボンディングされたワイヤーの潰れ
幅の大きさとの関係を示す図である。これらの図はキャ
ピラリーに超音波振動を与えずにキャピラリーを押し付
けたのみでワイヤーを潰した場合のワイヤーの潰れ幅の
大きさを説明するためのものである。図7(a)に示さ
れたキャピラリーのフェイス角θ1 の大きさは、図8
(a)に示されたキャピラリーのフェイス角θ2 よりも
小さく形成されており、超音波振動を与えずキャピラリ
ーの押し付けのみでワイヤーを潰した場合には、キャピ
ラリーのフェイス角が大きい程ワイヤーの潰れ幅が小さ
くなる傾向があることが分かる。
FIGS. 7 (a), 7 (b), 8 (a),
(B) is a diagram showing the relationship between the size of the face angle of the capillary and the size of the collapse width of the wire bonded by the capillary. These figures are for explaining the size of the crushed width of the wire when the wire is crushed only by pressing the capillary without applying ultrasonic vibration to the capillary. The magnitude of the face angle θ 1 of the capillary shown in FIG.
(A) is formed smaller than the capillary face angle θ 2 , and when the wire is crushed only by pressing the capillary without applying ultrasonic vibration, the wire is more crushed as the capillary face angle is larger. It can be seen that the width tends to be small.

【0008】ところで、ワイヤーの潰れ幅はできるだけ
大きい方が好ましい。なぜなら、ワイヤーとリードとの
接合部分の端部(セカンドネックと呼ばれる)に位置す
る、ワイヤーが潰されて変形した部分の断面積が相対的
に大きくなり、ワイヤーの外力に対する抵抗力が大きく
なるからである。
Incidentally, it is preferable that the collapse width of the wire is as large as possible. The reason is that the cross-sectional area of the portion where the wire is crushed and deformed, located at the end of the joint between the wire and the lead (called the second neck), becomes relatively large, and the resistance to the external force of the wire increases. It is.

【0009】実際の半導体素子組立工程においてワイヤ
ーに働く外力としては、まず、組立工程中の振動や樹脂
モールドのときに発生する応力が考えられる。又、半導
体素子として使用するときのはんだリフロー等の外部か
らの熱や、電気信号処理中のシリコンチップの自己発熱
による温度変化を原因とする半導体素子を構成する部材
の熱膨張等の影響により、応力が発生する場合もある。
そこで、このような応力がワイヤーに働く場合には、前
記リードとワイヤーとの接合部分の抵抗力を高めること
が半導体素子の性能を維持するうえで重要となる。
As the external force acting on the wire in the actual semiconductor element assembling step, first, vibration during the assembling step or stress generated during resin molding can be considered. In addition, due to external heat such as solder reflow when used as a semiconductor element, and thermal expansion of members constituting the semiconductor element due to temperature change due to self-heating of the silicon chip during electric signal processing, Stress may occur.
Therefore, when such stress acts on the wire, it is important to increase the resistance of the joint between the lead and the wire in order to maintain the performance of the semiconductor element.

【0010】しかしながら、従来のキャピラリーにより
ワイヤーボンディングが行われた半導体素子では、超音
波振動の方向がワイヤーの長さ方向とほぼ同じ場合に
は、ワイヤーの潰れ幅が比較的小さく、破壊応力に対す
るワイヤーの抵抗力がセカンドネック部において低下し
てしまうために、組立工程中で断線してしまったり、半
導体素子として使用しているときに断線してしまうよう
なことがあった。
However, in a conventional semiconductor device in which wire bonding is performed by a capillary, when the direction of ultrasonic vibration is substantially the same as the length direction of the wire, the crush width of the wire is relatively small, and the wire with respect to breaking stress is relatively small. Of the second neck portion, the wire may be disconnected during the assembling process, or may be disconnected during use as a semiconductor element.

【0011】ところで、超音波振動の方向とワイヤーの
長さ方向とが同一の場合に発生するワイヤーの外部応力
に対する抵抗力の低下を、キャピラリーのファイス面の
フェイス角を小さく設定してワイヤーの潰れ幅を大きく
して回避することは可能ではある。しかし、従来のキャ
ピラリーではフェイス面に全面にわたり同一のフェイス
角が形成されるため、長さ方向が超音波振動の方向と垂
直な方向にあるワイヤーをボンディングしたときにワイ
ヤーが潰れ過ぎてしまう。このような場合でも、やはり
ワイヤーのネック部の断面積が小さくなってしまって、
外部応力がワイヤーに作用した場合に断線を起こしてし
まうことになる。このように、従来のキャピラリーでは
一定の方向のワイヤーに対してだけの効果しか期待でき
ない。
By the way, the reduction of the resistance to the external stress of the wire, which occurs when the direction of the ultrasonic vibration and the length of the wire are the same, is set by setting the face angle of the face of the capillary to a small value so that the wire is crushed. It is possible to avoid this by increasing the width. However, in the conventional capillary, since the same face angle is formed on the entire face surface, when a wire having a length direction perpendicular to the direction of ultrasonic vibration is bonded, the wire is excessively crushed. Even in such a case, the cross-sectional area of the neck of the wire is still small,
If an external stress acts on the wire, the wire will break. As described above, the conventional capillary can expect only an effect for a wire in a certain direction.

【0012】更に、近年のシリコンチップの配線構造の
微細化に伴い、ボンディングパッド同士の間隔が狭くな
ってきており、これに対応するためにボンディングワイ
ヤーも細線化されてきたために、セカンドボンドの接合
部の面積及びワイヤーの外部応力に対する抵抗力が相対
的に小さくなってきているので、従来のキャピラリーを
用いた場合には前述の欠点が更に大きな問題となる。
Further, with the recent miniaturization of the wiring structure of a silicon chip, the distance between bonding pads has become narrower. In order to cope with this, the bonding wires have also been made thinner, so that the bonding of the second bond has been performed. Since the area of the portion and the resistance to the external stress of the wire have become relatively small, the above-mentioned drawback becomes a more serious problem when a conventional capillary is used.

【0013】そこで、上記のような問題点を解決するた
め、本発明は、半導体素子の組立工程のワイヤーボンデ
ィングにおいて、外部応力に対するワイヤーの抵抗力を
増大させて平均化し、半導体素子の性能を向上させ得る
キャピラリーを提供することを目的とする。
In order to solve the above-mentioned problems, the present invention has been made to improve the performance of a semiconductor device by increasing and averaging the resistance of the wire to external stress in wire bonding in a semiconductor device assembly process. It is an object of the present invention to provide a capillary that can be used.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、本発明は半導体素子の組立工程で用いられる円筒状
の直胴部の先端に中空部を有し滑らかな曲面で形成され
たフェイス面を備えたテーパー状のフェイス部が設けら
れたワイヤーボンディング用キャピラリーであって、前
記フェイス面の所定の方向のフェイス角の大きさとその
方向と垂直な方向のフェイス角の大きさとが異なってい
ることを特徴とする。特に、本発明のキャピラリーで
は、前記大きさの異なるフェイス角は夫々最大と最小に
設定され、フェイス面の最大のフェイス角が設定された
位置から最小のフェイス角が設定された位置に向けてフ
ェイス角がなだらかに変化していることが好ましい。
又、本発明のキャピラリーの直胴部には所定の大きさの
フェイス角が形成されたフェイス面の位置を示すマーク
又は切欠部が形成されていることを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a face surface having a hollow portion at the tip of a cylindrical straight body used in a process of assembling a semiconductor device and having a smooth curved surface. A wire bonding capillary provided with a tapered face portion provided with: a face angle in a predetermined direction of the face surface is different from a face angle in a direction perpendicular to the direction. It is characterized by. In particular, in the capillary of the present invention, the face angles having the different sizes are set to the maximum and the minimum, respectively, and the face is shifted from the position where the maximum face angle is set to the position where the minimum face angle is set. It is preferred that the corners change gently.
Further, the present invention is characterized in that a mark or a notch is formed on a straight body portion of the capillary to indicate a position of a face surface where a face angle of a predetermined size is formed.

【0015】[0015]

【発明の実施の形態】図1(a)は本発明によるワイヤ
ーボンディング用キャピラリーの先端フェイス部の構成
を示すキャピラリーの中心線上の断面図である。又、図
1(b)は同図(a)の図面に垂直な方向でキャピラリ
ーの中心線上の断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is a cross-sectional view of the capillary for wire bonding according to the present invention, taken along a center line of the capillary, showing the structure of the tip face. FIG. 1B is a sectional view on a center line of the capillary in a direction perpendicular to the drawing of FIG.

【0016】本発明のキャピラリーは、図示しない円筒
状の直胴部の先端に図1(a),(b)に示されたよう
な中空部1bを有するテーパー状のフェイス部1が設け
られている。又、フェイス部1には滑らかなフェイス面
1aが形成されている。図1(a)に示すように、フェ
イス面1aの所定の位置には最小のフェイス角αが夫々
形成されている。一方、図1(b)に示すように、ファ
イス角αが形成された位置とキャピラリーの中心線Oを
中心として90度の位置のファイス面1aには最大のフ
ェイス角βが夫々形成されている。又、フェイス面1a
において、フェイス角αが形成された位置からフェイス
角βが形成された位置にかけてのフェイス角の大きさ
は、αからβへなだらかに変化している。
The capillary of the present invention is provided with a tapered face portion 1 having a hollow portion 1b as shown in FIGS. 1 (a) and 1 (b) at the tip of a cylindrical straight body (not shown). I have. The face portion 1 has a smooth face surface 1a. As shown in FIG. 1A, a minimum face angle α is formed at a predetermined position on the face surface 1a. On the other hand, as shown in FIG. 1B, a maximum face angle β is formed on the face where the face angle α is formed and on the face 1a at a position 90 degrees with respect to the center line O of the capillary. . Also, face surface 1a
, The magnitude of the face angle from the position where the face angle α is formed to the position where the face angle β is formed gradually changes from α to β.

【0017】従って、本発明のキャピラリーをワイヤー
ボンダーに取り付ける際に、超音波振動の方向とフェイ
ス角αが形成されているフェイス面1aの位置とを一致
させて取り付けるだけで、前記超音波振動の方向と垂直
な方向のフェイス面1aのフェイス角の大きさを前記α
よりも大きいものを配置させることが可能になる。即
ち、長さ方向が超音波振動の方向と一致するワイヤーに
対しては最小のフェイス角が形成されたファイス面によ
りボンディングが行われ、長さ方向が超音波振動の方向
と垂直になっているワイヤーに対しては最大のフェイス
角が形成されたフェイス面によりボンディングが行われ
ることになる。又、最大,最小のフェイス角が形成され
た面以外のフェイス面は、それらの値の間をなだらかに
変化する大きさのフェイス角が形成されており、これら
の面により長さ方向が前記超音波振動の方向に対して平
行又は垂直以外の方向にあるワイヤーのボンディングが
行われる。
Therefore, when the capillary of the present invention is mounted on a wire bonder, the ultrasonic vibration can be applied only by matching the direction of the ultrasonic vibration with the position of the face surface 1a where the face angle α is formed. The magnitude of the face angle of the face surface 1a in the direction perpendicular to the direction
Larger objects can be arranged. That is, bonding is performed on the wire whose length direction coincides with the direction of ultrasonic vibration by the face surface having the smallest face angle, and the length direction is perpendicular to the direction of ultrasonic vibration. Bonding is performed on the wire by the face surface on which the maximum face angle is formed. In addition, face faces other than the face where the maximum and minimum face angles are formed are formed with face angles of magnitudes that smoothly change between these values, and the length direction of the face faces is longer than the above. Bonding of wires in a direction other than parallel or perpendicular to the direction of the acoustic vibration is performed.

【0018】この結果、本発明のキャピラリーを用いて
ボール−ウエッジ方式のワイヤーボンディングを行え
ば、どのような方向にあるワイヤーに対しても一定の強
さでボンディングが行われるため、ワイヤーの潰れ幅も
一定に維持することができる。よって、ボンディングさ
れた全てのワイヤーのネック部が、当該ワイヤーにかか
る外部応力に対して同程度の大きさの抵抗力が得られる
ようになる。即ち、従来のキャピラリーを用いてワイヤ
ーボンディングを行った場合、ワイヤーのネック部の外
部応力(例えば引っ張り力等)に対する抵抗力は、ボン
ディングされるワイヤーの方向によって様々であった
が、本発明のキャピラリーを用いればそのような不具合
は生ぜず、どのような方向のワイヤーも同様の抵抗力が
得られるようになる。
As a result, if the wire bonding of the ball-wedge method is performed using the capillary of the present invention, the bonding is performed with a certain strength to the wire in any direction, and the crushing width of the wire Can also be kept constant. Therefore, the neck portions of all the bonded wires can obtain the same level of resistance to the external stress applied to the wires. That is, when wire bonding is performed using a conventional capillary, the resistance of the neck portion of the wire to external stress (eg, tensile force) varies depending on the direction of the wire to be bonded. If such a wire is used, such a defect does not occur, and a wire in any direction can obtain the same resistance.

【0019】ところで、本発明のキャピラリーにおい
て、フェイス面のフェイス角を夫々どのような角度に設
定するかは、フェイス角以外のキャピラリーのデザイン
やワイヤーボンディングの際の接合条件等により、最適
値は異なってくるため一律には決定できない。しかし、
発明者の実験によれば、フェイス角は0〜15°の間、
最小のフェイス角と最大のフェイス角との角度の差は2
°以上になるように設定すれば好ましい結果が得られる
ことが判明した。
Incidentally, in the capillary of the present invention, the optimum value of the face angle of the face surface is different depending on the design of the capillary other than the face angle and the bonding conditions at the time of wire bonding. Can not be decided uniformly because it comes. But,
According to the experiment of the inventor, the face angle is between 0 and 15 °,
The difference between the minimum face angle and the maximum face angle is 2
It has been found that a preferable result can be obtained if the angle is set to be not less than °.

【0020】更に、本発明のキャピラリーでは、図2
(a),(b)に示すように、最小のフェイス角が設定
されているフェイス面の位置が容易に判別できるように
するため、最小のフェイス角が設定されているフェイス
面の位置と一致する直胴部10の側面にマーク2が付さ
れている。従って、このマーク2が超音波振動の方向と
一致するように本発明のキャピラリーをワイヤーボンダ
ーに取り付ければ、容易に超音波振動の方向と最小のフ
ェイス角が設定されたフェイス面の方向とを一致させる
ことができる。
Further, in the capillary of the present invention, FIG.
As shown in (a) and (b), the position of the face surface where the minimum face angle is set matches the position of the face surface where the minimum face angle is set so that the position of the face surface where the minimum face angle is set can be easily determined. The mark 2 is provided on the side surface of the straight body portion 10. Therefore, if the capillary of the present invention is attached to the wire bonder such that the mark 2 matches the direction of the ultrasonic vibration, the direction of the ultrasonic vibration easily matches the direction of the face surface on which the minimum face angle is set. Can be done.

【0021】又、本発明のキャピラリーにおいては、前
記フェイス角を判別するためのマーク2に代えて、図3
(a),(b)に示すように、直胴部10に所定のフェ
イス角が形成されている位置を判別するための切欠部3
を設けてもよい。詳しくは、この切欠部3を設けること
により形成される平面が最小のフェイス角が設定されて
いるフェイス面の方向と略平行になるように形成されて
いる。このような切欠部3を設けても、最小のフェイス
角が設定されているフェイス面の方向を容易に判別する
ことができる。尚、本発明のキャピラリーでは、前述の
ように、切欠部3が設けられることにより直胴部10の
側面に小さな平面が形成されることになるが、この平面
はキャピラリーをワイヤーボンダーに取り付ける際に不
具合を生じさせる程大きいものではない。
In the capillary of the present invention, the mark 2 for determining the face angle is replaced with a mark 3 shown in FIG.
As shown in (a) and (b), a notch 3 for determining a position where a predetermined face angle is formed in the straight body 10.
May be provided. More specifically, the plane formed by providing the cutout 3 is formed so as to be substantially parallel to the direction of the face surface where the minimum face angle is set. Even if such a notch 3 is provided, the direction of the face surface on which the minimum face angle is set can be easily determined. In addition, in the capillary of the present invention, as described above, a small flat surface is formed on the side surface of the straight body portion 10 due to the provision of the notch portion 3, but this flat surface is used when the capillary is attached to the wire bonder. It is not large enough to cause problems.

【0022】更に、本発明のキャピラリーにおいて、図
4(a),(b)に示すように、切欠部3を直胴部10
の側面の対称な位置に二つ設けてもよい。こうすること
で、キャピラリーをワイヤーボンダーに取り付ける際
に、ピンセットで切欠部3として形成された平面を挟め
ば、ピンセットの延長方向に最小のフェイス角が設定さ
れているフェイス面が位置することになる。即ち、ピン
セットでキャピラリー直胴部10の切欠部3を挟んだ状
態であっても、最小のフェイス角が設定されたフェイス
面の方向を容易に判別することができるようになる。従
って、本発明のキャピラリーをピンセットを用いてワイ
ヤーボンダーに取り付ける際に、フェイス角の方向の微
妙な調整も容易になり、ワイヤーボンダーへの取り付け
精度の向上も図れる。
Further, in the capillary of the present invention, as shown in FIGS.
Two may be provided at symmetrical positions on the side surface of. By doing so, when attaching the capillary to the wire bonder, if the flat surface formed as the cutout 3 is sandwiched by the tweezers, the face surface with the minimum face angle set in the extension direction of the tweezers will be located. . That is, even when the notch 3 of the capillary straight body 10 is sandwiched between the tweezers, the direction of the face surface at which the minimum face angle is set can be easily determined. Therefore, when the capillary of the present invention is attached to a wire bonder using tweezers, fine adjustment of the direction of the face angle becomes easy, and the attachment accuracy to the wire bonder can be improved.

【0023】更に、本発明のキャピラリーは、ボンディ
ングすべき対象物のパッド及びリードの配置に従ってフ
ェイス面に夫々設定される異なるフェイス角の方向を9
0°ではない角度にしてもよい。又、直胴部10のマー
ク2,切欠部3の形状やその位置を変えても、得られる
効果は変わらない。
Further, according to the capillary of the present invention, the directions of different face angles respectively set on the face surface in accordance with the arrangement of the pads and the leads of the object to be bonded are set to nine.
The angle may be other than 0 °. Further, even if the shape and the position of the mark 2 and the notch 3 of the straight body 10 are changed, the obtained effect is not changed.

【0024】以下、本発明の実施例を示す。Hereinafter, embodiments of the present invention will be described.

【0025】実施例 まず、一辺に25個、4辺で合計100個のボンディン
グパッドを有するシリコンチップと、これを搭載したや
はり4辺で合計100本のリードを有するリードフレー
ムを用意した。そして、これを最小のフェイス角が4
°、最大のフェイス角が8°に設定され、滑らかな曲面
で形成されたフェイス面を有する本発明のキャピラリー
を用いて、前記シリコンチップのボンディングパッドと
リードフレームのリードとの間でワイヤーボンディング
を行った。使用したワイヤーの直径は30μm、破断荷
重は13.4gであった。又、ボンディングされた各ワ
イヤーはシリコンチップの中心から放射線状に延びてお
り、100本でほぼ360°をカバーしていた。
EXAMPLE First, a silicon chip having 25 bonding pads on one side and a total of 100 bonding pads on four sides, and a lead frame mounting the same and also having a total of 100 leads on four sides were prepared. And the minimum face angle is 4
°, the maximum face angle is set to 8 °, wire bonding between the bonding pad of the silicon chip and the lead of the lead frame using the capillary of the present invention having a face surface formed of a smooth curved surface. went. The diameter of the wire used was 30 μm, and the breaking load was 13.4 g. Each bonded wire extends radially from the center of the silicon chip, and covers approximately 360 ° with 100 wires.

【0026】次に、シリコンチップのボンディングパッ
ドに接合されたボールの真上のワイヤー部分を、ワイヤ
ーにできるだけ応力をかけないように鋭利なメスで切断
した。そして、ワイヤーをリード側の接合部分を起点に
してリードフレームに対して垂直に立ててから、そのワ
イヤーを治具で挟み、この治具をリードフレームに対し
て垂直な方向に引っ張り上げることによってワイヤーに
引っ張り力を与え、ワイヤーが破断したときの応力を測
定することによってリード側にウエッジボンドされたワ
イヤーのネック部の破断荷重を測定した。尚、この方法
は、一般にピール試験又はツィーザー試験といわれる方
法である。
Next, the wire portion immediately above the ball bonded to the bonding pad of the silicon chip was cut with a sharp scalpel so as to minimize stress on the wire. Then, set the wire upright on the lead frame starting from the joint on the lead side, sandwich the wire with a jig, and pull up the jig in the direction perpendicular to the lead frame. The tensile load was applied to the wire, and the stress when the wire was broken was measured to measure the breaking load of the neck portion of the wedge-bonded wire on the lead side. This method is a method generally called a peel test or a tweezer test.

【0027】結果は、超音波振動の方向と平行にボンデ
ィングされたワイヤー20本の破断荷重の平均値は9.
7g、標準偏差は0.44gであった。又、超音波振動
の方向と垂直な方向にボンディグされたワイヤー20本
の破断荷重の平均値は9.9g、標準偏差は0.48g
であった。この結果から、本発明のキャピラリーを用い
た場合、ボンディグされたワイヤーの方向による差は非
常に少ないことが分かった。
As a result, the average value of the breaking load of 20 wires bonded in parallel to the direction of the ultrasonic vibration was 9.
7 g, standard deviation was 0.44 g. Also, the average value of the breaking load of 20 wires bonded in a direction perpendicular to the direction of the ultrasonic vibration is 9.9 g, and the standard deviation is 0.48 g.
Met. From this result, it was found that when the capillary of the present invention was used, the difference due to the direction of the bonded wire was very small.

【0028】一方、本発明の効果を示すために、8°の
フェイス角が一様に設定されているフェイス面を有する
従来キャピラリーを用いて、前記と同様の方法を用いて
ワイヤーボンディングと破断荷重の測定を行った。この
結果は、超音波振動の方向と平行にボンディングされた
ワイヤー10本の破断荷重の平均値は7.6g、標準偏
差は0.67gであった。又、超音波振動の方向と垂直
な方向にボンディングされたワイヤー10本の破断荷重
の平均値は9.8g、標準偏差は0.45gであった。
このように、従来のキャピラリーを用いた場合、ボンデ
ィングされたワイヤー方向による破断強度の差は大きか
った。
On the other hand, in order to show the effect of the present invention, wire bonding and breaking load were carried out by using a conventional capillary having a face surface in which a face angle of 8 ° was set uniformly using the same method as described above. Was measured. As a result, the average value of the breaking load of ten wires bonded in parallel with the direction of the ultrasonic vibration was 7.6 g, and the standard deviation was 0.67 g. The average value of the breaking load of ten wires bonded in a direction perpendicular to the direction of the ultrasonic vibration was 9.8 g, and the standard deviation was 0.45 g.
As described above, when the conventional capillary was used, the difference in the breaking strength depending on the direction of the bonded wire was large.

【0029】[0029]

【発明の効果】上述のように、本発明のワイヤーボンデ
ィング用キャピラリーを用いてワイヤーボンディングを
行えば、外部応力に対するワイヤーの抵抗力を増大させ
平均化させることができる。特に、これを半導体素子の
製造工程で用いることにより、半導体素子の性能の向上
を図ることができる。
As described above, by performing wire bonding using the capillary for wire bonding of the present invention, the resistance of the wire to external stress can be increased and averaged. In particular, by using this in the manufacturing process of a semiconductor element, the performance of the semiconductor element can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明によるワイヤーボンディング用
キャピラリーの先端フェイス部の構成を示すキャピラリ
ーの中心線上の断面図である。(b)は(a)の図面に
垂直な方向でキャピラリーの中心線上の断面図である。
FIG. 1A is a cross-sectional view of the capillary for wire bonding according to the present invention, taken along a center line of the capillary, showing a configuration of a front end face portion of the capillary. (B) is a sectional view on the center line of the capillary in a direction perpendicular to the drawing of (a).

【図2】(a),(b)は本発明のワイヤーボンディン
グ用キャピラリーの外観を示す斜視図である。
FIGS. 2A and 2B are perspective views showing the appearance of a capillary for wire bonding according to the present invention.

【図3】(a),(b)は本発明のワイヤーボンディン
グ用キャピラリーの外観を示す斜視図である。
FIGS. 3A and 3B are perspective views showing the appearance of a capillary for wire bonding according to the present invention.

【図4】(a),(b)は本発明のワイヤーボンディン
グ用キャピラリーの外観を示す斜視図である。
4A and 4B are perspective views showing the appearance of a capillary for wire bonding according to the present invention.

【図5】(a)は従来のワイヤーボンディング用キャピ
ラリーの外観を示す斜視図である。(b)は(a)に示
された中心線Oに沿う断面図におけるキャピラリーの先
端ファイス部の構成を示す部分拡大図である。
FIG. 5A is a perspective view showing the appearance of a conventional capillary for wire bonding. (B) is a partial enlarged view showing the configuration of the tip face portion of the capillary in the cross-sectional view along the center line O shown in (a).

【図6】(a)はワイヤーの長さ方向と超音波振動の方
向とを一致させた状態でボンディングされたワイヤーの
潰れ幅を示す図である。(b)はワイヤーの長さ方向と
超音波振動の方向とを垂直にした状態でボンディングさ
れたワイヤーの潰れ幅を示す図である。
FIG. 6 (a) is a diagram illustrating a crushed width of a wire bonded in a state where the length direction of the wire and the direction of ultrasonic vibration coincide with each other. (B) is a diagram showing the collapse width of the wire bonded in a state where the length direction of the wire and the direction of ultrasonic vibration are perpendicular to each other.

【図7】(a),(b)は夫々キャピラリーのフェイス
角の大きさとこのキャピラリーによりボンディングされ
たワイヤーの潰れ幅の大きさとの関係を示す図である。
FIGS. 7A and 7B are diagrams showing the relationship between the size of the face angle of the capillary and the size of the crushed width of the wire bonded by the capillary.

【図8】(a),(b)は夫々キャピラリーのフェイス
角の大きさとこのキャピラリーによりボンディングされ
たワイヤーの潰れ幅の大きさとの関係を示す図である。
FIGS. 8A and 8B are diagrams showing the relationship between the size of the face angle of the capillary and the size of the crushed width of the wire bonded by the capillary, respectively.

【符号の説明】[Explanation of symbols]

1,12 フェイス部 1a,12a フェイス面 2 マーク 3 切欠部 10 直胴部 11 キャピラリー 1, 12 face portion 1a, 12a face surface 2 mark 3 notch portion 10 straight body portion 11 capillary

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子の組立工程で用いられる円筒
状の直胴部の先端に中空部を有し滑らかな曲面で形成さ
れたフェイス面を備えたテーパー状のフェイス部が設け
られたワイヤーボンディング用キャピラリーにおいて、 前記フェイス面の所定の方向のフェイス角の大きさとそ
の方向と垂直な方向のフェイス角の大きさとが異なって
いることを特徴とするキャピラリー。
1. A wire bonding method in which a tapered face portion having a hollow surface at the tip of a cylindrical straight body portion used in an assembling process of a semiconductor element and having a smooth curved face surface is provided. A capillary according to claim 1, wherein a magnitude of a face angle in a predetermined direction of said face surface is different from a magnitude of a face angle in a direction perpendicular to said direction.
【請求項2】 前記大きさの異なるフェイス角は夫々最
大と最小に設定され、フェイス面の最大のフェイス角が
設定された位置から最小のフェイス角が設定された位置
に向けてフェイス角がなだらかに変化していることを特
徴とする請求項1に記載のキャピラリー。
2. The face angles of different sizes are set to a maximum and a minimum, respectively, and the face angles are gentle from the position where the maximum face angle is set to the position where the minimum face angle is set. The capillary according to claim 1, wherein
【請求項3】 前記キャピラリーの直胴部には所定の大
きさのフェイス角が形成されたフェイス面の位置を示す
マーク又は切欠部が形成されていることを特徴とする請
求項1又は2に記載のキャピラリー。
3. The capillary according to claim 1, wherein a mark or a notch indicating a position of a face surface having a predetermined face angle is formed in a straight body of the capillary. The capillary as described.
JP9210801A 1997-08-05 1997-08-05 Capillary for wire bonding Pending JPH1154539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9210801A JPH1154539A (en) 1997-08-05 1997-08-05 Capillary for wire bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9210801A JPH1154539A (en) 1997-08-05 1997-08-05 Capillary for wire bonding

Publications (1)

Publication Number Publication Date
JPH1154539A true JPH1154539A (en) 1999-02-26

Family

ID=16595368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9210801A Pending JPH1154539A (en) 1997-08-05 1997-08-05 Capillary for wire bonding

Country Status (1)

Country Link
JP (1) JPH1154539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051915B2 (en) * 2002-08-29 2006-05-30 Rohm Co., Ltd. Capillary for wire bonding and method of wire bonding using it
EP3408864A4 (en) * 2016-01-26 2019-07-31 Kulicke and Soffa Industries, Inc. Wedge bonding tools, wedge bonding systems, and related methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051915B2 (en) * 2002-08-29 2006-05-30 Rohm Co., Ltd. Capillary for wire bonding and method of wire bonding using it
EP3408864A4 (en) * 2016-01-26 2019-07-31 Kulicke and Soffa Industries, Inc. Wedge bonding tools, wedge bonding systems, and related methods
US10987753B2 (en) 2016-01-26 2021-04-27 Kulicke And Soffa Industries, Inc. Wedge bonding tools, wedge bonding systems, and related methods

Similar Documents

Publication Publication Date Title
US5984162A (en) Room temperature ball bonding
JPH07335688A (en) Ball bonding method of improved capillary and fine pitch
US20010045443A1 (en) Controlled attenuation capillary
US20090308911A1 (en) Wire bonding capillary tool having multiple outer steps
US6497356B2 (en) Controlled attenuation capillary with planar surface
JPH11121543A (en) Chip scale package
JP2727970B2 (en) Bonding tool
JPH1154539A (en) Capillary for wire bonding
US6779702B2 (en) Wire bonding apparatus with spurious vibration suppressing structure
JP2001004473A (en) Semiconductor pressure sensor and manufacture thereof
JPH11186315A (en) Wire-bonding device and manufacture of semiconductor device using thereof
JPS6373632A (en) Manufacture of electronic device
JPH08236575A (en) Semiconductor device and manufacturing method thereof
JPH0428241A (en) Manufacture of semiconductor device
JPH0529404A (en) Tool for bonding of al wiring lead
JP2000357705A (en) Electronic component connection method
JP3061017B2 (en) Mounting structure of integrated circuit device and mounting method thereof
JPH05251494A (en) Semiconductor device and capillary for manufacture of semiconductor device
JP2565009B2 (en) Wire bonding method
JPH04196236A (en) Connecting method
JPH01215030A (en) Resin seal type semiconductor device
JPH11163027A (en) Two-step wire bonding process
JPH08236682A (en) Lead frame
JPH08162507A (en) Wire bonding device
JPH05114629A (en) Wire bonding method and device