JPH11530A - Ammonia injection controller for denitration reactor - Google Patents

Ammonia injection controller for denitration reactor

Info

Publication number
JPH11530A
JPH11530A JP9155278A JP15527897A JPH11530A JP H11530 A JPH11530 A JP H11530A JP 9155278 A JP9155278 A JP 9155278A JP 15527897 A JP15527897 A JP 15527897A JP H11530 A JPH11530 A JP H11530A
Authority
JP
Japan
Prior art keywords
ammonia
signal
injection
rate
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9155278A
Other languages
Japanese (ja)
Inventor
Hideaki Tamai
秀明 玉井
Masaru Morio
勝 森尾
Yuji Nishimura
雄二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9155278A priority Critical patent/JPH11530A/en
Publication of JPH11530A publication Critical patent/JPH11530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to suppress the NOx concn. in the outlet of a denitration reactor to an already set value or below by providing the apparatus with means for detecting a frequency in precedence to a rapid change in the NOx concn. in the gas to be treated by a frequency fluctuation and correcting the injection rate of ammonia by increasing or decreasing this rate. SOLUTION: This ammonia injection controller has the injection rate correcting means 59 for correcting the necessary ammonia flow rate signal 35 by increasing or decreasing the same in correspondence to the fluctuation rate of the frequency in precedence to the rapid change in the NOx concn. in the gas to be treated by the fluctuation in the frequency. This means previously calculates the corresponding load fluctuation rate in accordance with the fluctuation rate of the frequency fluctuation by a differentiator 62 from the AFC signal 61 transmitted by an AFC command 60 and the upper and lower limit values of the load fluctuation rate is limitted by an upper and lower limiter 63. A load command signal 52 based on a DPC command or ALR command with respect to this signal 64 is multiplied by a multiplier 65 to form an increase/decrease correction signal 66 for the ammonia injection rate, by which the bias correction of the necessary ammonia flow rate signal 35 is executed. As a result, the correction of the ammonia injection rate is added.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被処理ガス中の窒
素酸化物(以下「NOx」とも記す)をアンモニアガス
(以下「NH3」とも記す)の注入によって分解、除去
する脱硝反応器のアンモニア注入制御装置に関するもの
である。
The present invention relates to the decomposition by the injection of nitrogen oxides to be treated gas (hereinafter referred to as "NOx") with ammonia gas (hereinafter referred to as "NH 3"), of the denitration reactor to remove The present invention relates to an ammonia injection control device.

【0002】[0002]

【従来の技術】図3は、脱硝反応器の窒素酸化物計測位
置及びアンモニア注入位置を示す概略図である。脱硝反
応器2は、被処理ガスGの発生源、例えばボイラの排ガ
スを入口ダクト3から導入し、アンモニアの注入によっ
て脱硝処理してから出口ダクト4に排出し、更に図示し
ていない煙突より屋外に排出する。この際、被処理ガス
G中のNOxは、入口ダクト3に設けられたアンモニア
注入管5によって、被処理ガスG中のNOx量に対応し
た(見合った)NH3量がアンモニア流量計40及びア
ンモニア流量調節弁12を介して注入され、脱硝反応器
2の内部に充填された図示していない脱硝触媒の働きに
より無害な水蒸気と窒素ガスに分解され除去される。
2. Description of the Related Art FIG. 3 is a schematic diagram showing a nitrogen oxide measurement position and an ammonia injection position of a denitration reactor. The denitration reactor 2 introduces a source of the gas to be treated G, for example, exhaust gas from a boiler, from an inlet duct 3, performs denitration treatment by injecting ammonia, and discharges it to an outlet duct 4. To be discharged. At this time, the NOx in the gas to be treated G is passed through the ammonia injection pipe 5 provided in the inlet duct 3 so that the NH 3 amount corresponding to (corresponding to) the NOx amount in the gas to be treated G is adjusted by the ammonia flow meter 40 and the ammonia flow rate. It is injected through the flow control valve 12 and decomposed into harmless water vapor and nitrogen gas by a denitration catalyst (not shown) filled in the denitration reactor 2 and removed.

【0003】通常、脱硝反応器2の運用は、被処理ガス
Gを発生するボイラ等の負荷変化時においても脱硝反応
器2の出口NOx濃度を規定値以下になるように脱硝反
応器2の入口NOx量に対応したアンモニアの注入量を
注入するように制御される。ここで、被処理ガスG中の
入口NOx濃度は、入口NOx分析計14で、出口NO
x濃度は、出口NOx分析計24で計測される。
Normally, the operation of the denitration reactor 2 is controlled such that the NOx concentration at the outlet of the denitration reactor 2 becomes lower than a specified value even when the load of a boiler or the like generating the gas to be treated G changes. Control is performed such that an injection amount of ammonia corresponding to the NOx amount is injected. Here, the inlet NOx concentration in the gas to be treated G is determined by the inlet NOx analyzer 14 to determine the outlet NOx.
The x concentration is measured by the outlet NOx analyzer 24.

【0004】図2は、従来技術に係る脱硝反応器のアン
モニア注入制御装置の一例を示す制御回路図である。従
来のアンモニア注入制御装置9は、被処理ガス中の窒素
酸化物を分解、除去するに必要なアンモニアの注入量を
算出する注入量算出手段11と、負荷が変化した時にの
み負荷の変化率に応じて先行的にアンモニアの注入量に
アンモニアを加算するアンモニア加算手段50とを有し
ている。
FIG. 2 is a control circuit diagram showing an example of an ammonia injection control device for a denitration reactor according to the prior art. The conventional ammonia injection control device 9 includes an injection amount calculation unit 11 that calculates an injection amount of ammonia necessary for decomposing and removing nitrogen oxides in the gas to be processed, and a change rate of the load only when the load changes. And an ammonia adding means 50 for adding ammonia to the injection amount of ammonia in advance.

【0005】注入量算出手段11は、脱硝反応器の入口
NOx濃度、出口NOx設定値、出口NOx濃度及び被
処理ガス量等からアンモニアの注入量を算出するもので
ある。即ち、脱硝反応器の入口NOx分析計14で計測
された入口NOx信号15と、被処理ガス量30の被処
理ガス流量信号31とを乗算器33で乗算し総NOx量
信号32を算出する。
[0005] The injection amount calculating means 11 calculates the injection amount of ammonia from the NOx concentration at the inlet, the set value of NOx at the outlet, the NOx concentration at the outlet, the amount of gas to be treated, and the like. That is, the inlet NOx signal 15 measured by the inlet NOx analyzer 14 of the denitration reactor is multiplied by the to-be-processed gas flow signal 31 of the to-be-processed gas amount 30 by the multiplier 33 to calculate the total NOx amount signal 32.

【0006】一方、入口NOx信号15と脱硝反応器出
口NOx設定器17で設定された設定NOx信号18と
から(必要)モル比演算部20でアンモニアの必要注入
モル比信号22を算出し、これに出口NOx分析計24
で計測された実測出口NOx信号25と設定NOx信号
18との偏差によって必要注入モル比信号22の修正を
行なう。
On the other hand, a (necessary) molar ratio calculation unit 20 calculates a required injection molar ratio signal 22 of ammonia from the inlet NOx signal 15 and the set NOx signal 18 set by the deNOx reactor outlet NOx setting device 17. Outlet NOx analyzer 24
The required injection molar ratio signal 22 is corrected based on the deviation between the actually measured outlet NOx signal 25 and the set NOx signal 18 measured in step (1).

【0007】そして、修正された修正注入モル比信号2
8と先に記した総NOx量信号32とを乗算し必要アン
モニア流量信号35(アンモニアの注入量)を算出す
る。この必要アンモニア流量信号35に下記アンモニア
加算手段50によって発信されるアンモニア加算信号5
7a、57bを加えた補正アンモニア流量信号38と、
アンモニア流量計40で計測された実測NH3流量信号
41とを減算して、図示していないアンモニア流量計
(図3の符号40)とアンモニア流量調節弁12で構成
される回路の設定値として与える。即ち、NH3流量偏
差信号43を算出し、これを比例積分器44で弁開度信
号45に変換し、更に電空変換器46により制御信号4
7に変換し、NH3配管6の途中に設けられたアンモニ
ア流量調節弁12を開閉する。
Then, the corrected corrected injection molar ratio signal 2
8 and the total NOx amount signal 32 described above are multiplied to calculate a required ammonia flow rate signal 35 (amount of injected ammonia). An ammonia addition signal 5 transmitted by the following ammonia addition means 50 to the necessary ammonia flow signal 35
A corrected ammonia flow signal 38 obtained by adding 7a and 57b;
The measured NH 3 flow signal 41 measured by the ammonia flow meter 40 is subtracted from the actual measured NH 3 flow signal 41, and given as a set value of a circuit composed of an ammonia flow meter (not shown in FIG. 3) and the ammonia flow control valve 12. . That is, the NH 3 flow deviation signal 43 is calculated, and the NH 3 flow deviation signal 43 is converted into a valve opening signal 45 by a proportional integrator 44.
7 and opens and closes the ammonia flow control valve 12 provided in the NH 3 pipe 6.

【0008】又、アンモニア加算手段50は、負荷指
令、例えばボイラ負荷指令51として経済負荷配分(以
下「DPC」と記す)指令又は自動負荷調整(以下「A
LR」と記す)指令によって負荷変化した時、ボイラ負
荷の状態が変化したことを負荷指令信号52によって促
えてDPC及びALRに基づく負荷変化時のみに働く1
段微分回路53(DPC又はALR指令が負荷変化して
から到達時まで一定値でバイアス補正される)及び2段
微分回路54(負荷変化した時と負荷変化到達時にそれ
ぞれ一時的にバイアス補正される)が先行して必要アン
モニア流量信号35をバイアス補正する。こうして得ら
れた補正アンモニア流量信号38を減算器42に入力す
る。これにより脱硝反応器の出口NOx濃度を規定値以
下に保つようにアンモニアの注入量を制御する。
The ammonia adding means 50 provides a load command, for example, an economic load distribution (hereinafter referred to as "DPC") command or an automatic load adjustment (hereinafter referred to as "A") as a boiler load command 51.
LR "), when the load is changed by the command, the load command signal 52 prompts the change in the state of the boiler load to operate only when the load changes based on the DPC and ALR.
The stage differentiating circuit 53 (the bias is corrected at a constant value from when the load of the DPC or ALR command changes until it reaches) and the two-stage differentiating circuit 54 (the bias is temporarily corrected when the load changes and when the load changes. ) Preliminarily corrects the required ammonia flow signal 35 for bias. The corrected ammonia flow signal 38 thus obtained is input to the subtractor 42. Thereby, the injection amount of ammonia is controlled so as to keep the NOx concentration at the outlet of the denitration reactor at a specified value or less.

【0009】尚、図2において、符号55a、55bは
上下限器、符号56a、56bは負荷変化中a→cとな
る切替器である。
In FIG. 2, reference numerals 55a and 55b denote upper and lower limiters, and reference numerals 56a and 56b denote switches that change a → c during a load change.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、周波数
が変動した時に、この周波数の変動を補正する周波数変
動補正(以下「AFC」と記す)指令によるボイラ負荷
の上昇変化時の場合も、負荷に見合って燃料量及び空気
流量が増加するため、脱硝反応器に流入するNOx濃度
が上昇する。この脱硝反応器入口NOx濃度の急上昇に
対して上記1段微分回路53及び2段微分回路54によ
っては必要アンモニア流量信号35を修正出来ない。
However, when the frequency fluctuates, when the boiler load rises and changes due to a frequency fluctuation correction (hereinafter referred to as "AFC") command for correcting the fluctuation of the frequency, the load is matched. As a result, the fuel amount and the air flow rate increase, so that the NOx concentration flowing into the denitration reactor increases. The necessary ammonia flow signal 35 cannot be corrected by the first-stage differentiating circuit 53 and the second-stage differentiating circuit 54 in response to the rapid rise in the NOx concentration at the denitration reactor inlet.

【0011】又、AFC指令によるボイラ負荷の降下変
化時の場合も、同様に上記1段、2段微分回路53、5
4は、AFC指令による負荷変化中のNOx濃度低下に
伴いアンモニア注入量をカットして必要アンモニア流量
信号35を修正出来ない。
Similarly, when the boiler load drops due to the AFC command, the above-described one-stage and two-stage differentiation circuits 53, 5
No. 4 cannot correct the required ammonia flow signal 35 by cutting the amount of injected ammonia due to the decrease in the NOx concentration during the load change by the AFC command.

【0012】上記従来のアンモニア注入制御装置9は、
DPC及びALRによるボイラ負荷の上昇変化中におけ
るエアーリッチによる過剰空気にて脱硝反応器入口NO
x濃度急上昇、及びDPC及びALR指令に基づくボイ
ラ負荷の下降変化中における空気流量減少による脱硝反
応器出口NOx濃度低下に対しては脱硝反応器の窒素酸
化物濃度を規定値以下に抑える機能は有しているが、A
FC指令による負荷下降変化中、燃料及び空気流量減少
によるNOx濃度急降下の発生、及び、AFC指令によ
る負荷上昇変化中の燃料及び空気流量増加によるNOx
急上昇の発生に対し、先行してアンモニア注入量を増減
し、規定値以下に抑え且つ脱硝反応器出口NOx設定値
との偏差を小さくする点について配慮されておらず、窒
素酸化物の排出濃度が規定値を超えてしまう怖れがあっ
た。
The above-described conventional ammonia injection control device 9 comprises:
Denitration reactor inlet NO with excess air due to air-rich during boiler load rise change due to DPC and ALR
There is a function to suppress the nitrogen oxide concentration in the denitration reactor to a specified value or less against a sudden decrease in NOx concentration at the exit of the denitration reactor due to a decrease in air flow rate during a rapid change in the boiler load based on the DPC and ALR commands. A
During a load drop change according to the FC command, a sudden decrease in NOx concentration occurs due to a decrease in fuel and air flow rates, and NOx due to an increase in fuel and air flow rates during a load rise change according to the AFC command.
With respect to the occurrence of the rapid rise, no consideration is given to increasing or decreasing the amount of injected ammonia in advance to keep it below the specified value and to reduce the deviation from the NOx set value at the denitration reactor outlet. There was a fear of exceeding the specified value.

【0013】本発明の課題は、周波数の変動による被処
理ガス中の窒素酸化物濃度の急変に対して、脱硝反応器
出口の窒素酸化物濃度を規定値以下に抑え、且つ設定値
との偏差を小さくすることである。
An object of the present invention is to suppress the nitrogen oxide concentration at the outlet of a denitration reactor to a specified value or less and suppress the deviation from the set value in response to a sudden change in the nitrogen oxide concentration in the gas to be treated due to a frequency change. Is to reduce the

【0014】[0014]

【課題を解決するための手段】上記課題を達成するため
本発明は、被処理ガス中の窒素酸化物をアンモニアの注
入によって分解、除去する脱硝反応器であって、該脱硝
反応器の窒素酸化物濃度の計測値及び設定値から前記ア
ンモニアの注入モル比(=アンモニア注入モル量/被処
理ガス中の窒素酸化物モル量)を算出し、該注入モル比
と前記被処理ガス中の総窒素酸化物量とによってアンモ
ニアの注入量を算出する注入量算出手段と、負荷が変化
した時にのみ該負荷の変化率に応じて先行的に前記アン
モニアの注入量にアンモニアを加算するアンモニア加算
手段とを有する脱硝反応器のアンモニア注入制御装置に
おいて、周波数の変動による前記被処理ガス中の窒素酸
化物濃度の急変に先行して周波数の変動を捉えて前記ア
ンモニアの注入量を増減し補正する注入量補正手段を備
えたことである。
In order to achieve the above object, the present invention provides a denitration reactor for decomposing and removing nitrogen oxides in a gas to be treated by injecting ammonia. The injection molar ratio of the ammonia (= the molar amount of ammonia injected / the molar amount of nitrogen oxides in the gas to be treated) is calculated from the measured value and the set value of the substance concentration, and the molar ratio of the injection and the total nitrogen in the gas to be treated are calculated. An injection amount calculating means for calculating an injection amount of ammonia based on the amount of oxide, and an ammonia adding means for adding ammonia to the injection amount of ammonia in advance according to the change rate of the load only when the load changes. In the ammonia injection control device for the denitration reactor, the change in frequency is detected prior to the rapid change in the nitrogen oxide concentration in the gas to be treated due to the change in frequency, and the amount of ammonia injected is determined. Is that having an injection amount correction means for increasing or decreasing correction.

【0015】注入量補正手段は、周波数の変動を捉えて
アンモニアの注入量を増減するので、周波数の変動によ
る被処理ガス中の窒素酸化物濃度の急変に対して適切に
アンモニアを増減して、脱硝反応器出口の窒素酸化物濃
度を規定値以下に抑え、且つ設定値との偏差を小さくす
る。
The injection amount correcting means increases or decreases the injection amount of ammonia in response to a change in the frequency. Therefore, the injection amount correction means appropriately increases or decreases the ammonia in response to a sudden change in the nitrogen oxide concentration in the gas to be treated due to the change in the frequency. The nitrogen oxide concentration at the outlet of the denitration reactor is suppressed to a specified value or less, and the deviation from the set value is reduced.

【0016】更に、上記脱硝反応器のアンモニア注入制
御装置において、前記注入量補正手段は、前記周波数の
変動率に対応して前記アンモニアの注入量を増減し補正
することである。注入量補正手段は、上記脱硝反応器の
アンモニア注入制御装置の作用に加え、周波数が変動し
た時に、その変動率に対応してアンモニアの注入量を増
減し補正する。周波数の変動率が正値となる負荷上昇時
は、アンモニアの注入量を増加し、負値となる負荷下降
時は、アンモニアの注入量を減少する。増減する補正量
は、変動率に対応して予め決められた値を採用する。こ
れによって、周波数変動運用時も、脱硝反応器出口の窒
素酸化物濃度は規定値を超過せず、脱硝反応器出口窒素
酸化物濃度設定値との偏差も大きくなることがない。
Further, in the ammonia injection control device for a denitration reactor, the injection amount correction means increases or decreases the ammonia injection amount in accordance with the frequency fluctuation rate. The injection amount correction means increases and decreases the injection amount of ammonia according to the fluctuation rate when the frequency changes, in addition to the operation of the ammonia injection control device of the denitration reactor. The injection amount of ammonia is increased when the load increases when the rate of change of the frequency becomes a positive value, and the injection amount of ammonia decreases when the load decreases when the frequency becomes a negative value. As the correction amount to be increased or decreased, a value determined in advance corresponding to the fluctuation rate is adopted. Thus, even during the frequency fluctuation operation, the nitrogen oxide concentration at the outlet of the denitration reactor does not exceed the specified value, and the deviation from the set value of nitrogen oxide concentration at the outlet of the denitration reactor does not increase.

【0017】[0017]

【発明の実施の形態】次に、本発明の脱硝反応器のアン
モニア注入制御装置の実施の形態を図1に基づいて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of an ammonia injection control device for a denitration reactor according to the present invention will be described with reference to FIG.

【0018】図1は、本発明に係る脱硝反応器のアンモ
ニア注入制御装置の一実施の形態を示す制御回路図であ
る。図1のアンモニア注入制御装置8は、図2のアンモ
ニア注入制御装置9に注入量補正手段59を加えたもの
で、注入量算出手段11、アンモニア加算手段50及び
注入量補正手段59を有している。注入量算出手段11
とアンモニア加算手段50の構成と作用は、図2に説明
したものと同じであるので、図2と同じ構造、作用部分
には同じ符号を付けて示す。
FIG. 1 is a control circuit diagram showing an embodiment of an ammonia injection control device for a denitration reactor according to the present invention. The ammonia injection control device 8 in FIG. 1 is obtained by adding an injection amount correction means 59 to the ammonia injection control device 9 in FIG. 2, and includes an injection amount calculation means 11, an ammonia addition means 50, and an injection amount correction means 59. I have. Injection amount calculation means 11
Since the configuration and operation of the ammonia addition means 50 are the same as those described with reference to FIG. 2, the same structures and operation portions as those in FIG.

【0019】因に、注入量算出手段11は、入口NOx
分析計14で実測した入口NOx信号15(窒素酸化物
濃度の計測値)及び出口NOx設定器17で設定した設
定NOx信号18(設定値)から必要注入モル比信号2
2を算出する。更に、設定NOx信号18と出口NOx
分析計24で実測した実測出口NOx信号25とから減
算器26で偏差を算出し、加算器27で必要注入モル比
信号22の修正を行ない、修正注入モル比信号28を算
出する。
In the meantime, the injection amount calculating means 11 determines whether the inlet NOx
From the inlet NOx signal 15 (measured value of nitrogen oxide concentration) actually measured by the analyzer 14 and the set NOx signal 18 (set value) set by the outlet NOx setting device 17, the necessary injection molar ratio signal 2
2 is calculated. Further, the setting NOx signal 18 and the exit NOx
A deviation is calculated by a subtracter 26 from the actually measured outlet NOx signal 25 actually measured by the analyzer 24, and the necessary injection molar ratio signal 22 is corrected by an adder 27 to calculate a corrected injection molar ratio signal 28.

【0020】一方、入口NOx信号15と被処理ガス量
30による被処理ガス流量信号31とを乗算器33で乗
算し総NOx量信号32(被処理ガス中の総窒素酸化物
量)を算出する。この総NOx量信号32に修正注入モ
ル比信号28を乗算器34で乗算し必要アンモニア流量
信号35(アンモニアの注入量)を算出する。更に、こ
の必要アンモニア流量信号35に、下記アンモニア加算
手段50のアンモニア加算信号57a、57b及び注入
量補正手段59の増減補正信号66を加えて補正アンモ
ニア流量信号38とし、この補正アンモニア流量信号3
8とアンモニア流量計40で計測された実測NH3流量
信号41とを減算器42で減算してNH3流量偏差信号
43を算出し、これを比例積分器44で弁開度信号45
に変換して電空変換器46により制御信号47に変換
し、NH3配管6の途中に設けられたアンモニア流量調
節弁12を開閉する。
On the other hand, a multiplier 33 multiplies the inlet NOx signal 15 and the gas flow signal 31 based on the gas amount 30 to calculate a total NOx amount signal 32 (total nitrogen oxide amount in the gas to be processed). The total NOx amount signal 32 is multiplied by the corrected injection molar ratio signal 28 by a multiplier 34 to calculate a required ammonia flow rate signal 35 (amount of injected ammonia). Further, the required ammonia flow signal 35 is added with the following ammonia addition signals 57a and 57b of the ammonia addition means 50 and the increase / decrease correction signal 66 of the injection amount correction means 59 to obtain a corrected ammonia flow signal 38.
8 and the measured NH 3 flow signal 41 measured by the ammonia flow meter 40 are subtracted by a subtractor 42 to calculate an NH 3 flow deviation signal 43, which is then calculated by a proportional integrator 44 to a valve opening signal 45.
Then, the control signal 47 is converted into a control signal 47 by the electropneumatic converter 46, and the ammonia flow control valve 12 provided in the NH 3 pipe 6 is opened and closed.

【0021】アンモニア加算手段50は、負荷が変化し
た時にのみ、この負荷の変化率に応じて先行的に必要ア
ンモニア流量信号35に加算するもので、ボイラ負荷指
令51としてDPC指令又はALR指令に基づいて負荷
変化した時に、ボイラ負荷の状態が変化したことを負荷
指令信号52によって捉えてDPC及びALRによる負
荷変化時のみに働く1段微分回路53(DPC又はAL
R指令が負荷変化してから到達時まで一定値でバイアス
補正される)及び2段微分回路54(負荷変化した時と
負荷到達時にそれぞれ一時的にバイアス補正される)が
先行して必要アンモニア流量信号(アンモニアの注入
量)35をバイアス補正する。こうして得られた補正ア
ンモニア流量信号38を先の減算器42に入力する。
The ammonia adding means 50 adds the necessary ammonia flow signal 35 to the required ammonia flow rate signal 35 in advance according to the load change rate only when the load changes. The boiler load command 51 is based on a DPC command or an ALR command. When the load changes, the load command signal 52 detects that the state of the boiler load has changed, and the one-stage differential circuit 53 (DPC or AL) that operates only when the load changes due to DPC and ALR.
The required ammonia flow rate is preceded by the bias correction of the R command at a constant value from the time the load changes until the R command arrives, and the two-stage differentiating circuit 54 (the bias is temporarily corrected when the load changes and when the load arrives, respectively). The signal (amount of injected ammonia) 35 is bias-corrected. The corrected ammonia flow signal 38 thus obtained is input to the subtracter 42 described above.

【0022】更に、上記脱硝反応器のアンモニア注入制
御装置8は、周波数の変動による被処理ガス中の窒素酸
化物濃度の急変に先行して、周波数の変動率に対応して
必要アンモニア流量信号35を増減し補正する注入量補
正手段59を備える。注入量補正手段59は、AFC指
令60によって発信されたAFC信号61を微分器62
により周波数変動の変動率に対応して予め対応した負荷
変化率を算出し、上下限器63で負荷変化率の上下限値
を制限する。この信号64に対しDPC指令又はALR
指令に基づく負荷指令信号52を乗算器65によって乗
算しアンモニア注入量の増減補正信号66として必要ア
ンモニア流量信号35のバイアス補正を行なう。この結
果周波数の変動によって生じるボイラ負荷変化に伴う窒
素酸化物の変化に見合ったアンモニアの注入量の補正が
加えられる。
Further, prior to the rapid change of the nitrogen oxide concentration in the gas to be treated due to the fluctuation of the frequency, the ammonia injection control device 8 of the above-mentioned denitration reactor performs the necessary ammonia flow rate signal 35 corresponding to the fluctuation rate of the frequency. The injection amount correcting means 59 for increasing and decreasing the correction amount is provided. The injection amount correcting means 59 converts the AFC signal 61 transmitted by the AFC command 60 into a differentiator 62.
, The load change rate corresponding to the change rate of the frequency change is calculated in advance, and the upper and lower limiter 63 limits the upper and lower limit values of the load change rate. DPC command or ALR for this signal 64
The load command signal 52 based on the command is multiplied by a multiplier 65 and the required ammonia flow rate signal 35 is bias-corrected as an ammonia injection amount increase / decrease correction signal 66. As a result, a correction of the injection amount of ammonia is made in accordance with a change in nitrogen oxides caused by a change in boiler load caused by a frequency change.

【0023】本実施の形態のアンモニア注入制御装置8
は、AFC信号61を脱硝制御に取り込み、周波数の変
動によるAFC指令によりボイラ負荷が変化した時、A
FC信号変動時のみに動作する1段微分回路を設置し、
1段微分値に見合ったアンモニアの注入量の減少バイア
ス量又は増加バイアス量を決めて必要アンモニア流量信
号35に補正を加えるものである。
Ammonia injection control device 8 of the present embodiment
Indicates that the AFC signal 61 is taken into the denitration control, and when the boiler load is changed by the AFC command due to the frequency change, A
A one-stage differentiation circuit that operates only when the FC signal fluctuates is installed.
The required amount of ammonia flow signal 35 is corrected by determining the amount of decrease or increase in the amount of ammonia injection corresponding to the first-stage differential value.

【0024】AFC信号61により増減するボイラ負荷
変化に対し、AFC信号を1段微分した時、正値となる
負荷上昇時は、アンモニアの注入量を増加し、負値とな
る負荷下降時はアンモニアの注入量を減少させる。増減
量は、負荷変化率であるAFC指令によるAFC信号6
1を1段微分した数値に対応して注入する。これによっ
て、AFC運用時も、窒素酸化物濃度を規定値以下に抑
え、且つ脱硝反応器の出口窒素酸化物濃度の設定値との
偏差を小さくすることが出来る。
When the AFC signal is differentiated by one stage in response to a change in the boiler load that increases or decreases in accordance with the AFC signal 61, the injection amount of ammonia increases when the load rises to a positive value, and increases when the load decreases to a negative value. Decrease the injection volume. The increase / decrease amount is the AFC signal 6 according to the AFC command which is the load change rate.
The injection is performed according to the numerical value obtained by differentiating 1 by one stage. As a result, even during AFC operation, the nitrogen oxide concentration can be suppressed to a specified value or less, and the deviation from the set value of the nitrogen oxide concentration at the outlet of the denitration reactor can be reduced.

【0025】従来技術では、ボイラのDPC指令又はA
LR指令に基づく負荷変化中の窒素酸化物濃度の急変に
対して1段微分、2段微分等のアンモニア先行注入回路
により規定値以下に抑える機能しか有していなかった
(図2)。このためAFC信号に基づく負荷変化に伴う
窒素酸化物濃度の急変に対応する回路がなく、AFC運
用時は脱硝反応器出口NOx濃度が規定値を超過してし
まうことになっていた。しかし、本実施の形態のアンモ
ニア注入制御装置8は、AFC負荷運用時の窒素酸化物
濃度の急変に対しては窒素酸化物濃度の高低に大きく係
わるAFC信号の変動率を捉えてアンモニアの注入量を
補正することが出来る。
In the prior art, a boiler DPC command or A
There was only a function of suppressing the sudden change of the nitrogen oxide concentration during the load change based on the LR command to a specified value or less by an ammonia advance injection circuit such as one-stage differentiation and two-stage differentiation (FIG. 2). For this reason, there is no circuit corresponding to a sudden change in the nitrogen oxide concentration accompanying a load change based on the AFC signal, and the NOx concentration at the outlet of the denitration reactor would exceed a specified value during AFC operation. However, the ammonia injection control device 8 according to the present embodiment captures the fluctuation rate of the AFC signal largely related to the level of the nitrogen oxide concentration with respect to the rapid change of the nitrogen oxide concentration during the AFC load operation, and Can be corrected.

【0026】[0026]

【発明の効果】本発明の脱硝反応器のアンモニア注入制
御装置によれば、周波数の変動による被処理ガス中の窒
素酸化物濃度の急変に対して、脱硝反応器出口の窒素酸
化物濃度を規定値以下に抑え、且つ設定値との偏差を小
さくすることが出来る。
According to the ammonia injection control device for a denitration reactor of the present invention, the nitrogen oxide concentration at the outlet of the denitration reactor is regulated in response to a sudden change in the nitrogen oxide concentration in the gas to be treated due to a frequency change. Value and the deviation from the set value can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る脱硝反応器のアンモニア注入制御
装置の一実施の形態を示す制御回路図である。
FIG. 1 is a control circuit diagram showing an embodiment of an ammonia injection control device for a denitration reactor according to the present invention.

【図2】従来技術に係る脱硝反応器のアンモニア注入制
御装置の一例を示す制御回路図である。
FIG. 2 is a control circuit diagram showing an example of an ammonia injection control device of a denitration reactor according to the related art.

【図3】脱硝反応器の窒素酸化物計測位置及びアンモニ
ア注入位置を示す概略図である。
FIG. 3 is a schematic diagram showing a nitrogen oxide measurement position and an ammonia injection position of a denitration reactor.

【符号の説明】[Explanation of symbols]

8 アンモニア注入制御装置 11 注入量算出手段 35 必要アンモニア流量信号 50 アンモニア加算手段 52 負荷指令信号 59 注入量補正手段 61 AFC信号 66 増減補正信号 8 Ammonia injection control device 11 Injection amount calculation means 35 Required ammonia flow rate signal 50 Ammonia addition means 52 Load command signal 59 Injection amount correction means 61 AFC signal 66 Increase / decrease correction signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被処理ガス中の窒素酸化物をアンモニア
の注入によって分解、除去する脱硝反応器であって、該
脱硝反応器の窒素酸化物濃度の計測値及び設定値から前
記アンモニアの注入モル比(=アンモニア注入モル量/
被処理ガス中の窒素酸化物モル量)を算出し、該注入モ
ル比と前記被処理ガス中の総窒素酸化物量とによってア
ンモニアの注入量を算出する注入量算出手段と、負荷が
変化した時にのみ該負荷の変化率に応じて先行的に前記
アンモニアの注入量にアンモニアを加算するアンモニア
加算手段とを有する脱硝反応器のアンモニア注入制御装
置において、周波数の変動による前記被処理ガス中の窒
素酸化物濃度の急変に先行して周波数の変動を捉えて前
記アンモニアの注入量を増減し補正する注入量補正手段
を備えたことを特徴とする脱硝反応器のアンモニア注入
制御装置。
1. A denitration reactor for decomposing and removing nitrogen oxides in a gas to be treated by injecting ammonia, wherein the nitrogen injection concentration is determined from a measured value and a set value of a nitrogen oxide concentration in the denitration reactor. Ratio (= mol of ammonia injected /
Injection amount calculating means for calculating the injection amount of ammonia based on the injection molar ratio and the total amount of nitrogen oxides in the target gas. Only the ammonia injection means for adding ammonia to the ammonia injection amount in advance in accordance with the rate of change of the load. An ammonia injection control device for a denitration reactor, comprising an injection amount correction means for detecting a change in frequency prior to a sudden change in substance concentration and increasing and decreasing the injection amount of ammonia to correct the injection amount.
【請求項2】 請求項1において、前記注入量補正手段
は、前記周波数の変動率に対応して前記アンモニアの注
入量を増減し補正することを特徴とする脱硝反応器のア
ンモニア注入制御装置。
2. The ammonia injection control device for a denitration reactor according to claim 1, wherein said injection amount correction means increases or decreases the ammonia injection amount in accordance with the frequency fluctuation rate.
JP9155278A 1997-06-12 1997-06-12 Ammonia injection controller for denitration reactor Pending JPH11530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9155278A JPH11530A (en) 1997-06-12 1997-06-12 Ammonia injection controller for denitration reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9155278A JPH11530A (en) 1997-06-12 1997-06-12 Ammonia injection controller for denitration reactor

Publications (1)

Publication Number Publication Date
JPH11530A true JPH11530A (en) 1999-01-06

Family

ID=15602414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9155278A Pending JPH11530A (en) 1997-06-12 1997-06-12 Ammonia injection controller for denitration reactor

Country Status (1)

Country Link
JP (1) JPH11530A (en)

Similar Documents

Publication Publication Date Title
JP2554836B2 (en) Denitration control device
JP5677787B2 (en) Denitration control device and denitration control method
EP1334760B1 (en) Feedback control method in v-shaped characteristic system, and NH3 injection rate control method for NOx removal apparatus using the same
JP3709073B2 (en) Method and apparatus for controlling ammonia injection amount of denitration apparatus
JPH11530A (en) Ammonia injection controller for denitration reactor
JPH10263360A (en) Method and device controlling introduced quantity of nitrogen oxide removing medium
JP2635643B2 (en) Denitration control device for gas turbine plant
JP3565607B2 (en) Method and apparatus for controlling amount of ammonia injection into denitration device
JPS6119290B2 (en)
JPH11531A (en) Controlling device for injection of ammonia to denitrification reactor
JP2001104755A (en) Method and apparatus for controlling ammonia injection amount to denitration apparatus
JP4218011B2 (en) Control device and method for processing apparatus
JPH07116461A (en) Apparatus for controlling injection amount of ammonia into denitration reactor
JP3537100B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JP3915144B2 (en) Method and apparatus for controlling ammonia injection amount of denitration apparatus
JP3915142B2 (en) Method and apparatus for controlling ammonia injection amount of denitration apparatus
JPH07163836A (en) Method and device for controlling concentration of nitrogen oxide and for denitration
JP2633599B2 (en) Ammonia injection amount control method
JPS5824688B2 (en) Flow rate control method in exhaust gas treatment equipment
JPH0337965B2 (en)
JPS5955334A (en) System for controlling injection of reducing agent in denitrator for stack gas
JP2695654B2 (en) Control device for ammonia gas injection volume
JP3359659B2 (en) High-efficiency denitration method and apparatus
JPS61268341A (en) Denitration control apparatus
JPS5952515A (en) Method for controlling flow rate of ammonia in waste gas denitration apparatus