JPH1150182A - Cemented carbide and its production - Google Patents

Cemented carbide and its production

Info

Publication number
JPH1150182A
JPH1150182A JP9219869A JP21986997A JPH1150182A JP H1150182 A JPH1150182 A JP H1150182A JP 9219869 A JP9219869 A JP 9219869A JP 21986997 A JP21986997 A JP 21986997A JP H1150182 A JPH1150182 A JP H1150182A
Authority
JP
Japan
Prior art keywords
cemented carbide
hcp
fcc
cooling
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9219869A
Other languages
Japanese (ja)
Other versions
JP4537501B2 (en
Inventor
Hiroaki Goto
裕明 後藤
Norimitsu Kimoto
典光 木本
Toshiyasu Ishizaki
寿康 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21986997A priority Critical patent/JP4537501B2/en
Publication of JPH1150182A publication Critical patent/JPH1150182A/en
Application granted granted Critical
Publication of JP4537501B2 publication Critical patent/JP4537501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cemented carbide combining impact strength and toughness with rigidity and hardness and to provide its production. SOLUTION: In the cemented carbide where hard phases composed essentially of WC are dispersed in binding phases of Co-containing iron group metal, the crystal structure of Co satisfies inequality 0<=I(Co.hcp)/I(Co.fcc)<=0.1, where I(Co.hcp) is the X-ray diffraction intensity in the (101) plane of Co in the hcp structure and I(Co.fcc) is the X-ray diffraction intensity in the (111) plane of Co in the fcc structure. This cemented carbide can be obtained by sintering a prescribed raw material, temporarily cooling the resultant sintered compact, heating the sintered compact up to a temp. right under the liquid-phase-forming temp., and rapidly cooling it by immersion in a liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は特に衝撃強度を向上
できる超硬合金とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide capable of improving impact strength and a method for producing the same.

【0002】[0002]

【従来の技術】超硬合金の衝撃強度や靱性と剛性・硬度
とは相反関係にあり、両者を両立させることは難しい。
この点を改善する技術として、特公平5-20492 号公
報,特開昭58-39764号公報,特公昭61-4899 号公報
記載のものが知られている。これらは主に焼結温度から
の冷却速度を特定することにより靱性と強度の両立を図
っている。
2. Description of the Related Art The impact strength and toughness of a cemented carbide are incompatible with the rigidity and hardness, and it is difficult to achieve both.
As a technique for improving this point, those described in Japanese Patent Publication No. 5-20492, Japanese Patent Application Laid-Open No. 58-39764, and Japanese Patent Publication No. 61-4899 are known. These aim at compatibility of toughness and strength mainly by specifying the cooling rate from the sintering temperature.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のいずれ
の技術でも衝撃強度や靱性と剛性・硬度との両立は十分
とはいえず、衝撃強度不足による破損や靱性不足による
亀裂の発生、剛性・硬度不足による塑性変形に対応でき
る材料が要望されていた。また、1400℃程度の焼結
温度からの急冷では熱衝撃が大き過ぎ、超硬合金に割れ
が発生する可能性が強い。さらに、焼結温度から急冷し
た場合、その急冷効果を維持するには、後にHIP処理
を行うことができないという問題があった。
However, none of the above-mentioned technologies is sufficient in terms of both impact strength and toughness and rigidity and hardness. Materials that can cope with plastic deformation due to insufficient hardness have been demanded. Further, rapid cooling from a sintering temperature of about 1400 ° C. results in too large a thermal shock, and there is a strong possibility that cracks occur in the cemented carbide. Furthermore, when quenching from the sintering temperature, there is a problem that HIP processing cannot be performed later to maintain the quenching effect.

【0004】従って、本発明の主目的は、靱性と強度、
特に衝撃強度とを両立できる超硬合金とその製造方法を
提供することにある。
Accordingly, the main objects of the present invention are toughness and strength,
In particular, it is an object of the present invention to provide a cemented carbide capable of achieving both impact strength and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明は超硬合金中のC
oの結晶構造および固溶量を制御することにより上記の
目的を達成する。すなわち、本発明超硬合金は、WCを
主体とする硬質相がCoを含む鉄族金属の結合相中に分
散された超硬合金において、前記Coの結晶構造が次式
を満たすことを特徴とする。 0≦I(Co・hcp)/I(Co・fcc)≦0.1 ただし、I(Co・hcp)はhcp 構造のCoの(101) 面におけ
るX線回析強度で、I(Co・fcc)はfcc 構造のCoの(11
1) 面におけるX線回析強度である。
SUMMARY OF THE INVENTION The present invention relates to a method for forming C in a cemented carbide.
The above object is achieved by controlling the crystal structure and the amount of solid solution of o. That is, the cemented carbide according to the present invention is characterized in that, in a cemented carbide in which a hard phase mainly composed of WC is dispersed in a binder phase of an iron group metal containing Co, the crystal structure of Co satisfies the following formula. I do. 0 ≦ I (Co · hcp) / I (Co · fcc) ≦ 0.1 where I (Co · hcp) is the X-ray diffraction intensity of the (101) plane of Co of the hcp structure, and I (Co · fcc) ) Is (11) of Co of fcc structure.
1) X-ray diffraction intensity on the surface.

【0006】ここで、I(Co・hcp)/I(Co・fcc)のより好
ましい範囲は0.01〜0.05である。さらにCoの
格子定数が3.570以上であることが好ましい。な
お、結合相量は10〜30wt%程度が好適である。
Here, a more preferable range of I (Co · hcp) / I (Co · fcc) is 0.01 to 0.05. Further, the lattice constant of Co is preferably 3.570 or more. The amount of the binder phase is preferably about 10 to 30 wt%.

【0007】「I(Co・hcp)/I(Co・fcc)」が0.1を越
えると、脆弱なhcp 構造のCoが増えて靱性が不足す
る。そのため、このような超硬合金を鍛造工具に用いた
場合、亀裂が発生しやすく、工具寿命が短くなってしま
う。さらに、格子定数が3.570未満であるとCo中
へのWの固溶量が少ないことを意味し、やはり靱性不足
となりやすい。
When "I (Co.hcp) / I (Co.fcc)" exceeds 0.1, Co having a fragile hcp structure increases and the toughness is insufficient. Therefore, when such a cemented carbide is used for a forging tool, cracks are likely to occur and the tool life is shortened. Further, when the lattice constant is less than 3.570, it means that the solid solution amount of W in Co is small, and the toughness tends to be insufficient.

【0008】また、本発明超硬合金の製造方法は、WC
を主体とする硬質相とCoを含む鉄族金属の結合相とを
焼結して冷却する工程と、この冷却後に焼結体を液相出
現直下の温度まで加熱し、液体中に浸漬して急冷する工
程とを含むことを特徴とする。
[0008] The method for producing a cemented carbide according to the present invention comprises the steps of:
A step of sintering and cooling the hard phase mainly composed of and the binder phase of the iron group metal containing Co, and after this cooling, the sintered body is heated to a temperature just below the appearance of the liquid phase, and immersed in the liquid. Quenching step.

【0009】液相出現直下の温度としては1200〜1
300℃程度が好適である。また、急冷速度は1000
℃/min以上とすることが望ましい。急冷する際に焼
結体を浸漬する液体は特に限定されない。例えば、水や
油が挙げられる。なお、硬質相と結合相とを焼結した後
に必要に応じてHIP処理を行ってもよい。
The temperature immediately below the appearance of the liquid phase is 1200 to 1
About 300 ° C. is preferable. The rapid cooling rate is 1000
C./min or more is desirable. The liquid in which the sintered body is immersed during rapid cooling is not particularly limited. For example, water and oil are mentioned. After sintering the hard phase and the binder phase, HIP processing may be performed as necessary.

【0010】一般に、超硬合金製品は次の工程により製
造される。 原料粉末の混合→プレス→中間焼結→成形→焼結→(H
IP)→検査 すなわち、混合した原料をプレスして例えばブロック状
に成形し、700℃程度で中間焼結する。そして、中間
焼結体を所定の工具形状に成形して1400℃程度で焼
結を行う。さらに焼結体中の空隙を減少させるため、焼
結の後にHIP(例えば1340℃程度)を行うことも
ある。
Generally, a cemented carbide product is manufactured by the following steps. Mixing of raw material powder → press → intermediate sintering → molding → sintering → (H
IP) → Inspection That is, the mixed raw material is pressed to form, for example, a block, and intermediately sintered at about 700 ° C. Then, the intermediate sintered body is formed into a predetermined tool shape and sintered at about 1400 ° C. In order to further reduce voids in the sintered body, HIP (for example, about 1340 ° C.) may be performed after sintering.

【0011】前述した従来の技術〜ではおもに焼結
温度から冷却する際の速度に着目ししている。本発明で
は焼結温度からの冷却は特に規定せず、一旦冷却された
後に再度加熱してから急冷することを特徴とする。
In the above-mentioned prior arts, attention is focused on the speed at the time of cooling from the sintering temperature. In the present invention, cooling from the sintering temperature is not particularly defined, and is characterized in that once cooled, heated again and then rapidly cooled.

【0012】このような急冷はCoの結晶構造の変態温
度域(413℃前後)をごく短時間で通過することによ
り、(1) 高温で安定相であるfcc 構造からhcp 構造へ相
変態させることなく固化する,(2) 急冷直前にCoへ固
溶しているWを冷却中に析出させることなく固化する、
ことに有効である。
Such quenching passes through the transformation temperature range of the Co crystal structure (around 413 ° C.) in a very short time, and (1) transforms the fcc structure, which is a stable phase at a high temperature, to the hcp structure. (2) solidifies without dissolving W in solid solution in Co immediately before quenching, during cooling,
It is especially effective.

【0013】液相出現温度直下の温度より急冷を開始す
るのは、Co中にWを多量に固溶でき、かつfcc →hcp
の変態温度に最も近い温度条件だからである。1400
℃程度の焼結温度近辺の温度からの急冷では熱衝撃が大
きく、割れが発生する場合がある。具体的な再加熱温度
は1200〜1300℃程度、特に1220〜1280
℃程度が好適である。
The quenching is started from a temperature immediately below the liquid phase appearance temperature because a large amount of W can be dissolved in Co and fcc → hcp
This is because the temperature condition is closest to the transformation temperature. 1400
Rapid cooling from a temperature in the vicinity of the sintering temperature of about ℃ causes a large thermal shock and may cause cracking. The specific reheating temperature is about 1200 to 1300 ° C., particularly 1220 to 1280.
C. is preferred.

【0014】また、従来の技術〜では焼結温度から
の冷却を急冷としており、冷却後にHIPを行なうと急
冷効果が失われるため、焼結に引き続いてHIPを行う
ことが難しい。しかし、本発明では後に再加熱してから
急冷するため、焼結と再加熱との間にHIPを行ってよ
り緻密な超硬合金を得ることもできる。
In the prior arts, the cooling from the sintering temperature is rapidly cooled. If the HIP is performed after the cooling, the quenching effect is lost. Therefore, it is difficult to perform the HIP subsequent to the sintering. However, in the present invention, since the steel sheet is reheated and then rapidly cooled, HIP can be performed between sintering and reheating to obtain a denser cemented carbide.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。市販のWC粉末(平均粒径6.5μmと3μm)
とCo粉末(平均粒径1.2μm)を表1に示す組成に
配合し、アトライターで湿式混合した後、乾燥した粉末
を作製した。この粉末を1t/cm2 の圧力でプレスし、
1380℃〜1400℃にて60分間焼結してから除冷
した超硬合金試験片を作製した。これらの試験片のう
ち、いくつかはさらにHIP処理(1340℃,1t/
cm2 ,Arガス雰囲気)を施した。焼結またはHIP処
理を施して冷却された試験片は、予め1250℃に加熱
した電気炉内に15分間保持した後、炉から取り出して
直ちに(30秒以内)に水中に浸漬して、急冷処理が施
された。なお、上記急冷処理を行わなかったものと、従
来のガス冷却を施したものとを比較例とした。ガス冷却
は窒素ガス導入により冷却を行うもので、冷却速度はせ
いぜい500℃/minである。
Embodiments of the present invention will be described below. Commercial WC powder (average particle size 6.5 μm and 3 μm)
And Co powder (average particle size: 1.2 μm) were blended in the composition shown in Table 1, wet-mixed with an attritor, and then dried to prepare a powder. This powder is pressed at a pressure of 1 t / cm 2 ,
Sintered at 1380 ° C. to 1400 ° C. for 60 minutes and then cooled to produce a cemented carbide test piece. Some of these test pieces were further subjected to HIP treatment (1340 ° C., 1 t /
cm 2 , Ar gas atmosphere). The test piece cooled by sintering or HIP processing is kept in an electric furnace preheated to 1250 ° C. for 15 minutes, then taken out of the furnace and immediately immersed in water (within 30 seconds), and quenched. Was given. In addition, the thing which did not perform the said rapid cooling process and the thing which performed the conventional gas cooling were made into the comparative example. The gas cooling is performed by introducing nitrogen gas, and the cooling rate is at most 500 ° C./min.

【0016】そして、得られた試験片について、X線回
析によりCoの結晶構造(I(Co・hcp)/I(Co・fcc)),
格子定数,衝撃強度,硬度,抗折力の分析・測定を行っ
た。その結果を表2に示す。
The obtained test piece was subjected to X-ray diffraction to determine the crystal structure of Co (I (Co · hcp) / I (Co · fcc)),
Analysis and measurement of lattice constant, impact strength, hardness and bending force were performed. Table 2 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示すように、いずれの実施例も硬度
・抗折力に関しては比較例と同等であるが、衝撃強度は
著しく向上していることがわかる。これは、結合相のC
oの結晶構造が延性に富むfcc 構造となり、Co中に多
量にWが固溶し、その結果格子定数が向上して強化され
たためであると思われる。各実施例の冷却速度は、12
50℃からほぼ常温まで冷却するのにせいぜい10秒程
度であったため、120℃/sec程度と推定される。
As shown in Table 2, it can be seen that the hardness and the transverse rupture strength of all the examples are equal to those of the comparative example, but the impact strength is remarkably improved. This is due to the C
This is presumably because the crystal structure of o became an fcc structure with rich ductility, and a large amount of W dissolved in Co, resulting in an improvement in lattice constant and strengthening. The cooling rate in each example was 12
Since it took at most about 10 seconds to cool from 50 ° C. to almost room temperature, it is estimated to be about 120 ° C./sec.

【0020】これに対し、比較例はいずれも衝撃強度が
劣っている。すなわち、急冷処理を行わなかった比較例
1〜6は全て衝撃強度,格子定数共に低い。また、窒素
ガス導入によるガス冷却を行った比較例7,8は500
℃/min程度の冷却を行ったにもかかわらず、実施例
に匹敵する衝撃強度は得られなかった。
On the other hand, the comparative examples are all inferior in impact strength. That is, Comparative Examples 1 to 6 in which the quenching treatment was not performed are all low in both impact strength and lattice constant. Comparative Examples 7 and 8 in which gas cooling was performed by introducing nitrogen gas
Despite cooling at about ° C / min, impact strength comparable to that of the examples was not obtained.

【0021】なお、急冷する際の冷却媒体を水ではなく
油とした場合でも同様の結果が得られた。
Similar results were obtained when the cooling medium used for rapid cooling was oil instead of water.

【0022】(試験例)表1の組成Aの粉末を用いてφ
29−L137mmの温熱間鍛造用のパンチを作製した。
作製条件は実施例1と同じように、プレス圧力:1t/
cm2 ,焼結温度:1380℃〜1400℃,焼結時間:
60分で、HIP処理後に急冷処理を施した。比較とし
て急冷処理を行わないパンチも作製した。これらのパン
チを切削加工後、ワーク:SCM15,ワーク温度:1
100℃,サイクルタイム:75ケ/min,面圧:6
5kg/mm2がかかる条件で鍛造工具として使用し、寿命ま
でのショット数の計測と工具表面の観察とを行った。そ
の結果を表3および図1,2に示す。
(Test Example) Using the powder having the composition A shown in Table 1,
A 29-L137 mm hot forging punch was produced.
The manufacturing conditions were the same as in Example 1, and the pressing pressure was 1 t /
cm 2 , sintering temperature: 1380 ° C to 1400 ° C, sintering time:
After 60 minutes, a quenching treatment was performed after the HIP treatment. As a comparison, a punch without quenching treatment was also manufactured. After cutting these punches, work: SCM15, work temperature: 1
100 ° C, cycle time: 75 / min, surface pressure: 6
It was used as a forging tool under the condition of 5 kg / mm 2 , and the number of shots up to the life and the observation of the tool surface were measured. The results are shown in Table 3 and FIGS.

【0023】[0023]

【表3】 [Table 3]

【0024】本発明超硬合金によるパンチは寿命までの
ショット数が145000回と格段に多く、工具の表面
も図1に示すように熱亀裂の発生が見られない。すなわ
ち、本発明超硬合金の工具は従来工具に比べて2〜10
倍の寿命を有することがわかる。これに対して急冷を行
わなかったパンチは35000ショットで図2に示すよ
うに多数の熱亀裂が生じて使用不能となった。
The punch made of the cemented carbide of the present invention has a remarkably large number of shots up to its life of 145,000 times, and no thermal cracks are observed on the tool surface as shown in FIG. That is, the tool of the cemented carbide of the present invention is 2 to 10 times more than the conventional tool.
It turns out that it has twice the life. On the other hand, the punch that was not quenched failed 35,000 shots and caused many thermal cracks as shown in FIG.

【0025】[0025]

【発明の効果】以上説明したように、本発明超硬合金は
衝撃強度と硬度とを両立でき、高い衝撃強度が求められ
る鍛造工具などへの利用が期待される。また、本発明方
法は本発明超硬合金を製造するのに最適な方法である。
As described above, the cemented carbide of the present invention can achieve both impact strength and hardness, and is expected to be used for forging tools and the like that require high impact strength. Further, the method of the present invention is an optimal method for producing the cemented carbide of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明超硬合金を用いたパンチの鍛造加工後に
おける打撃面を示す模式図。
FIG. 1 is a schematic view showing a hitting surface after forging of a punch using the cemented carbide of the present invention.

【図2】従来の超硬合金を用いたパンチの鍛造加工後に
おける打撃面を示す模式図。
FIG. 2 is a schematic view showing a hitting surface after forging of a punch using a conventional cemented carbide.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 WCを主体とする硬質相がCoを含む鉄
族金属の結合相中に分散された超硬合金において、 前記Coの結晶構造が次式を満たすことを特徴とする超
硬合金。 0≦I(Co・hcp)/I(Co・fcc)≦0.1 ここで、I(Co・hcp)はhcp 構造のCoの(101) 面におけ
るX線回析強度で、I(Co・fcc)はfcc 構造のCoの(11
1) 面におけるX線回析強度である。
1. A cemented carbide in which a hard phase mainly composed of WC is dispersed in a binder phase of an iron group metal containing Co, wherein the crystal structure of Co satisfies the following formula: . 0 ≦ I (Co · hcp) / I (Co · fcc) ≦ 0.1 where I (Co · hcp) is the X-ray diffraction intensity of the (101) plane of Co of the hcp structure, and I (Co · hcp) fcc) is (11)
1) X-ray diffraction intensity on the surface.
【請求項2】 Coの格子定数が3.570以上である
ことを特徴とする請求項1記載の超硬合金。
2. The cemented carbide according to claim 1, wherein the lattice constant of Co is 3.570 or more.
【請求項3】 WCを主体とする硬質相とCoを含む鉄
族金属の結合相とを焼結して冷却する工程と、 この冷却後に焼結体を液相出現直下の温度まで加熱し、
液体中に浸漬して急冷する工程とを含むことを特徴とす
る超硬合金の製造方法。
3. a step of sintering and cooling a hard phase mainly composed of WC and a binder phase of an iron group metal containing Co, and after the cooling, heating the sintered body to a temperature immediately below the appearance of a liquid phase;
Dipping in a liquid and quenching it.
【請求項4】 液相出現直下の温度が1200〜130
0℃であることを特徴とする請求項3記載の超硬合金の
製造方法。
4. The temperature immediately below the appearance of the liquid phase is from 1200 to 130.
The method for producing a cemented carbide according to claim 3, wherein the temperature is 0 ° C.
【請求項5】 急冷速度が1000℃/min以上であ
ることを特徴とする請求項3記載の超硬合金の製造方
法。
5. The method for producing a cemented carbide according to claim 3, wherein the quenching rate is 1000 ° C./min or more.
JP21986997A 1997-07-30 1997-07-30 Cemented carbide and method for producing the same Expired - Fee Related JP4537501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21986997A JP4537501B2 (en) 1997-07-30 1997-07-30 Cemented carbide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21986997A JP4537501B2 (en) 1997-07-30 1997-07-30 Cemented carbide and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1150182A true JPH1150182A (en) 1999-02-23
JP4537501B2 JP4537501B2 (en) 2010-09-01

Family

ID=16742340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21986997A Expired - Fee Related JP4537501B2 (en) 1997-07-30 1997-07-30 Cemented carbide and method for producing the same

Country Status (1)

Country Link
JP (1) JP4537501B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336565A (en) * 2004-05-27 2005-12-08 Kyocera Corp Cemented carbide
JP2008133181A (en) * 2006-11-22 2008-06-12 Sandvik Intellectual Property Ab Method of producing sintered article, powder mixture for use in the method and sintered article produced by the method
JP2009035802A (en) * 2007-08-03 2009-02-19 Sumitomo Electric Ind Ltd Cemented carbide
JP2010209398A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Drill made of cemented carbide having excellent breaking resistance
JP5152770B1 (en) * 2012-02-20 2013-02-27 有限会社Mts Method for producing tough cemented carbide
JP2013170315A (en) * 2012-09-06 2013-09-02 Mts:Kk High toughness cemented carbide and coated cemented carbide
EP3909707A1 (en) * 2020-05-14 2021-11-17 Sandvik Mining and Construction Tools AB Method of treating a cemented carbide mining insert

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336565A (en) * 2004-05-27 2005-12-08 Kyocera Corp Cemented carbide
JP2008133181A (en) * 2006-11-22 2008-06-12 Sandvik Intellectual Property Ab Method of producing sintered article, powder mixture for use in the method and sintered article produced by the method
JP2009035802A (en) * 2007-08-03 2009-02-19 Sumitomo Electric Ind Ltd Cemented carbide
JP2010209398A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Drill made of cemented carbide having excellent breaking resistance
JP5152770B1 (en) * 2012-02-20 2013-02-27 有限会社Mts Method for producing tough cemented carbide
WO2013125308A1 (en) * 2012-02-20 2013-08-29 有限会社Mts Strong cemented carbide and method for producing same
JP2013170315A (en) * 2012-09-06 2013-09-02 Mts:Kk High toughness cemented carbide and coated cemented carbide
EP3909707A1 (en) * 2020-05-14 2021-11-17 Sandvik Mining and Construction Tools AB Method of treating a cemented carbide mining insert
WO2021228974A1 (en) * 2020-05-14 2021-11-18 Sandvik Mining And Construction Tools Ab Method of treating a cemented carbide mining insert
CN115485084A (en) * 2020-05-14 2022-12-16 山特维克矿山工程机械工具股份有限公司 Method of treating cemented carbide mining blades

Also Published As

Publication number Publication date
JP4537501B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP3884618B2 (en) Method of uniaxial compression of agglomerated spherical metal powder
US2206395A (en) Process for obtaining pure chromium, titanium, and certain other metals and alloys thereof
JP4304245B2 (en) Powder metallurgy object with a molded surface
JPH04232234A (en) Production of product from doping material containing alloy on basis of titanium aluminide
JP2005526178A (en) Method for producing a sintered part from a sinterable material
US12064837B2 (en) Method for manufacturing kitchen knife by using multilayer material
NO865144L (en) POWDER METAL SURGICAL MANUFACTURED, EVEN AGAINST HARDENED ARTICLE OF COPPER-BASED ALLOY AND PROCEDURE FOR MANUFACTURING THE ARTICLE.
JPH1150182A (en) Cemented carbide and its production
JP2011508091A (en) Low alloy steel powder
JPS63137135A (en) Heat-treated alloy
US5561832A (en) Method for manufacturing vanadium carbide powder added tool steel powder by milling process, and method for manufacturing parts therewith
JPS6345306A (en) Production of sintered member
CN110193597B (en) Method for producing crystalline aluminum-iron-silicon alloy
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS62185805A (en) Production of high-speed flying body made of tungsten alloy
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
US3936299A (en) Method for producing tool steel articles
JPH05263181A (en) Manufacture of fe base sintered alloy member having high strength and high toughness
JPS6364488B2 (en)
JPH05263200A (en) Sintered high speed steel excellent in seizing resistance and its manufacture
JPS6144103A (en) Production of connecting rod
JPS61223106A (en) Production of high alloy clad product
JPH0428833A (en) Method for compacting fe-al series intermetallic compound member
GB331121A (en) An improved process for manufacturing tools of homogeneous alloys of great hardness
JPH07278652A (en) Production of steel stock for cold forging excellent in workability

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees