JPH1145A - Culture of mushroom - Google Patents

Culture of mushroom

Info

Publication number
JPH1145A
JPH1145A JP9151947A JP15194797A JPH1145A JP H1145 A JPH1145 A JP H1145A JP 9151947 A JP9151947 A JP 9151947A JP 15194797 A JP15194797 A JP 15194797A JP H1145 A JPH1145 A JP H1145A
Authority
JP
Japan
Prior art keywords
culture
period
temperature
mushroom
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9151947A
Other languages
Japanese (ja)
Other versions
JP3099267B2 (en
Inventor
Yasushi Terasawa
泰 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP09151947A priority Critical patent/JP3099267B2/en
Publication of JPH1145A publication Critical patent/JPH1145A/en
Application granted granted Critical
Publication of JP3099267B2 publication Critical patent/JP3099267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for culturing mushrooms, enabling to always ensure the maximum yield or a high yield close thereto, even when a culture temperature varies, and further enabling to largely lower costs with respect to installations and maintenances. SOLUTION: First, a culture constant K based on the integrated value of a culture temperature T and a culture period P for obtaining the maximum yield is set. In a practical culture process, culture temperature Td are successively detected from a culture-starting time, and the integrated values Xp of the detected culture temperature Td with culture periods (sampling periods) Pp at the detected culture temperature Td are successively determined. The remaining culture period Pr is determined from the integrated values Xp and the culture constant K, and the culture is carried out in accordance with the remaining culture period Pr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、栽培ビンに詰め込
んだ培地に種菌を接種し、培養工程を経てキノコを栽培
するキノコの栽培方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cultivating a mushroom in which a seed bacterium is inoculated into a medium packed in a cultivation bottle, and the mushroom is cultivated through a culturing step.

【0002】[0002]

【従来の技術】一般に、キノコの培養工程では、種菌を
培養して繁殖させるとともに、繁殖した菌糸に栄養分を
吸収させて熟成させる。この時期の温度,湿度,炭酸ガ
ス濃度,光等の環境条件はキノコの種類により異なり、
これらの環境条件が適切に保たれない場合にはキノコの
収量が減少する。特に、培養温度は栄養菌糸の生長に大
きく影響し、例えば、ブナシメジの場合、炭酸ガス濃度
320〜900〔ppm〕,湿度70〔%〕の環境下に
おいて、培養温度が15〔℃〕以下では種菌の繁殖が大
きく低下するとともに、30〔℃〕以上では生長が著し
く低下し、害菌の繁殖や乾燥などの影響が出る。したが
って、ブナシメジの最適な培養温度は20〜25〔℃〕
程度である。
2. Description of the Related Art In general, in a mushroom culture step, a seed fungus is cultured and propagated, and the propagated hyphae absorbs nutrients and matures. Environmental conditions such as temperature, humidity, carbon dioxide concentration, and light at this time differ depending on the type of mushroom.
If these environmental conditions are not maintained properly, the yield of mushrooms will decrease. In particular, the cultivation temperature greatly affects the growth of vegetative mycelium. At 30 ° C. or more, the growth is remarkably reduced, and effects such as propagation and drying of harmful bacteria are exerted. Therefore, the optimal cultivation temperature of Bunashimeji is 20-25 [° C].
It is about.

【0003】また、培養期間も収量に大きく影響する。
例えば、一定の培養温度下での培養日数を異ならせた場
合、培養日数が少なければ収量は減少し、培養日数を多
くするに従って収量が増加する。そして、最大収量を得
る最適培養日数が存在し、この最適培養日数よりも多く
なった場合には逆に収量が減少する。
[0003] The cultivation period also greatly affects the yield.
For example, when the number of culture days at a constant culture temperature is varied, the yield decreases as the number of culture days decreases, and increases as the number of culture days increases. Then, there is an optimal culturing day for obtaining the maximum yield, and when the culturing time exceeds the optimal culturing day, the yield is reduced.

【0004】そして、従来、このような培養温度及び培
養期間の設定は、実際のキノコ栽培を通した経験則、即
ち、各生産者のノウハウに頼っているのが実情である。
[0004] Conventionally, such setting of the cultivation temperature and the cultivation period depends on the empirical rules through actual mushroom cultivation, that is, the know-how of each producer.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した従来
におけるキノコの栽培方法は、次のような問題点があっ
た。
However, the conventional method for cultivating mushrooms described above has the following problems.

【0006】第一に、最適な培養温度(最適環境)を維
持するには、高度の冷暖房機器及び断熱材等を設置した
栽培施設が必要になり、設備面及び管理面における大幅
なコストアップを強いられる。
First, in order to maintain an optimal culturing temperature (optimal environment), a cultivation facility equipped with advanced cooling and heating equipment and heat insulating materials is required, resulting in a significant cost increase in equipment and management. Be strong.

【0007】第二に、最適環境を維持できれば、常に最
大収量を確保できることになるが、実際には、培養時に
発生する炭酸ガスを外気により希釈するため、外部環境
の影響は避けられず、最大収量を常時確保することは困
難である。
Secondly, if the optimum environment can be maintained, the maximum yield can always be ensured. However, in practice, since the carbon dioxide gas generated during the culturing is diluted by the outside air, the influence of the external environment cannot be avoided. It is difficult to always secure the yield.

【0008】本発明はこのような従来の技術に存在する
課題を解決したものであり、培養温度が変化しても、常
に最大収量又はそれに近い高収量を確保できるととも
に、設備面及び管理面における大幅なコストダウンを図
ることができるキノコの栽培方法の提供を目的とする。
[0008] The present invention has solved the problems existing in such prior art, and can always ensure the maximum yield or a high yield close to it even when the culture temperature changes, and also in terms of equipment and management. An object of the present invention is to provide a method for cultivating a mushroom that can achieve a significant cost reduction.

【0009】[0009]

【課題を解決するための手段及び実施の形態】本発明に
係るキノコの栽培方法では、予め、最大収量を得る培養
温度Tと培養期間Pの積算値Xに基づいて培養定数Kを
設定する。培養温度Tと培養期間Pはある温度範囲内に
おいてほぼ反比例し、最大収量を得るキノコの培養期間
Pと培養温度Tの積算値Xはほぼ一定となるため、この
積算値Xをそのまま又は必要により修正し、培養定数K
として設定する。
In the method for cultivating a mushroom according to the present invention, a culture constant K is set in advance based on a culture temperature T for obtaining a maximum yield and an integrated value X of a culture period P. The cultivation temperature T and the cultivation period P are substantially inversely proportional within a certain temperature range, and the integrated value X of the mushroom cultivation period P and the cultivation temperature T for obtaining the maximum yield is substantially constant. Correct the culture constant K
Set as

【0010】一方、培養工程では、培養開始から培養温
度Tdを検出することにより、検出した培養温度Tdと
この培養温度Tdにおける培養期間(サンプリング期
間)Ppの積算値Xpを順次求めるとともに、この積算
値Xpと培養定数Kから残存培養期間Prを求め、当該
残存培養期間Prに従って培養を行う。即ち、培養開始
から培養温度Tdをサンプリング期間Pp置きに検出す
ることにより、当該サンプリング期間Ppとこのサンプ
リング期間Ppにおける培養温度Tdの積算値Xpを培
養開始から順次求めるとともに、当該積算値Xpを培養
定数Kから順次減算し、得られた減算値Knを培養温度
Tdで除算することにより残存培養期間Prを求める。
On the other hand, in the culturing step, the culturing temperature Td is detected from the start of culturing, so that the detected culturing temperature Td and the integrated value Xp of the culturing period (sampling period) Pp at the culturing temperature Td are sequentially obtained. The remaining culture period Pr is determined from the value Xp and the culture constant K, and the culture is performed according to the remaining culture period Pr. That is, by detecting the culture temperature Td from the start of the culture every sampling period Pp, the sampling period Pp and the integrated value Xp of the culture temperature Td in the sampling period Pp are sequentially obtained from the start of the culture, and the integrated value Xp is determined. The remaining culture period Pr is obtained by sequentially subtracting from the constant K and dividing the obtained subtraction value Kn by the culture temperature Td.

【0011】そして、この残存培養期間Prは表示部2
により表示するとともに、残存培養期間Prが零になっ
たらアラーム3により報知する。また、表示部2には培
養温度Tdを表示する。よって、培養温度Tdが変化し
ても、最大収量を得れる培養期間、即ち、残存培養期間
Prが設定されるため、常に最大収量又はそれに近い高
収量が確保されるとともに、設備面及び管理面における
大幅なコストダウンが図られる。
The remaining culture period Pr is displayed on the display unit 2.
And an alarm 3 notifies when the remaining culture period Pr becomes zero. The display unit 2 displays the culture temperature Td. Therefore, even if the culturing temperature Td changes, the culturing period in which the maximum yield is obtained, that is, the remaining culturing period Pr is set, so that the maximum yield or a high yield close to it is always ensured, and equipment and management aspects are maintained. The cost is greatly reduced.

【0012】[0012]

【実施例】次に、本発明に係る好適な実施例を挙げ、図
面に基づき詳細に説明する。
Next, preferred embodiments according to the present invention will be described in detail with reference to the drawings.

【0013】まず、本実施例に係るキノコ(ブナシメ
ジ)の栽培方法を実施できる栽培システムの構成につい
て、図3を参照して説明する。
First, the configuration of a cultivation system that can implement the method of cultivating mushrooms (Buna shimeji) according to the present embodiment will be described with reference to FIG.

【0014】同図中、符号1で示す栽培システムにおい
て、4はメモリ等の必要な機能部を含むマイクロプロセ
ッサ(MPU:演算部)であり、予め設定された演算プ
ログラムに従って各種演算処理を実行する。また、マイ
クロプロセッサ4にはリセットスイッチ5及びタイマ部
6を接続するとともに、さらに、マイクロプロセッサ4
の入力側には培養温度Tdを検出する温度センサ7を、
マイクロプロセッサ4の出力側には表示部2及びアラー
ム3をそれぞれ接続する。なお、温度センサ7は栽培ビ
ンに挿入してもよいし、栽培ビンの外側面に取付けても
よい。また、培養室内の室温を検出してもよい。栽培シ
ステム1はこのように構成されるため、特殊な機器が不
要であり、低コストに実施できる。
In the cultivation system shown in FIG. 1, reference numeral 4 denotes a microprocessor (MPU: arithmetic unit) including necessary functional units such as a memory, which executes various arithmetic processes according to a preset arithmetic program. . A reset switch 5 and a timer unit 6 are connected to the microprocessor 4.
Temperature sensor 7 for detecting the culture temperature Td on the input side of
The display unit 2 and the alarm 3 are connected to the output side of the microprocessor 4, respectively. In addition, the temperature sensor 7 may be inserted into the cultivation bottle, or may be attached to the outer surface of the cultivation bottle. Further, the room temperature in the culture room may be detected. Since the cultivation system 1 is configured as described above, special equipment is not required and can be implemented at low cost.

【0015】次に、このような栽培システム1の動作を
含む本実施例に係るキノコ(ブナシメジ)の栽培方法に
ついて、各図を参照して説明する。
Next, a method for cultivating mushrooms (Buna shimeji) according to the present embodiment including the operation of the cultivation system 1 will be described with reference to the drawings.

【0016】まず、予め、最大収量を得る培養温度Tと
キノコの培養期間Pの積算値Xに基づいて培養定数Kを
設定する。
First, a culture constant K is set in advance based on a culture temperature T at which the maximum yield is obtained and an integrated value X of the mushroom culture period P.

【0017】培養日数(培養期間P)に対するブナシメ
ジの栽培ビン1本当たりの収量の関係は、培養温度Tを
パラメータとすると図2のようになる。同図から培養温
度Tが高くなれば、最大収量が得られる培養日数は少な
くなる。即ち、培養温度Tと培養期間Pはある温度範囲
(18〜30℃)内においてほぼ反比例し、最大収量を
得るキノコの培養期間Pと培養温度Tの積算値Xはほぼ
一定となる。同図の場合、各培養温度Tにおける積算値
X(=T×P)は、24〔℃〕×80〔日〕=192
0,22〔℃〕×88〔日〕=1936,20〔℃〕×
100〔日〕=2000,18〔℃〕×107〔日〕=
1926となる。これらの積算値Xの平均は、約194
5となり、さらに、培養期間Pを時間で表した場合に
は、1945×24〔時〕=46680となる。よっ
て、得られた積算値X=46680をそのまま培養定数
Kとして設定できる。この場合、積算値Xをそのまま培
養定数Kとして用いたが、培養定数Kの値は必要により
増減させることができる。なお、図2中、Z1〜Z4は
最大収量に対する97%収量の範囲を示す。
The relationship between the number of culture days (culture period P) and the yield per cultivation bottle of Bunashimeji is shown in FIG. 2 when the culture temperature T is used as a parameter. As shown in the figure, when the culture temperature T increases, the number of culture days at which the maximum yield is obtained decreases. That is, the cultivation temperature T and the cultivation period P are substantially inversely proportional within a certain temperature range (18 to 30 ° C.), and the integrated value X of the cultivation period P and the cultivation temperature T for obtaining the maximum yield is substantially constant. In the case of the figure, the integrated value X (= T × P) at each culture temperature T is 24 [° C.] × 80 [days] = 192.
0,22 [° C] × 88 [days] = 1936,20 [° C] ×
100 [days] = 2000, 18 [° C] x 107 [days] =
1926. The average of these integrated values X is about 194
5, and when the culture period P is expressed in hours, 1945 × 24 [hours] = 46680. Therefore, the obtained integrated value X = 46680 can be directly set as the culture constant K. In this case, the integrated value X was used as it is as the culture constant K, but the value of the culture constant K can be increased or decreased as necessary. In addition, in FIG. 2, Z1-Z4 show the range of 97% of the maximum yield.

【0018】一方、栽培時には、栽培ビンに詰め込んだ
培地にブナシメジの種菌を接種して培養を行う。培養工
程における栽培システム1は、図1に示すフローチャー
トに従って動作する。
On the other hand, at the time of cultivation, a culture medium packed in a cultivation bottle is inoculated with a seed of Bunashimeji and cultured. The cultivation system 1 in the culturing process operates according to the flowchart shown in FIG.

【0019】まず、栽培システム1のリセットスイッチ
5により各部を初期化する(ステップS1)。温度セン
サ7からは培養温度が連続して検出され、マイクロプロ
セッサ4に付与される(ステップS2)。これにより、
マイクロプロセッサ4は培養開始から、予め設定したサ
ンプリング期間Pp毎、即ち、実施例では1時間置きに
サンプリングして培養温度Tdの取り込みを行う(ステ
ップS3)。
First, each part is initialized by the reset switch 5 of the cultivation system 1 (step S1). The culture temperature is continuously detected from the temperature sensor 7 and provided to the microprocessor 4 (step S2). This allows
The microprocessor 4 takes in the culture temperature Td by sampling every preset sampling period Pp from the start of the culture, that is, every one hour in the embodiment (step S3).

【0020】そして、マイクロプロセッサ4では、1時
間置きにサンプングした培養温度Tdとこの培養温度T
dにおけるサンプリング期間Ppの積算値Xpを求める
(ステップS4)。実施例のサンプリング期間Ppは1
時間であるため、培養温度Tdの値がそのまま積算値X
pとなる。また、求めた積算値Xpは培養定数Kから順
次減算し、この減算結果となる減算値Knを順次求める
(ステップS5)。具体的には、培養開始時の培養温度
Td0を22〔℃〕,培養開始から1時間目の培養温度
Td1を22〔℃〕,同2時間目の培養温度Td2を23
〔℃〕,同3時間目の培養温度Td3を23〔℃〕とし
た場合、同3時間目における減算値Kn(=K−Td1
…)は、46680−22−22−23−23=465
90となる。
In the microprocessor 4, the culture temperature Td sampled every other hour and the culture temperature Td
An integrated value Xp of the sampling period Pp at d is obtained (step S4). The sampling period Pp of the embodiment is 1
Time, the value of the culture temperature Td is
p. Further, the obtained integrated value Xp is sequentially subtracted from the culture constant K, and a subtraction value Kn as a result of the subtraction is sequentially obtained (step S5). Specifically, the culture temperature Td 0 at the start of the culture was 22 ° C., the culture temperature Td 1 at the first hour from the start of the culture was 22 ° C., and the culture temperature Td 2 at the second hour was 23 ° C.
[° C.], when the culture temperature Td 3 at the third hour was set at 23 ° C., the subtraction value Kn (= K−Td 1 ) at the third hour
...) is 46680-22-22-23-23 = 465
90.

【0021】さらに、各減算値Knを培養温度Tdによ
り除算して残存培養期間Prを求める(ステップS
6)。今、培養工程が培養開始から7日目に至り、7日
目の終了時の減算値Knが42504,この時点の培養
温度Tdが23〔℃〕であったものと想定する。この
後、培養温度Tdが23〔℃〕のまま継続するとすれ
ば、残存培養期間Prは42504/23=1848
〔時間〕=77〔日〕として求めることができる。この
場合、残存培養期間Prの算出に用いる培養温度Td
は、このような演算時点の値であってもよいし、培養開
始からこの時点までの培養温度Td…を平均した値であ
ってもよい。最大収量を得る残存培養期間Prは、減算
値Knを求める毎に求められ、1時間毎に更新される。
残存培養期間Prは基本的に残存期間の目安となるもの
であり、残存培養期間Prの算出に用いる培養温度Td
は、どのような値を用いたとしても、残存培養期間Pr
が少なくなるに従って正確度が高まり、残存培養期間P
rが零になった時点が、最大収量を得る培養期間Pの終
期となる。
Further, the remaining culture period Pr is obtained by dividing each subtraction value Kn by the culture temperature Td (step S).
6). Now, it is assumed that the culturing step has reached the seventh day from the start of the culturing, and the subtraction value Kn at the end of the seventh day is 42504, and the culturing temperature Td at this time is 23 ° C. Thereafter, assuming that the culture temperature Td is maintained at 23 ° C., the remaining culture period Pr is 42504/23 = 1848.
[Time] = 77 [days]. In this case, the culture temperature Td used to calculate the remaining culture period Pr
May be a value at such a calculation time point, or a value obtained by averaging the culture temperatures Td from the start of culture to this time point. The remaining culture period Pr for obtaining the maximum yield is obtained every time the subtraction value Kn is obtained, and is updated every hour.
The remaining culture period Pr is basically a measure of the remaining culture period, and the culture temperature Td used for calculating the remaining culture period Pr.
Is the residual culture period Pr, no matter what value is used.
As the number of cells decreases, the accuracy increases, and the remaining culture period P
The time when r becomes zero is the end of the culture period P for obtaining the maximum yield.

【0022】したがって、残存培養期間Prが零になっ
たらアラーム3により報知し、培養工程を終了させる
(ステップS7,S8)。この場合、アラーム3によ
り、3日前,1日前,10時間前等において予備的な報
知を行うこともできる。また、残存培養期間(残存培養
日数)Prは表示部2により表示する(ステップS
6)。さらに、表示部2には培養温度Tdを表示する。
Therefore, when the remaining culture period Pr becomes zero, a notification is made by the alarm 3 to terminate the culture process (steps S7 and S8). In this case, the alarm 3 can provide a preliminary notification three days ago, one day ago, ten hours ago, or the like. The remaining culture period (remaining culture days) Pr is displayed on the display unit 2 (Step S).
6). Further, the display unit 2 displays the culture temperature Td.

【0023】よって、培養工程では培養温度Tdが変化
しても、最大収量を得れる培養期間、即ち、残存培養期
間Prが設定されるため、常に最大収量又はそれに近い
高収量を確保できるとともに、設備面及び管理面におけ
る大幅なコストダウンを図ることができる。一方、培養
工程が終了したなら、菌掻き工程,芽出し工程,生育工
程を経てブナシメジを生長させた後、収穫を行う。
Therefore, in the culturing step, even if the culturing temperature Td changes, the culturing period in which the maximum yield can be obtained, that is, the remaining culturing period Pr is set. Significant cost reduction in equipment and management can be achieved. On the other hand, when the culturing step is completed, the bean shimeji mushroom is grown through a fungus scraping step, a sprouting step, and a growing step, and then harvesting is performed.

【0024】以上、実施例について詳細に説明したが本
発明はこのような実施例に限定されるものではなく、細
部の構成,手法,数値等において、本発明の要旨を逸脱
しない範囲で任意に変更,追加,削除することができ
る。
Although the embodiment has been described in detail, the present invention is not limited to such an embodiment, and the detailed configuration, method, numerical values, and the like can be arbitrarily set without departing from the gist of the present invention. Can be changed, added, or deleted.

【0025】例えば、実施例は培養温度Tdのサンプン
グを1時間置きに行った場合を例示したが、理想的には
連続して検出される培養温度Tdを時間により積分して
積算値Xpを連続的に求めることもできるし、より簡易
には1日置きにサンプングして積算値Xpを求めること
もできる。また、残存培養期間Prを直接求めたが、積
算値Xpを順次加算し、この累積値が培養定数Kに達し
た時点を培養期間の終期とし、アラーム3により報知し
てもよい。さらに、キノコはブナシメジを例示したが、
エノキ茸,シイタケ,ナメコ等の他のキノコにも同様に
適用できる。
For example, although the embodiment has exemplified the case where the cultivation temperature Td is sampled every other hour, ideally, the cultivation temperature Td which is continuously detected is integrated with time to obtain the integrated value Xp continuously. It is also possible to obtain the integrated value Xp by sampling every other day more simply. Further, although the remaining culture period Pr is directly obtained, the integrated value Xp may be sequentially added, and the time when the accumulated value reaches the culture constant K may be set as the end of the culture period, and the alarm 3 may be notified. Furthermore, the mushroom exemplified Bunashimeji,
The same can be applied to other mushrooms such as enoki mushrooms, shiitake mushrooms, and nameko.

【0026】一方、本発明に係るキノコの栽培方法を利
用して、従来の室内環境での培養のみならず室外環境で
も培養可能である。この場合には直射日光を避け、湿度
が極端に下がらないように工夫する必要がある。具体的
には、培養室に収容された栽培ビンに種菌が活着したな
ら室外環境に移して培養する。この際、栽培ビンの積み
方,並べ方により放熱するか或いは保温の工夫をすれ
ば、外気温が0〜30〔℃〕前後まで培養が可能とな
る。特に、夏場は栽培ビンの間隔を広げるなどにより空
気の流れを良好にし、熱が長時間こもらないように注意
する。そして、室外環境では、本発明に係るキノコの栽
培方法に従って、培養温度Tdを検出しつつ残存培養期
間Prを設定し、残存培養期間Prが零になるまで培養
を行う。これにより、70〜80〔日〕分の培養室が不
要となる。
On the other hand, using the method for cultivating mushrooms according to the present invention, cultivation can be performed not only in a conventional indoor environment but also in an outdoor environment. In this case, it is necessary to avoid direct sunlight and take measures to prevent the humidity from dropping extremely. Specifically, if the inoculum has settled in the cultivation bottle accommodated in the culture room, it is transferred to an outdoor environment and cultured. At this time, if heat is dissipated or the heat retention is devised depending on how the cultivation bottles are stacked and arranged, cultivation can be performed until the outside air temperature is around 0 to 30 ° C. In summer, in particular, make the air flow better by increasing the interval between cultivation bottles and take care not to let heat stay for a long time. Then, in the outdoor environment, according to the mushroom cultivation method according to the present invention, the remaining culture period Pr is set while detecting the culture temperature Td, and the culture is performed until the remaining culture period Pr becomes zero. This eliminates the need for a culture room for 70 to 80 days.

【0027】[0027]

【発明の効果】このように本発明に係るキノコの栽培方
法は、予め、最大収量を得る培養温度と培養期間の積算
値に基づく培養定数を設定し、培養工程では、培養開始
から培養温度を検出することにより、検出した培養温度
とこの培養温度における培養期間(サンプリング期間)
の積算値を順次求めるとともに、この積算値と培養定数
から残存培養期間を求め、当該残存培養期間に従って培
養を行うようにしたため、次のような顕著な効果を奏す
る。
As described above, in the method for cultivating a mushroom according to the present invention, the culture temperature for obtaining the maximum yield and the culture constant based on the integrated value of the culture period are set in advance. By detecting, the culture temperature detected and the culture period (sampling period) at this culture temperature
Are obtained sequentially, the remaining culture period is determined from the integrated value and the culture constant, and culturing is performed according to the remaining culture period. Therefore, the following remarkable effects are obtained.

【0028】 培養温度が変化しても、最適な培養期
間が自動的に設定されるため、常に最大収量又はそれに
近い高収量を確保できる。
Even if the culture temperature changes, the optimal culture period is automatically set, so that the maximum yield or a high yield close to the maximum yield can always be ensured.

【0029】 高度の冷暖房機器及び断熱材等を設置
した栽培施設が不要となるため、設備面及び管理面にお
ける大幅なコストダウン図ることができる。
[0029] Since a cultivation facility provided with advanced cooling and heating equipment and heat insulating materials is not required, it is possible to significantly reduce costs in terms of facilities and management.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に係るキノコの栽培方法を説明するた
めの培養工程の処理手順を示すフローチャート、
FIG. 1 is a flowchart showing a processing procedure of a culture step for describing a method for cultivating a mushroom according to the present embodiment;

【図2】同栽培方法の原理を説明するためのブナシメジ
の培養日数に対する収量を示す相関図、
FIG. 2 is a correlation diagram showing the yield with respect to the number of days of culture of Bunashimeji for explaining the principle of the cultivation method,

【図3】同栽培方法を実施できる栽培システムのブロッ
ク構成図、
FIG. 3 is a block diagram of a cultivation system capable of implementing the cultivation method,

【符号の説明】[Explanation of symbols]

2 表示部 3 アラーム 2 Display 3 Alarm

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 栽培ビンに詰め込んだ培地に種菌を接種
し、培養工程を経てキノコを栽培するキノコの栽培方法
において、予め、最大収量を得る培養温度と培養期間の
積算値に基づく培養定数を設定し、前記培養工程では、
培養開始から培養温度を検出することにより、検出した
培養温度とこの培養温度における培養期間(サンプリン
グ期間)の積算値を順次求めるとともに、この積算値と
前記培養定数から残存培養期間を求め、当該残存培養期
間に従って培養を行うことを特徴とするキノコの栽培方
法。
1. A method for cultivating a mushroom in which a seed bacterium is inoculated into a medium packed in a cultivation bottle and cultivates a mushroom through a culturing step. Set, and in the culturing step,
By detecting the culture temperature from the start of culture, the integrated value of the detected culture temperature and the culture period (sampling period) at this culture temperature is sequentially obtained, and the remaining culture period is obtained from the integrated value and the culture constant. A method for cultivating a mushroom, comprising culturing according to a culture period.
【請求項2】 培養開始から培養温度を前記サンプリン
グ期間置きに検出することにより、当該サンプリング期
間とこのサンプリング期間における培養温度の積算値を
培養開始から順次求めるとともに、当該積算値を前記培
養定数から順次減算し、得られた減算値を培養温度で除
算して前記残存培養期間を求めることを特徴とする請求
項1記載のキノコの栽培方法。
2. By detecting a culture temperature every said sampling period from the start of culture, the sampling period and an integrated value of the culture temperature in this sampling period are sequentially obtained from the start of culture, and the integrated value is calculated from the culture constant. The method for cultivating a mushroom according to claim 1, wherein the subtraction is sequentially performed, and the obtained subtraction value is divided by a culture temperature to obtain the remaining culture period.
【請求項3】 前記残存培養期間は表示部により表示す
ることを特徴とする請求項1記載のキノコの栽培方法。
3. The method for cultivating a mushroom according to claim 1, wherein the remaining culture period is displayed on a display unit.
【請求項4】 前記表示部には培養温度を表示すること
を特徴とする請求項3記載のキノコの栽培方法。
4. The method for cultivating a mushroom according to claim 3, wherein a culture temperature is displayed on the display section.
【請求項5】 前記残存培養期間が零になったらアラー
ムにより報知することを特徴とする請求項1記載のキノ
コの栽培方法。
5. The method for cultivating a mushroom according to claim 1, wherein when the remaining culture period becomes zero, an alarm is issued.
JP09151947A 1997-06-10 1997-06-10 How to grow Bunashimeji Expired - Fee Related JP3099267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09151947A JP3099267B2 (en) 1997-06-10 1997-06-10 How to grow Bunashimeji

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09151947A JP3099267B2 (en) 1997-06-10 1997-06-10 How to grow Bunashimeji

Publications (2)

Publication Number Publication Date
JPH1145A true JPH1145A (en) 1999-01-06
JP3099267B2 JP3099267B2 (en) 2000-10-16

Family

ID=15529690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09151947A Expired - Fee Related JP3099267B2 (en) 1997-06-10 1997-06-10 How to grow Bunashimeji

Country Status (1)

Country Link
JP (1) JP3099267B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826302A (en) * 1985-07-19 1989-05-02 Simrad Optronics A/S Image intensifier binocular
JP2002369635A (en) * 2001-06-18 2002-12-24 Nagano Pref Gov Nouson Kogyo Kenkyusho New lyophyllum ulmarium strain
US6538375B1 (en) * 2000-08-17 2003-03-25 General Electric Company Oled fiber light source
KR100406937B1 (en) * 2001-04-30 2003-11-21 이수호 Tact switch form pcb printed circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826302A (en) * 1985-07-19 1989-05-02 Simrad Optronics A/S Image intensifier binocular
US6538375B1 (en) * 2000-08-17 2003-03-25 General Electric Company Oled fiber light source
KR100406937B1 (en) * 2001-04-30 2003-11-21 이수호 Tact switch form pcb printed circuit board
JP2002369635A (en) * 2001-06-18 2002-12-24 Nagano Pref Gov Nouson Kogyo Kenkyusho New lyophyllum ulmarium strain

Also Published As

Publication number Publication date
JP3099267B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
El Ghoumari et al. Non-linear constrained MPC: Real-time implementation of greenhouse air temperature control
CN111096130B (en) Unmanned intervention planting system using AI spectrum and control method thereof
NO20040120L (en) Process and system for plant growth
CN105494033B (en) A kind of intelligent water-saving irrigation method based on crop demand
Tao et al. Climate warming outweighed agricultural managements in affecting wheat phenology across China during 1981–2018
Laing Temperature and light response curves for photosynthesis in kiwifruit (Actinidia chinensis) cv. Hayward
DE69706971T2 (en) AIR CULTURE SYSTEM WITH AN ADMINISTRATIVE SYSTEM
JPH1145A (en) Culture of mushroom
CN206760344U (en) A kind of multi-functional plant cultivates growth cabinet
WO1989007390A1 (en) Method and apparatus for cultivating mushrooms
CN110999774A (en) Soilless culture system with temperature detection and adjustment device
JPWO2018021142A1 (en) Carbon dioxide application support device and carbon dioxide application support program
KR101869890B1 (en) House plant factory system
JP7295565B2 (en) Growth environment control program, growth environment control method, and growth environment control device
CN207543852U (en) Edible fungus culturing soil cave
JP6785902B2 (en) Crop activity index-based facility Horticulture complex environmental control system and method
CN114431026A (en) Method and system for illuminating plants in an indoor farming environment
CN207369734U (en) A kind of botanical seedling culturing grows cabin
Jiang et al. Smart control system for the precision cultivation of black fungus
JP3001027U (en) Willow Matsutake cultivation equipment
KOH et al. Studies on Matter Production in Wheat Plant: I. Diurnal changes in carbon dioxide exchange of wheat plant under field conditions
CN109857178B (en) Greenhouse intelligent management system based on big data
Lee et al. A smart fan system for temperature control in plant factory
WO2023037931A1 (en) Yield prediction system, management assistance system for plant factory, yield prediction method, and yield prediction program
CN214015247U (en) Seedling raising box for modern agricultural production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees