JPH1145801A - Manufacture of nonlinear resistor - Google Patents

Manufacture of nonlinear resistor

Info

Publication number
JPH1145801A
JPH1145801A JP9202079A JP20207997A JPH1145801A JP H1145801 A JPH1145801 A JP H1145801A JP 9202079 A JP9202079 A JP 9202079A JP 20207997 A JP20207997 A JP 20207997A JP H1145801 A JPH1145801 A JP H1145801A
Authority
JP
Japan
Prior art keywords
outer peripheral
solvent
resistance layer
linear resistor
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9202079A
Other languages
Japanese (ja)
Other versions
JP3728881B2 (en
Inventor
Ken Iida
憲 飯田
Yukio Tagami
幸雄 田上
Masao Hayashi
正夫 林
Noriaki Nakada
憲明 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP20207997A priority Critical patent/JP3728881B2/en
Publication of JPH1145801A publication Critical patent/JPH1145801A/en
Application granted granted Critical
Publication of JP3728881B2 publication Critical patent/JP3728881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve thermal stability by making the grain size of the whole nonlinear resistor uniform. SOLUTION: Zinc oxide, additives, and an organic binder are mixed and dried to make a granulated powder (S21). The granulated powder is formed into a discoidal body (S22). The formed body is calcined for making it into calcination body (S23). A solvent made by dissolving any of antimony trioxide, nickel oxide, and silicon dioxide in the organic binder is applied to the outer surface of a calcination body (S24). A high-resistant material is applied to the surface of the solvent applied to the outer surface of a calcination body (S25) and is fired to make a fired body having a high-resistant layer on the outer surface of a calcination body (S26). A solvent D made by mixing a glass powder with an organic binder and adjusted to a predetermined viscosity is applied to the surface of the high-resistant layer formed on the outer surface of the fired body (S27) and is fired (S28). Electrodes are fixed to the both ends of the fired body (S29) to make a nonlinear resistor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化亜鉛を主成分
とし、主に避雷器に組み込まれる非直線抵抗体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a nonlinear resistor mainly composed of zinc oxide and mainly incorporated in a lightning arrester.

【0002】[0002]

【従来の技術】非直線抵抗体は、酸化亜鉛を主成分とす
るものが多く、その添加物成分として酸化ビスマス,酸
化アンチモン,酸化コバルト,酸化マンガン,酸化クロ
ム,酸化ニッケル,酸化ケイ素等の金属酸化物を添加
し、非直線性が高くて熱損失の少ない組成配合からなっ
ている。
2. Description of the Related Art Many non-linear resistors are mainly composed of zinc oxide, and additives such as bismuth oxide, antimony oxide, cobalt oxide, manganese oxide, chromium oxide, nickel oxide, silicon oxide and the like An oxide is added, and the composition is composed of a composition having high non-linearity and low heat loss.

【0003】通常、前記添加物成分をボールミル等で予
備粉砕した後、酸化亜鉛とバインダー(結合剤:例え
ば、有機バインダー)に対し添加して混合物を得、この
混合物をスプレードライヤーにより噴霧乾燥して流動性
が良い造粒粉を得る。なお、前記有機バインダーには、
水系の有機バインダー、例えばポリビニルアルコール
(PVA)が用いられている。前記造粒粉を金型プレスに
より円盤状の成形体に成形し、この成形体の脱脂を行っ
た後、700〜1000℃の温度で数時間仮焼して仮焼
体を形成する。
Usually, the above-mentioned additive components are preliminarily pulverized by a ball mill or the like, and then added to zinc oxide and a binder (a binder, for example, an organic binder) to obtain a mixture. The mixture is spray-dried by a spray drier. A granulated powder with good fluidity is obtained. In addition, in the organic binder,
Water-based organic binder, for example, polyvinyl alcohol
(PVA) is used. The granulated powder is formed into a disk-shaped molded body by a die press, and after the molded body is degreased, it is calcined at a temperature of 700 to 1000 ° C. for several hours to form a calcined body.

【0004】前記仮焼体の外周面には、例えばセラミッ
クから成る絶縁材(高抵抗層材料)を被膜し1000〜1
300℃の温度で熱処理して、外周面に絶縁層(高抵抗
層:詳細を後述する)を形成した焼成体を得る。次に、
前記焼成体の両端面を平滑に研磨してから、その平滑に
研磨された両端面には例えばアルミニウムから成る電極
材料を溶射して非直線抵抗体を完成させる手段を採って
いる。
[0004] The outer peripheral surface of the calcined body is coated with an insulating material (a high-resistance layer material) made of, for example, a ceramic.
Heat treatment is performed at a temperature of 300 ° C. to obtain a fired body having an insulating layer (a high-resistance layer, which will be described in detail later) formed on the outer peripheral surface. next,
Means are employed in which both end faces of the fired body are polished smoothly, and then the non-linear resistor is completed by spraying an electrode material made of, for example, aluminum on the both polished end faces.

【0005】以上のようにして形成された非直線抵抗体
は、避雷器の限流要素ユニット等に用いられる。特に避
雷器用の非直線抵抗体は、一般的な弱電用サージ・アブ
ソーバと比較して吸収し得るエネルギーが大きいため、
大きな体積または大口径サイズの非直線抵抗体が必要に
なる。
[0005] The nonlinear resistor formed as described above is used for a current limiting element unit of an arrester. In particular, nonlinear resistors for lightning arresters can absorb a large amount of energy compared to general light-current surge absorbers.
A large volume or large diameter non-linear resistor is required.

【0006】また、前記非直線抵抗体は非直線性が非常
に高いため、前記のように焼成体の外周面には高抵抗層
を形成して外部閃絡を防止する必要がある。外周面に高
抵抗層を形成した焼成体を得るには、まず酸化亜鉛,酸
化ビスマス(三酸化ビスマス),酸化アンチモン(三酸化
アンチモン),酸化ケイ素(二酸化ケイ素)を所定の配合
で湿式粉砕し乾燥した後、800〜1000℃の温度で
仮焼して高抵抗層材料を得る。
Further, since the non-linear resistor has very high non-linearity, it is necessary to form a high-resistance layer on the outer peripheral surface of the fired body as described above to prevent external flashes. In order to obtain a fired body having a high resistance layer formed on the outer peripheral surface, first, zinc oxide, bismuth oxide (bismuth trioxide), antimony oxide (antimony trioxide), and silicon oxide (silicon dioxide) are wet-pulverized in a predetermined mixture. After drying, it is calcined at a temperature of 800 to 1000 ° C. to obtain a high resistance layer material.

【0007】そして、前記高抵抗層材料を粗粉砕・微粉
砕した後、有機バインダーと溶剤とを加えて混練しペー
スト状にしてから、例えばローラー塗布により仮焼体の
外周面に塗布し熱処理して、外周面に高抵抗層を形成し
た焼成体を得る。なお、前記高抵抗層の表面には低融点
ガラス材を塗布した後、熱処理して2層構造の高抵抗層
を形成する場合もある。
After the high-resistance layer material is roughly pulverized and finely pulverized, an organic binder and a solvent are added and kneaded to form a paste, which is then applied to the outer peripheral surface of the calcined body by, for example, roller application, followed by heat treatment. Thus, a fired body having a high resistance layer formed on the outer peripheral surface is obtained. In some cases, a low-melting glass material is applied to the surface of the high-resistance layer and then heat-treated to form a two-layer high-resistance layer.

【0008】以上示したように、高抵抗層を形成して得
た非直線抵抗体は、外部閃絡に対しては非常に良好な特
性が得られる。
As described above, the non-linear resistor obtained by forming the high-resistance layer has very good characteristics against external flashes.

【0009】[0009]

【発明が解決しようとする課題】前記高抵抗層材料とし
て用いた4つの成分の配合比により、非直線抵抗体の特
性が大きく変化する。例えば、三酸化アンチモンの配合
量を減少させると、非直線抵抗体の絶縁特性が向上する
が、三酸化アンチモンは焼成中に非直線抵抗体中の酸化
亜鉛粒子の粒成長抑制剤として作用する。一方、三酸化
ビスマスにおいては、焼成中に非直線抵抗体中の酸化亜
鉛粒子の粒成長促進剤として作用する。
The characteristics of the non-linear resistor greatly change depending on the mixing ratio of the four components used as the material of the high resistance layer. For example, reducing the amount of antimony trioxide improves the insulating properties of the non-linear resistor, but the antimony trioxide acts as a grain growth inhibitor for the zinc oxide particles in the non-linear resistor during firing. On the other hand, bismuth trioxide acts as a grain growth promoter for zinc oxide particles in the non-linear resistor during firing.

【0010】そのため、三酸化アンチモンの配合量を減
少させてしまうと、高抵抗層から三酸化ビスマスが非直
線抵抗体中に対してより多く拡散してしまう。ゆえに、
三酸化アンチモンの配合量を減少させてしまうと、非直
線抵抗体の外周面付近における酸化亜鉛粒子の粒径が非
直線抵抗体の中央部における酸化亜鉛粒子の粒径と比較
して大きくなってしまう。
Therefore, if the amount of antimony trioxide is reduced, bismuth trioxide diffuses more from the high resistance layer into the non-linear resistor. therefore,
If the amount of antimony trioxide is reduced, the particle size of the zinc oxide particles near the outer peripheral surface of the nonlinear resistor becomes larger than the particle size of the zinc oxide particles in the central portion of the nonlinear resistor. I will.

【0011】非直線抵抗体の小電流域における電気抵抗
は、酸化亜鉛の粒界層の数、すなわち酸化亜鉛粒子の粒
径に比例することが知られている。そのため、例えば三
酸化ビスマスのような粒成長促進剤により、非直線抵抗
体の外周面付近における抵抗値と中央部における抵抗値
とに差が生じると、非直線抵抗体全体に流れる電流が不
均一になってしまう。
It is known that the electrical resistance of a nonlinear resistor in a small current range is proportional to the number of grain boundary layers of zinc oxide, that is, the particle size of zinc oxide particles. Therefore, if a difference between the resistance value near the outer peripheral surface of the nonlinear resistor and the resistance value at the central portion is caused by a grain growth promoter such as bismuth trioxide, the current flowing through the entire nonlinear resistor becomes uneven. Become.

【0012】非直線抵抗体の外周面付近における電流値
が中央部における電流値よりも増加すると、その非直線
抵抗体の外周面付近における温度が中央部における温度
よりも高くなり、非直線抵抗体全体の温度が上昇してし
まう。非直線抵抗体全体の温度が上昇すると、その非直
線抵抗体を構成する避雷器の熱安定性が低下し、その寿
命の低下を引き起こしてしまう問題が生じる。
When the current value near the outer peripheral surface of the non-linear resistor is larger than the current value at the central portion, the temperature near the outer peripheral surface of the non-linear resistor becomes higher than the temperature at the central portion. The overall temperature rises. When the temperature of the entire non-linear resistor rises, the thermal stability of the lightning arrester constituting the non-linear resistor decreases, causing a problem that the life of the arrester decreases.

【0013】本発明は、前記課題に基づいて成されたも
のであり、非直線抵抗体全体の酸化亜鉛粒子の粒径を均
一にして、非直線抵抗体全体に対して電流が均一に流れ
るようにし、熱安定性が良好で雷サージ等による外部閃
絡を抑制した非直線抵抗体の製造方法を提供することに
ある。
The present invention has been made on the basis of the above-mentioned problem, and makes the diameter of zinc oxide particles in the entire non-linear resistor uniform so that the current flows uniformly in the entire non-linear resistor. Another object of the present invention is to provide a method of manufacturing a non-linear resistor having good thermal stability and suppressing external flashover due to lightning surge or the like.

【0014】[0014]

【課題を解決するための手段】本発明は、前記課題を解
決するために、第1発明は非直線抵抗体の主成分である
酸化亜鉛,添加物成分,有機バインダーを混合し乾燥し
て造粒粉を得た後、その造粒粉を円盤状に成形して得た
成形体を仮焼して仮焼体を得、その仮焼体の外周面に高
抵抗層材料を塗布し焼成して外周面に高抵抗層を設けた
焼成体を得た後、前記焼成体の両端面に電極を設けたこ
とを特徴とする非直線抵抗体の製造方法において、前記
仮焼体の外周面には三酸化アンチモン,酸化ニッケル,
二酸化ケイ素の何れかから成る溶剤を塗布した後、前記
高抵抗層材料を塗布したことを特徴とする。
According to the present invention, in order to solve the above-mentioned problems, a first invention is to mix and dry zinc oxide, an additive component, and an organic binder which are main components of a nonlinear resistor. After obtaining the granulated powder, the compact obtained by molding the granulated powder into a disc shape is calcined to obtain a calcined body, and a high resistance layer material is applied to the outer peripheral surface of the calcined body and calcined. After obtaining a fired body provided with a high resistance layer on the outer peripheral surface, in a method of manufacturing a nonlinear resistor characterized by providing electrodes on both end surfaces of the fired body, the outer peripheral surface of the calcined body Is antimony trioxide, nickel oxide,
The method is characterized in that after applying a solvent made of any of silicon dioxide, the high-resistance layer material is applied.

【0015】第2発明は、前記第1発明において、前記
仮焼体の外周面に三酸化アンチモンを0.002〜0.
02g/cm2塗布してから、前記高抵抗層材料を塗布
したことを特徴とする。
In a second aspect based on the first aspect, antimony trioxide is added on the outer peripheral surface of the calcined body in an amount of from 0.002 to 0.
It is characterized in that the high-resistance layer material is applied after application of 02 g / cm 2 .

【0016】第3発明は、前記第1発明において、前記
仮焼体の外周面に酸化ニッケルを0.005〜0.05
g/cm2塗布してから、前記高抵抗層材料を塗布した
ことを特徴とする。
In a third aspect based on the first aspect, nickel oxide is applied to the outer peripheral surface of the calcined body in an amount of 0.005 to 0.05.
g / cm 2, and then applying the high-resistance layer material.

【0017】第4発明は、前記第1発明において、前記
仮焼体の外周面に二酸化ケイ素を0.002〜0.01
g/cm2塗布してから、前記高抵抗層材料を塗布した
ことを特徴とする。
According to a fourth aspect, in the first aspect, silicon dioxide is added to the outer peripheral surface of the calcined body in an amount of 0.002 to 0.01.
g / cm 2, and then applying the high-resistance layer material.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の第1〜第3
形態を図面に基づいて説明する。本発明の実施の第1形
態において、まず仮焼体の外周面に塗布する高抵抗層材
料の生成工程を図1の生成工程図に基づいて説明する。
図1において、ステップS11は混合粉体生成工程を示
すものであり、この工程では酸化亜鉛,酸化ビスマス,
酸化アンチモン,酸化ケイ素を所定量に配合し、予備撹
拌槽で純水とともに一定時間混合して混合粉体を得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The first to third embodiments of the present invention will be described below.
An embodiment will be described with reference to the drawings. In the first embodiment of the present invention, first, a process of generating a high-resistance layer material applied to the outer peripheral surface of the calcined body will be described with reference to a generation process diagram of FIG.
In FIG. 1, step S11 shows a mixed powder production step, in which zinc oxide, bismuth oxide,
Antimony oxide and silicon oxide are blended in predetermined amounts and mixed with pure water in a preliminary stirring tank for a certain period of time to obtain a mixed powder.

【0019】ステップS12は第1粉砕工程を示すもの
であり、この工程では前記混合粉体を振動ミル等により
所定の粒径に粉砕する。所定の粒径に粉砕された混合粉
体はステップS13に示す乾燥工程に送られ、媒体を充
填した媒体流動式乾燥機にポンプにより搬送され、加熱
された媒体からの熱伝導と熱風とにより前記混合粉体を
瞬時的かつ連続的に乾燥して乾燥粉体を得、その乾燥粉
体はバグフィルターにより補集され一時貯蔵ホッパーに
貯蔵される。
Step S12 shows a first pulverizing step, in which the mixed powder is pulverized to a predetermined particle size by a vibration mill or the like. The mixed powder pulverized to a predetermined particle size is sent to a drying step shown in step S13, and is conveyed by a pump to a medium-flow type drier filled with a medium, and the heat is applied by heat conduction and hot air from the heated medium. The mixed powder is dried instantaneously and continuously to obtain a dry powder, which is collected by a bag filter and stored in a temporary storage hopper.

【0020】ステップS14は仮焼工程を示すものであ
り、この工程では貯蔵ホッパーに貯蔵された乾燥粉体を
定量供給機によりロータリーキルンに供給し、所定の温
度,滞留時間で連続的に仮焼して仮焼粉体を得る。その
後、ステップS15に示す第2粉砕工程で、前記仮焼粉
体をスクリュウコンベアにより石臼式粉砕機に搬送し所
定の粒径まで粉砕した後、ステップS16に示す混練工
程でその粉砕された粉体とバインダー,溶剤とを混練し
て高抵抗層材料の生成が完了する。
Step S14 shows a calcining step. In this step, the dry powder stored in the storage hopper is supplied to the rotary kiln by a quantitative feeder, and calcined continuously at a predetermined temperature and residence time. To obtain a calcined powder. Then, in a second pulverization step shown in step S15, the calcined powder is conveyed to a millstone type pulverizer by a screw conveyor and pulverized to a predetermined particle size, and then the pulverized powder is mixed in a kneading step shown in step S16. And a binder and a solvent are kneaded to complete the formation of the high-resistance layer material.

【0021】次に、非直線抵抗体の製造工程を図2に示
す製造工程図に基づいて説明する。ステップS21は造
粒粉生成工程を示すものであり、この工程では非直線抵
抗体の主成分である酸化亜鉛,所定量の添加物成分,有
機バインダーを混合し脱泡した後、スプレードライヤー
等により噴霧乾燥して造粒粉を得る。その後、ステップ
S22に示す成形工程で、前記造粒粉を金型プレス等に
より直径60mm(φ60)の円盤状の成形体に成形す
る。ステップS23は仮焼工程を示すものであり、この
工程では前記成形体を700〜1000℃の温度で仮焼
して仮焼体を得る。
Next, the manufacturing process of the non-linear resistor will be described with reference to the manufacturing process diagram shown in FIG. Step S21 shows a granulated powder generation step. In this step, zinc oxide as a main component of the non-linear resistor, a predetermined amount of additive component, and an organic binder are mixed and defoamed, and then the mixture is spray-dried or the like. Spray dry to obtain granulated powder. Then, in the forming step shown in step S22, the granulated powder is formed into a disk-shaped formed body having a diameter of 60 mm (φ60) by a die press or the like. Step S23 shows a calcining step, in which the molded body is calcined at a temperature of 700 to 1000 ° C. to obtain a calcined body.

【0022】ステップS24は第1塗布工程を示すもの
であり、この工程では三酸化アンチモンを水系の有機バ
インダーに溶かして溶剤(以下、溶剤Aと称する)を得
て、その溶剤Aを前記仮焼体の外周面に対してローラー
塗布する。その後、ステップS25に示す第2塗布工程
では、前記仮焼体の外周面にローラー塗布された溶剤A
の表面に対して、前記図1に示す生成工程を経て得た高
抵抗層材料をローラー塗布し、ステップS26に示す焼
成工程で1000〜1300℃の温度で焼成して、外周
面に高抵抗層を形成した焼成体を得る。
Step S24 shows a first coating step. In this step, antimony trioxide is dissolved in an aqueous organic binder to obtain a solvent (hereinafter referred to as solvent A), and the solvent A is calcined. Apply the roller to the outer surface of the body. Thereafter, in a second coating process shown in step S25, the solvent A applied by roller to the outer peripheral surface of the calcined body is used.
The material of the high-resistance layer obtained through the generation process shown in FIG. 1 is applied by roller to the surface of the substrate, and baked at a temperature of 1000 to 1300 ° C. in the firing process shown in step S26 to form a high-resistance layer on the outer peripheral surface. Is obtained.

【0023】ステップS27は第3塗布工程を示すもの
であり、この工程ではガラス粉末と有機バインダーとを
混合し所定の粘度に調整して溶剤(以下、溶剤Dと称す
る)を得、この溶剤Dを前記焼成体の外周面に形成され
た高抵抗層の表面に対してローラー塗布した後、ステッ
プS28に示す焼き付け工程で550〜700℃の温度
で焼き付けする。その後、ステップS29に示す電極形
成工程に送られ、前記焼成体の両端面を平滑に研磨し、
その平滑に研磨された両端面に対して電極を設けて非直
線抵抗体の製造を完了する。
Step S27 shows a third coating step. In this step, a glass powder and an organic binder are mixed and adjusted to a predetermined viscosity to obtain a solvent (hereinafter referred to as solvent D). Is applied by a roller to the surface of the high resistance layer formed on the outer peripheral surface of the fired body, and is baked at a temperature of 550 to 700 ° C. in a baking step shown in step S28. Then, it is sent to the electrode forming step shown in step S29, and both end surfaces of the fired body are polished smoothly,
Electrodes are provided on both end surfaces polished to be smooth, thereby completing the manufacture of the non-linear resistor.

【0024】以上示したように本発明の実施の第1形態
により製造した非直線抵抗体を試料とし、その試料の外
周部(後述する外周部電極32)と中央部(後述する中央
部電極33)との電流値を各々測定し電流密度比を求め
た。
As described above, the non-linear resistor manufactured according to the first embodiment of the present invention is used as a sample, and the outer peripheral portion (the outer peripheral electrode 32 described later) and the central portion (the later described central electrode 33) of the sample are used. ) Were measured to determine the current density ratio.

【0025】なお、前記測定において、前記試料は溶剤
Aの塗布量を0〜1.0g/cm2に変化させて製造し
た。また、前記試料の両端面に形成される電極は、図3
A,Bに示すように焼成体31の両端面31a,31b
の外周部から幅10mm程度の部分に電極(以下、外周
部電極と称する)32を各々設け、その外周部電極と一
定間隔を隔てて両端面31a,31bの中央部に電極
(以下、中央部電極と称する)33を各々設けたものと
し、前記外周部電極32における電流値(以下、電流値
1と称する)と中央部電極33における電流値(以下、
電流値I2と称する)とを各々測定した。
In the above measurement, the sample was prepared by changing the amount of the solvent A applied from 0 to 1.0 g / cm 2 . The electrodes formed on both end surfaces of the sample are shown in FIG.
As shown in A and B, both end surfaces 31a and 31b of the fired body 31
(Hereinafter, referred to as an outer peripheral electrode) 32 are provided in a portion of about 10 mm width from the outer peripheral portion, and an electrode is provided at a central portion of both end surfaces 31a, 31b at a certain interval from the outer peripheral electrode.
(Hereinafter, referred to as central electrode) 33 and that each provided, current value at the outer peripheral portion electrode 32 (hereinafter, referred to as the current value I 1) and the current value at the center electrode 33 (hereinafter,
Referred to as the current value I 2) and were each measured.

【0026】前記電流密度比においては、電流値I1
電流値I2とを各々電流密度換算し電流密度比(I1
2)を求めた。なお、非直線抵抗体の外周部と中央部と
の電流値がともに均一な場合の電流密度比は「1」であ
る。非直線抵抗体の外周部と中央部との電流密度比が1
0%以内である場合(後述する図4,図5,図6では、
電流密度比が0.9〜1.1の場合)には、その非直線
抵抗体は実用上問題ないとされる。
In the current density ratio, the current value I 1 and the current value I 2 are converted into current densities, respectively, and the current density ratio (I 1 /
I 2 ) was determined. The current density ratio is “1” when the current values at the outer peripheral portion and the central portion of the nonlinear resistor are both uniform. The current density ratio between the outer peripheral portion and the central portion of the nonlinear resistor is 1
0% or less (in FIG. 4, FIG. 5, and FIG.
When the current density ratio is 0.9 to 1.1), the non-linear resistor is considered to have no practical problem.

【0027】前記測定結果を図4の溶剤Aの塗布量に対
する電流密度比特性図に示した。なお、溶剤Aを用いて
製造した前記試料と比較するために、従来法により溶剤
Aを用いないで非直線抵抗体の試料Sを製造し、試料S
の電流値I1と電流値I2とを測定し電流密度比を求め同
図4に示した。
The results of the measurement are shown in the characteristic diagram of the current density ratio with respect to the coating amount of the solvent A in FIG. In order to compare with the sample manufactured using the solvent A, a non-linear resistor sample S was manufactured according to a conventional method without using the solvent A, and the sample S was manufactured.
The current value I 1 and the current value I 2 were measured to determine the current density ratio, and the results are shown in FIG.

【0028】図4において、溶剤Aの塗布量が0.02
g/cm2を超えた試料は、電流密度比が「0.9」未
満であり、高抵抗層が試料から剥離してしまった。ま
た、溶剤Aの塗布量が0.002g/cm2未満の試料
は電流密度比が「1.1」を超えてしまい、溶剤Aによ
る効果が見られなかった。なお、従来法により作製した
試料Sの電流密度比は「1.1」をかなり超えてしまっ
た。一方、溶剤Aの塗布量が0.002〜0.02g/
cm2の試料の電流密度比は0.9〜1.1の範囲内で
あり高抵抗層が試料から剥離せず、溶剤Aによる効果が
見られた。
In FIG. 4, the coating amount of the solvent A is 0.02
In the sample exceeding g / cm 2 , the current density ratio was less than “0.9”, and the high-resistance layer was separated from the sample. Further, in the sample in which the coating amount of the solvent A was less than 0.002 g / cm 2 , the current density ratio exceeded “1.1”, and the effect of the solvent A was not observed. Note that the current density ratio of the sample S manufactured by the conventional method considerably exceeded “1.1”. On the other hand, the coating amount of the solvent A is 0.002 to 0.02 g /
The current density ratio of the sample of cm 2 was in the range of 0.9 to 1.1, the high resistance layer did not peel off from the sample, and the effect of the solvent A was observed.

【0029】ゆえに、仮焼体の外周面に高抵抗層を形成
する際に、あらかじめ三酸化アンチモンから成る溶剤A
0.002〜0.02g/cm2を前記仮焼体の外周面
に塗布することにより、従来例により作製した非直線抵
抗体と比較して、非直線抵抗体の外周部と中央部との電
流値を均一にすることができ、絶縁特性の高い且つ外部
閃絡を防止した非直線抵抗体を製造できることが確認で
きた。
Therefore, when forming the high-resistance layer on the outer peripheral surface of the calcined body, the solvent A made of antimony trioxide must be prepared in advance.
By applying 0.002 to 0.02 g / cm 2 to the outer peripheral surface of the calcined body, the outer peripheral portion and the central portion of the non-linear resistor can be compared with the non-linear resistor produced by the conventional example. It was confirmed that the current value can be made uniform, and a non-linear resistor having high insulation properties and preventing external flash can be manufactured.

【0030】次に、本発明の実施の第2形態について説
明する。なお、前記図1,図2,図3と同様なものにつ
いては、同一符号を付してその詳細な説明を省略する。
まず、前記実施の第1形態と同様に、図2のステップS
21に示す造粒粉生成工程からステップS23に示す仮
焼工程を経て仮焼体を得る。
Next, a second embodiment of the present invention will be described. The same components as those in FIGS. 1, 2, and 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.
First, as in the first embodiment, step S in FIG.
A calcined body is obtained from the granulated powder producing step shown in FIG. 21 through the calcining step shown in step S23.

【0031】その後、ステップS24に示す第1塗布工
程では、三酸化アンチモンの代わりに酸化ニッケルを用
い、その三酸化ニッケルを水系の有機バインダーに溶か
して溶剤(以下、溶剤Bと称する)を得、その溶剤Bを前
記仮焼体の外周面に対してローラー塗布する。以下、図
2のステップS25に示す第2塗布工程からステップS
29に示す電極形成工程を経て非直線抵抗体の製造を完
了する。
Thereafter, in the first coating step shown in step S24, nickel oxide is used in place of antimony trioxide, and the nickel trioxide is dissolved in an aqueous organic binder to obtain a solvent (hereinafter referred to as solvent B). The solvent B is applied by a roller to the outer peripheral surface of the calcined body. Hereinafter, the second coating process shown in step S25 of FIG.
Through the electrode forming process shown in FIG. 29, the manufacture of the non-linear resistor is completed.

【0032】以上示したように本発明の実施の第2形態
により製造した非直線抵抗体を試料とし、その試料の外
周部(後述する外周部電極32)と中央部(後述する中央
部電極33)との電流値を各々測定し電流密度比を求め
た。なお、前記測定において、前記試料は溶剤Bの塗布
量を0〜1.0g/cm2に変化させて製造し、前記実
施の第1形態における測定と同様に、外周部電極32に
おける電流値I1と中央部電極33における電流値I2
を各々測定し、電流密度比を求めた。
As described above, the non-linear resistor manufactured according to the second embodiment of the present invention is used as a sample, and the outer peripheral portion (outer peripheral electrode 32 described later) and the central portion (central electrode 33 described later) of the sample are used. ) Were measured to determine the current density ratio. In the measurement, the sample was manufactured by changing the coating amount of the solvent B to 0 to 1.0 g / cm 2 , and the current value I in the outer peripheral electrode 32 was measured similarly to the measurement in the first embodiment. 1 and the current value I 2 at the center electrode 33 were measured, and the current density ratio was determined.

【0033】前記測定結果を図5の溶剤Bの塗布量に対
する電流密度比特性図に示した。図5において、溶剤B
の塗布量が0.05g/cm2を超えた試料は、電流密
度比が0.9〜1.1の範囲内であっても、高抵抗層が
試料から剥離してしまった。また、溶剤Bの塗布量が
0.005g/cm2未満の試料は電流密度比が「1.
1」を超えてしまい、溶剤Bによる効果が見られなかっ
た。一方、溶剤Bの塗布量が0.005〜0.05g/
cm2の試料の電流密度比は0.9〜1.1の範囲内で
あり高抵抗層が試料から剥離せず、溶剤Bによる効果が
見られた。
The measurement results are shown in a current density ratio characteristic diagram with respect to the coating amount of the solvent B in FIG. In FIG.
The sample having a coating amount of more than 0.05 g / cm 2 had the high resistance layer peeled off from the sample even when the current density ratio was in the range of 0.9 to 1.1. The sample having a coating amount of the solvent B of less than 0.005 g / cm 2 has a current density ratio of “1.
1 ", and the effect of the solvent B was not observed. On the other hand, the coating amount of the solvent B is 0.005 to 0.05 g /
The current density ratio of the sample of cm 2 was in the range of 0.9 to 1.1, the high resistance layer did not peel off from the sample, and the effect of the solvent B was observed.

【0034】ゆえに、仮焼体の外周面に高抵抗層を形成
する際に、あらかじめ酸化ニッケルから成る溶剤B0.
005〜0.05g/cm2を前記仮焼体の外周面に塗
布することにより、従来例により作製した非直線抵抗体
と比較して、非直線抵抗体の外周部と中央部との電流値
を均一にすることができ、絶縁特性の高い且つ外部閃絡
を防止した非直線抵抗体を製造できることが確認でき
た。
Therefore, when forming the high resistance layer on the outer peripheral surface of the calcined body, the solvent B0.
By applying 005 to 0.05 g / cm 2 to the outer peripheral surface of the calcined body, the current value between the outer peripheral part and the central part of the non-linear resistance body is compared with that of the non-linear resistance body manufactured by the conventional example. Was confirmed to be uniform, and it was confirmed that a non-linear resistor having high insulation properties and preventing external flashing could be manufactured.

【0035】次に、本発明の実施の第3形態について説
明する。なお、図1,図2,図3と同様なものについて
は、同一符号を付してその詳細な説明を省略する。ま
ず、前記実施の第1形態と同様に、図2のステップS2
1に示す造粒粉生成工程からステップS23に示す仮焼
工程を経て仮焼体を得る。
Next, a third embodiment of the present invention will be described. The same components as those in FIGS. 1, 2, and 3 are denoted by the same reference numerals, and detailed description thereof is omitted. First, as in the first embodiment, step S2 in FIG.
A calcined body is obtained from the granulated powder producing step shown in FIG. 1 through the calcining step shown in step S23.

【0036】その後、ステップS24に示す第1塗布工
程では、三酸化アンチモンの代わりに二酸化ケイ素を用
い、その二酸化ケイ素を水系の有機バインダーに溶かし
て溶剤(以下、溶剤Cと称する)を得、その溶剤Cを前記
仮焼体の外周面に対してローラー塗布する。以下、図2
のステップS25に示す第2塗布工程からステップS2
9に示す電極形成工程を経て非直線抵抗体の製造を完了
する。
Thereafter, in the first coating step shown in step S24, silicon dioxide is used instead of antimony trioxide, and the silicon dioxide is dissolved in an aqueous organic binder to obtain a solvent (hereinafter referred to as solvent C). The solvent C is applied by roller to the outer peripheral surface of the calcined body. Hereinafter, FIG.
From the second coating process shown in step S25 to step S2
Through the electrode forming process shown in FIG. 9, the manufacture of the non-linear resistor is completed.

【0037】以上示したように本発明の実施の第3形態
により製造した非直線抵抗体を試料とし、その試料の外
周部(後述する外周部電極32)と中央部(後述する中央
部電極33)との電流値を各々測定し電流密度比を求め
た。なお、前記測定において、前記試料は溶剤Cの塗布
量を0〜1.0g/cm2に変化させて製造し、前記実
施の第1形態における測定と同様に、外周部電極32に
おける電流値I1と中央部電極33における電流値I2
を各々測定し、電流密度比を求めた。
As described above, the non-linear resistor manufactured according to the third embodiment of the present invention is used as a sample, and the outer peripheral portion (the outer peripheral electrode 32 described later) and the central portion (the later described central electrode 33) of the sample are used. ) Were measured to determine the current density ratio. In the measurement, the sample was manufactured by changing the coating amount of the solvent C to 0 to 1.0 g / cm 2 , and the current value I in the outer peripheral electrode 32 was measured similarly to the measurement in the first embodiment. 1 and the current value I 2 at the center electrode 33 were measured, and the current density ratio was determined.

【0038】前記測定結果を図6の溶剤Cの塗布量に対
する電流密度比特性図に示した。図6において、溶剤C
の塗布量が0.01g/cm2を超えた試料の電流密度
比は「0.9」未満であり、特に溶剤Cの塗布量が0.
02g/cm2を超えた試料においては、高抵抗層が試
料から剥離してしまった。また、溶剤Cの塗布量が0.
002g/cm2未満の試料は電流密度比が「1.1」
を超えてしまい、溶剤Cによる効果が見られなかった。
一方、溶剤Cの塗布量が0.002〜0.01g/cm
2の試料の電流密度比は0.9〜1.1の範囲内であり
高抵抗層が試料から剥離せず、溶剤Cによる効果が見ら
れた。
The results of the measurement are shown in the current density ratio characteristic diagram with respect to the coating amount of the solvent C in FIG. In FIG.
The current density ratio of the sample in which the coating amount of exceeds 0.01 g / cm 2 was less than “0.9”, and especially the coating amount of
In the sample exceeding 02 g / cm 2 , the high resistance layer was peeled off from the sample. Further, the amount of the solvent C to be applied is 0.
The sample having a current density ratio of “1.1” or less than 002 g / cm 2
And the effect of the solvent C was not observed.
On the other hand, the coating amount of the solvent C is 0.002 to 0.01 g / cm.
The current density ratio of the sample No. 2 was in the range of 0.9 to 1.1, the high resistance layer did not peel off from the sample, and the effect of the solvent C was observed.

【0039】ゆえに、仮焼体の外周面に高抵抗層を形成
する際に、あらかじめ二酸化ケイ素から成る溶剤C0.
002〜0.01g/cm2を前記仮焼体の外周面に塗
布することにより、従来例により作製した非直線抵抗体
と比較して、非直線抵抗体の外周部と中央部との電流値
を均一にすることができ、絶縁特性の高い且つ外部閃絡
を防止した非直線抵抗体を製造できることが確認でき
た。
Therefore, when the high resistance layer is formed on the outer peripheral surface of the calcined body, the solvent C0.
By applying 002 to 0.01 g / cm 2 to the outer peripheral surface of the calcined body, the current value between the outer peripheral portion and the central portion of the non-linear resistor was compared with that of the non-linear resistor produced by the conventional example. Was confirmed to be uniform, and it was confirmed that a non-linear resistor having high insulation properties and preventing external flashing could be manufactured.

【0040】[0040]

【発明の効果】以上示した本発明によれば、仮焼体の外
周面に三酸化アンチモン,酸化ニッケル,二酸化ケイ素
の何れかから成る溶剤を塗布してから、高抵抗層材料を
塗布し焼成して、外周面に高抵抗層を形成した焼成体を
得ることにより、非直線抵抗体全体の粒径を均一にし
て、非直線抵抗体全体に流れる電流を均一にするととと
もに、前記高抵抗層が焼成体から剥離することを防止す
ることができるため、非直線抵抗体の製造における歩留
まりが向上する。
According to the present invention as described above, after applying a solvent made of any one of antimony trioxide, nickel oxide and silicon dioxide to the outer peripheral surface of the calcined body, applying a high-resistance layer material and firing. Then, by obtaining a fired body having a high resistance layer formed on the outer peripheral surface, the particle diameter of the entire non-linear resistor is made uniform, the current flowing through the entire non-linear resistor is made uniform, and the high resistance layer is formed. Can be prevented from peeling off from the fired body, so that the yield in the production of the non-linear resistor is improved.

【0041】ゆえに、非直線抵抗体全体に対して均一に
電流を流すことができ熱安定性が向上し、雷サージ等に
よる外部閃絡を抑制した非直線抵抗体を得ることができ
る。
Therefore, a current can be uniformly supplied to the entire non-linear resistor, the thermal stability can be improved, and a non-linear resistor in which an external flash due to a lightning surge or the like is suppressed can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1〜第3形態における非直線
抵抗体の高抵抗層材料の生成工程図。
FIG. 1 is a diagram illustrating a process of forming a high-resistance layer material of a non-linear resistor according to first to third embodiments of the present invention.

【図2】本発明の実施の第1〜第3形態における非直線
抵抗体の製造工程図。
FIG. 2 is a manufacturing process diagram of a non-linear resistor according to the first to third embodiments of the present invention.

【図3】本発明の実施の第1〜第3形態における試料の
正面図および上面図。
FIG. 3 is a front view and a top view of a sample according to the first to third embodiments of the present invention.

【図4】本発明の実施の第1形態における溶剤Aの塗布
量に対する電流密度比特性図。
FIG. 4 is a graph showing a current density ratio characteristic with respect to a coating amount of a solvent A according to the first embodiment of the present invention.

【図5】本発明の実施の第2形態における溶剤Bの塗布
量に対する電流密度比特性図。
FIG. 5 is a current density ratio characteristic diagram with respect to an applied amount of a solvent B according to a second embodiment of the present invention.

【図6】本発明の実施の第3形態における溶剤Cの塗布
量に対する電流密度比特性図。
FIG. 6 is a graph showing a current density ratio characteristic with respect to an applied amount of a solvent C according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

S11…混合粉体生成工程 S12…第1粉砕工程 S13…乾燥工程 S14…仮焼工程 S15…第2粉砕工程 S16…混練工程 S21…造粒粉生成工程 S22…成形工程 S23…仮焼工程 S24…第1塗布工程 S25…第2塗布工程 S26…焼成工程 S27…第3塗布工程 S28…焼き付け工程 S29…電極形成工程 31…焼成体 31a,31b…端面 32…外周部電極 33…中央部電極 S11: mixed powder generating step S12: first pulverizing step S13: drying step S14: calcining step S15: second pulverizing step S16: kneading step S21: granulated powder generating step S22: forming step S23: calcining step S24 ... First coating step S25 ... Second coating step S26 ... Firing step S27 ... Third coating step S28 ... Baking step S29 ... Electrode forming step 31 ... Fired bodies 31a and 31b ... End surface 32 ... Outer peripheral electrode 33 ... Center electrode

フロントページの続き (72)発明者 中田 憲明 東京都品川区大崎2丁目1番17号 株式会 社明電舎内Continued on the front page (72) Inventor Noriaki Nakata 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非直線抵抗体の主成分である酸化亜鉛,
添加物成分,有機バインダーを混合し乾燥して造粒粉を
得た後、その造粒粉を円盤状に成形して得た成形体を仮
焼して仮焼体を得、その仮焼体の外周面に高抵抗層材料
を塗布し焼成して外周面に高抵抗層を設けた焼成体を得
た後、その焼成体の両端面に電極を設けたことを特徴と
する非直線抵抗体の製造方法において、 前記仮焼体の外周面には三酸化アンチモン,酸化ニッケ
ル,二酸化ケイ素の何れかから成る溶剤を塗布した後、
前記高抵抗層材料を塗布したことを特徴とする非直線抵
抗体の製造方法。
1. A zinc oxide which is a main component of a non-linear resistor,
After the additive component and the organic binder are mixed and dried to obtain a granulated powder, the granulated powder is formed into a disc shape, and the obtained compact is calcined to obtain a calcined body. A non-linear resistor characterized in that a high-resistance layer material is applied to the outer peripheral surface of the non-linear resistor and fired to obtain a fired body having a high-resistance layer provided on the outer peripheral surface, and electrodes are provided on both end faces of the fired body. In the manufacturing method, after applying a solvent composed of any of antimony trioxide, nickel oxide and silicon dioxide to the outer peripheral surface of the calcined body,
A method for manufacturing a non-linear resistor, comprising applying the high-resistance layer material.
【請求項2】 前記仮焼体の外周面に三酸化アンチモン
を0.002〜0.02g/cm2塗布してから、前記
高抵抗層材料を塗布したことを特徴とする請求項1記載
の非直線抵抗体の製造方法。
2. The high-resistance layer material according to claim 1, wherein 0.002 to 0.02 g / cm 2 of antimony trioxide is applied to the outer peripheral surface of the calcined body. Manufacturing method of non-linear resistor.
【請求項3】 前記仮焼体の外周面に酸化ニッケルを
0.005〜0.05g/cm2塗布してから、前記高
抵抗層材料を塗布したことを特徴とする請求項1記載の
非直線抵抗体の製造方法。
3. The method according to claim 1, wherein nickel oxide is applied to the outer peripheral surface of the calcined body in an amount of 0.005 to 0.05 g / cm 2 , and then the high-resistance layer material is applied. Manufacturing method of linear resistor.
【請求項4】 前記仮焼体の外周面に二酸化ケイ素を
0.002〜0.01g/cm2塗布してから、前記高
抵抗層材料を塗布したことを特徴とする請求項1記載の
非直線抵抗体の製造方法。
4. The method according to claim 1, wherein the calcined body is coated with silicon dioxide in an amount of 0.002 to 0.01 g / cm 2 and then coated with the high-resistance layer material. Manufacturing method of linear resistor.
JP20207997A 1997-07-29 1997-07-29 Method for manufacturing non-linear resistor Expired - Lifetime JP3728881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20207997A JP3728881B2 (en) 1997-07-29 1997-07-29 Method for manufacturing non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20207997A JP3728881B2 (en) 1997-07-29 1997-07-29 Method for manufacturing non-linear resistor

Publications (2)

Publication Number Publication Date
JPH1145801A true JPH1145801A (en) 1999-02-16
JP3728881B2 JP3728881B2 (en) 2005-12-21

Family

ID=16451619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20207997A Expired - Lifetime JP3728881B2 (en) 1997-07-29 1997-07-29 Method for manufacturing non-linear resistor

Country Status (1)

Country Link
JP (1) JP3728881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243607A (en) * 1999-02-18 2000-09-08 Meidensha Corp Manufacture of nonlinear resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243607A (en) * 1999-02-18 2000-09-08 Meidensha Corp Manufacture of nonlinear resistor

Also Published As

Publication number Publication date
JP3728881B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JPH08306506A (en) High resistance material for zinc oxide varistor, zno varistor using it and their manufacturing method
JPH1145801A (en) Manufacture of nonlinear resistor
JPS59172201A (en) Method of forming insulating film of voltage nonlinear resistor element
JP3313533B2 (en) Zinc oxide-based porcelain composition and method for producing the same
JP2978009B2 (en) Method of manufacturing voltage non-linear resistor
JP2004071660A (en) Manufacturing method of voltage nonlinear resistor
JPH0528883B2 (en)
JP4048634B2 (en) Method for manufacturing non-linear resistor
JP2001076904A (en) Manufacture of voltage nonlinear resistive element
JPH0253922B2 (en)
JP2003332107A (en) Method for fabricating nonlinear resistor
JPH07130506A (en) Manufacture of resisting body nonlinear in voltage
JPH0997706A (en) Method of manufacturing non-linear resistor
JPH04188802A (en) Manufacture of zinc oxide non-linear resistor
JPH04196591A (en) Manufacture of barium titanate semiconductor porcelain
JPH0516641B2 (en)
JPS5831721B2 (en) Voltage nonlinear resistance element and its manufacturing method
JPH0476481B2 (en)
JPS62237707A (en) Manufacture of voltage nonlinear resistance element
JPS62101002A (en) Manufacture of nonlinear resistance element
JPH07263204A (en) Voltage nonlinear resistor and its production
JP2004335565A (en) Method of manufacturing voltage nonlinear resistor
JPH03250605A (en) Manufacture of voltage non-linearity resistor
JP2000235905A (en) Manufacture of nonlinear resistor
JPH10223410A (en) Production of voltage nonlinear resistor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

EXPY Cancellation because of completion of term