JPH1143373A - Production of composite material - Google Patents
Production of composite materialInfo
- Publication number
- JPH1143373A JPH1143373A JP9212559A JP21255997A JPH1143373A JP H1143373 A JPH1143373 A JP H1143373A JP 9212559 A JP9212559 A JP 9212559A JP 21255997 A JP21255997 A JP 21255997A JP H1143373 A JPH1143373 A JP H1143373A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- phase particles
- phase
- composite
- calcined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Glanulating (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【技術分野】本発明は,複数種類の材料を組み合わせて
構成された複合体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite formed by combining a plurality of types of materials.
【0002】[0002]
【従来技術】異なる2種類以上の材料を組み合わせるこ
とにより,単一材では充分発現でない特性,例えば耐磨
耗性,耐酸化性,耐腐食性,耐熱性,超塑性変形性,電
気や熱の伝導性,機械的強度等の特性に優れた材料を作
製することができる。また,単一材のみでは発現できな
い特性,例えば磁性,自己潤滑性,光学的特性,圧電
性,熱電特性,絶縁性,熱伝導性,断熱性,誘電性,膨
張性,快削性,触媒又はフィルタ機能,電気伝導性等の
新機能が付与された材料を作製することができる。そし
て,所望の特性を実現させるため,種々の材料を組み合
わせた複合材料が検討されている。2. Description of the Related Art By combining two or more different materials, properties that cannot be fully exhibited by a single material, such as abrasion resistance, oxidation resistance, corrosion resistance, heat resistance, superplastic deformation, electricity and heat A material having excellent properties such as conductivity and mechanical strength can be manufactured. In addition, properties that cannot be exhibited by a single material alone, such as magnetism, self-lubricating properties, optical properties, piezoelectricity, thermoelectric properties, insulating properties, thermal conductivity, heat insulating properties, dielectric properties, expandability, free-cutting properties, catalysts, Materials with new functions such as a filter function and electric conductivity can be manufactured. In order to realize desired characteristics, composite materials combining various materials are being studied.
【0003】特に,母材となるマトリックス中に異種の
材料よりなる第2相粒子を三次元ネットワーク状に分散
させた複合材料は,マトリックス側が機械的強度を,分
散された第2相粒子が各種特性を担うため,単一材では
得難い特性を持った幅広い材料の設計を可能とすること
ができる。[0003] In particular, in a composite material in which second-phase particles made of a different material are dispersed in a matrix serving as a base material in a three-dimensional network, the matrix side has mechanical strength, and the dispersed second-phase particles are of various types. Because it bears the characteristics, it is possible to design a wide range of materials with characteristics that cannot be obtained with a single material.
【0004】従来,このような複合材料として,マトリ
ックス用の材料に,異種の材料よりなる第2相粒子が連
続又は不連続でかつ三次元ネットワーク状に分散したセ
ラミック焼結体が提案されていた(特開昭63−968
83号,特開平5−332241号,特開平3−122
066号,特開平4−37667号,特公平4−618
32号)。上記セラミック焼結体においては,マトリッ
クス中に上記第2相粒子が連続的に分布することとな
る。このため,マトリックス中に均一に第2相粒子が分
散したものと比較して,該第2相粒子の特性を強く発現
させることができる。Heretofore, as such a composite material, there has been proposed a ceramic sintered body in which second phase particles made of a different material are dispersed in a continuous or discontinuous three-dimensional network form in a matrix material. (JP-A-63-968)
No. 83, JP-A-5-332241, JP-A-3-122
066, JP-A-4-37667, JP-B-4-618
No. 32). In the ceramic sintered body, the second phase particles are continuously distributed in the matrix. For this reason, the characteristics of the second phase particles can be more strongly developed as compared with the case where the second phase particles are uniformly dispersed in the matrix.
【0005】このようなセラミック焼結体の例として
は,例えば,特開昭63−96883号,特開平5−3
32241号,特公平4−61832号公報に開示され
た複合材料として,通電により発熱するセラミックヒー
タ用の焼結体を挙げることができる。ここに上記セラミ
ック焼結体は,粗粒子よりなる絶縁性セラミック原料粒
子と,微細粒子よりなる導電性粉末とを混合し,得られ
た混合物を成形,焼結することにより作製されていた。Examples of such a ceramic sintered body include, for example, JP-A-63-96883 and JP-A-5-3.
As a composite material disclosed in Japanese Patent Publication No. 32241 and Japanese Patent Publication No. 4-61832, there can be mentioned a sintered body for a ceramic heater which generates heat when energized. Here, the ceramic sintered body has been manufactured by mixing insulating ceramic raw material particles composed of coarse particles and conductive powder composed of fine particles, and molding and sintering the resulting mixture.
【0006】この製造方法によれば,製造プロセス中
に,より粒径の大きい上記絶縁性セラミック原料粒子の
表面を上記導電性粉末が取り囲むように付着する。そし
て,この状態が保持されたまま,両者は焼結される。よ
って,この製造方法によれば,マトリックスに対し,第
2相粒子が連続的に三次元ネットワーク状に分散したセ
ラミック焼結体を得ることができる。According to this manufacturing method, the conductive powder adheres so as to surround the surface of the insulating ceramic raw material particles having a larger particle diameter during the manufacturing process. Then, both are sintered while this state is maintained. Therefore, according to this manufacturing method, it is possible to obtain a ceramic sintered body in which the second phase particles are continuously dispersed in a three-dimensional network with respect to the matrix.
【0007】例えば,導電性粉末であるMoSi2 は強
度が低く,1000℃以上の高温域で分解しやすいとい
う性質を有している。よって,この材料のみで構成され
たセラミック焼結体も同様の性質を有することとなる。
該MoSi2 の強度の低さ,中温〜高温で容易に分解す
るという特性を補うような材料を選択し(例えば窒化珪
素),両者を用いて複合材料よりなる焼結体を作製した
場合には,マトリックスがMoSi2 の欠点を補うた
め,高強度で,高温において安定なセラミック焼結体を
得ることができる。For example, MoSi 2, which is a conductive powder, has a low strength and is easily decomposed at a high temperature of 1000 ° C. or higher. Therefore, a ceramic sintered body composed of only this material has the same properties.
If a material that complements the low strength of MoSi 2 and easily decomposes at medium to high temperatures is selected (for example, silicon nitride), and a sintered body made of a composite material is produced using both materials, Since the matrix compensates for the disadvantage of MoSi 2 , a ceramic sintered body having high strength and stable at high temperatures can be obtained.
【0008】[0008]
【解決しようとする課題】しかしながら,上記製造方法
にて得られたセラミック焼結体には以下に示す問題点が
ある。即ち,図2に示すごとく,上記製造方法によって
作製されたセラミック焼結体9は,確かにマトリックス
90中に第2相粒子が形成した連続三次元ネットワーク
902を有しているが,該三次元ネットワーク902の
幅が不均一である。更に,部分的に切断部99が形成さ
れている。なお,同図における符号901はマトリック
スを形成する結晶粒である。However, the ceramic sintered body obtained by the above manufacturing method has the following problems. That is, as shown in FIG. 2, the ceramic sintered body 9 manufactured by the above-described manufacturing method has a continuous three-dimensional network 902 in which the second phase particles are formed in the matrix 90. The width of the network 902 is not uniform. Further, a cut portion 99 is partially formed. Note that reference numeral 901 in the figure denotes crystal grains forming a matrix.
【0009】このようなセラミック焼結体9においては
第2相粒子の特性が充分発現しないおそれがある。これ
は,連続三次元ネットワーク902が切断されることに
より,第2相粒子が連続的に分散することによって発現
していた特性が発現し難くなるか,又は特性の発現に不
均一さを生じるためである。In such a ceramic sintered body 9, there is a possibility that the characteristics of the second phase particles may not be sufficiently exhibited. This is because, when the continuous three-dimensional network 902 is cut, the characteristics that have been developed due to the continuous dispersion of the second phase particles are hardly developed, or the characteristics are unevenly generated. It is.
【0010】例えば,上述したセラミックヒータとして
使用可能なセラミック焼結体は,導電性を持った第2相
粒子の連続三次元ネットワークが導電パスとなり,ここ
に電流が流れることにより発熱する。仮に三次元ネット
ワークが部分的に切断されている場合には,切断部分の
抵抗が高いことから,ここにおいて異常発熱が生じてし
まう。その結果,第2相粒子の軟化,融解等が発生し,
ますます連続三次元ネットワークの切断部が拡大し,こ
れが更なる抵抗の増加を招くという現象が生じてしまう
おそれがある。このようなセラミック焼結体は,時間と
共に電気抵抗値が増大し,時間と共に発熱温度が上昇す
るおそれがある。For example, in the above-described ceramic sintered body that can be used as a ceramic heater, a continuous three-dimensional network of conductive second-phase particles serves as a conductive path, and generates heat when a current flows therethrough. If the three-dimensional network is partially cut, abnormal heat generation occurs here because the cut portion has high resistance. As a result, softening and melting of the second phase particles occur,
There is a possibility that the cut portion of the continuous three-dimensional network is further enlarged, which causes a further increase in resistance. In such a ceramic sintered body, the electric resistance value may increase with time, and the heat generation temperature may increase with time.
【0011】この問題を解決する一つの方法として,上
記セラミック焼結体を作製する際に第2相粒子の添加混
合量をより増大させることにより,連続三次元ネットワ
ークの幅を太く,確実に形成できるようにすることも考
えられる。しかし,このような場合には焼結性が大幅に
低下したり,場合によっては焼結が不能となることがあ
る。As one method of solving this problem, the width of the continuous three-dimensional network can be made large and surely formed by increasing the amount of the second phase particles added and mixed when producing the ceramic sintered body. It would be possible to do so. However, in such a case, the sinterability is greatly reduced, and in some cases, sintering becomes impossible.
【0012】また,マトリックス結晶の粒界相に沿っ
て,連続三次元ネットワーク状態に分散した第2相粒子
の幅が増大することから,セラミック焼結体の強度や耐
衝撃性,耐熱衝撃性,耐酸化性,耐腐食性を大きく低下
させてしまうおそれもある。また,応力が加わった場合
の破壊起点となるクローズドポアが形成されやすく,機
械強度を低下させてしまうおそれもある。即ち,セラミ
ック焼結体の機械的・力学的強度,熱的特性,化学的特
性,電気的特性,光学的特性を低下させてしまうおそれ
がある。更に,所定の特性値が得られ難くなるおそれも
ある。Further, since the width of the second phase particles dispersed in a continuous three-dimensional network state increases along the grain boundary phase of the matrix crystal, the strength, impact resistance, thermal shock resistance, Oxidation resistance and corrosion resistance may be significantly reduced. Further, closed pores serving as fracture starting points when a stress is applied are likely to be formed, and there is a possibility that mechanical strength is reduced. That is, the mechanical and mechanical strength, thermal properties, chemical properties, electrical properties, and optical properties of the ceramic sintered body may be reduced. Further, it may be difficult to obtain a predetermined characteristic value.
【0013】ところで,SiO2,アルミナ,ジルコニ
ア等のような無機絶縁物の表面を導電性粒子で被覆した
導電性粉末,又は軟磁性材料等のような導電性粒子の表
面を絶縁性粒子で被覆した絶縁性粉末や,無機材料の表
面を活性金属で被覆した触媒材料等のような複合粉末,
又はその圧密体が提案されている。このような複合粉末
を作製する場合,被覆される粉末と第2相粒子との粒径
比をできるだけ大きくする必要があるが,必要な粒径比
が得られ難い場合がある。また,所定の粒径比を得るた
めに粒子を造粒する方法が知られているが,被覆する工
程で造粒した粉末が壊れ易いという問題があった。By the way, the surface of an inorganic insulating material such as SiO2, alumina, zirconia or the like is coated with conductive particles, or the surface of a conductive particle such as a soft magnetic material is coated with insulating particles. Composite powders such as insulating powders and catalyst materials in which the surface of an inorganic material is coated with an active metal;
Alternatively, a compact thereof has been proposed. When preparing such a composite powder, it is necessary to increase the particle size ratio between the powder to be coated and the second phase particles as much as possible, but it may be difficult to obtain the required particle size ratio. Further, a method of granulating particles to obtain a predetermined particle size ratio is known, but there is a problem that the powder granulated in the coating step is easily broken.
【0014】本発明は,かかる問題点に鑑み,必要な粒
径比を有する2種類以上の材料の組み合わせが容易にで
き,かつ第2相粒子によって均一に被覆することがで
き,更に第2相粒子よりなる幅が均一かつ連続的に形成
された三次元ネットワークを少ない添加量で確実に形成
することができ,第2相粒子の特性の発現と機械的・力
学的強度,熱的特性,電気的特性,化学的特性,光学的
特性とが並立した,複合体の製造方法を提供しようとす
るものである。In view of the above problems, the present invention makes it possible to easily combine two or more kinds of materials having a required particle size ratio, and to uniformly coat with the second phase particles. A three-dimensional network with a uniform and continuous width consisting of particles can be reliably formed with a small amount of addition, and the characteristics and mechanical and mechanical strength of the second phase particles, thermal characteristics, electrical characteristics, It is an object of the present invention to provide a method for producing a composite in which physical properties, chemical properties, and optical properties are at the same time.
【0015】[0015]
【課題の解決手段】請求項1の発明は,マトリックス用
の材料からなる第1相粒子を,又は焼結助剤と共に,も
しくは更に第2相粒子を加え,造粒して粒状体となし,
該粒状体を仮焼成して,マトリックスの第1相粒子の一
部が焼結し合った多孔状の仮焼粒子となし,該仮焼粒子
に第2相粒子を添加,混合することを特徴とする複合体
の製造方法にある。According to the first aspect of the present invention, a first phase particle composed of a matrix material, or a sintering aid, or further a second phase particle is added and granulated to form a granular material.
The granular material is calcined to form porous calcined particles in which part of the first phase particles of the matrix are sintered together, and the second phase particles are added to the calcined particles and mixed. And a method for producing a composite.
【0016】本発明にかかる「造粒」とは,第1相粒子
のみ,又は第1相粒子と焼結助剤とを混合したもの,も
しくはこれらに第2相粒子を混合したものを,所定の大
きさに凝集させて,顆粒状の粒状体を得る操作を示して
いる。The term "granulation" according to the present invention means that only the first phase particles, or a mixture of the first phase particles and a sintering aid, or a mixture of the first phase particles and the second phase particles is used. This shows an operation for obtaining a granular material by agglomerating to a size of.
【0017】また,上記造粒については,解砕による造
粒,噴霧造粒,攪拌造粒,転動造粒,押出造粒,破砕造
粒等を採用することができる。また,一般的な噴霧造粒
には,高圧ノズル法,回転円盤法等がある。また,造粒
に用いるバインダーとしては,カルボキシルメチルセル
ロース(CMC),メチルセルロース,ポリビニルアル
コール,ポリビニルアセテート,ポリアクリルアミド共
重合体等を用いることができる。As the above granulation, granulation by crushing, spray granulation, stirring granulation, tumbling granulation, extrusion granulation, crushing granulation and the like can be employed. Further, general spray granulation includes a high-pressure nozzle method, a rotating disk method and the like. In addition, as a binder used for granulation, carboxymethyl cellulose (CMC), methyl cellulose, polyvinyl alcohol, polyvinyl acetate, polyacrylamide copolymer, or the like can be used.
【0018】なお,この造粒にて得られた粒状体,即ち
造粒粉151の状態を図3(a)〜(c)に例示する。
同図の(a)には,第1相粒子101が他の第1相粒子
101とバインダ141又はファンデルワールス力にて
物理的又は化学的に凝集(懸垂)して接合することによ
り形成された造粒粉151を示す。同図の(b)には,
第1相粒子101が他の第1相粒子101とバインダー
141にてコーティングされつつ,互いに接合して形成
された造粒粉151を示す。同図の(c)は,(a)と
同様の状態にある造粒粉151であるが,部分的に焼結
助剤13と第1相粒子101とが接合されている。FIGS. 3A to 3C show the state of the granules obtained by the granulation, that is, the state of the granulated powder 151. FIG.
In FIG. 2A, the first phase particles 101 are formed by physically or chemically aggregating (suspending) the other first phase particles 101 with the binder 141 or van der Waals force and joining them. The granulated powder 151 is shown. (B) of FIG.
The granulated powder 151 formed by bonding the first phase particles 101 to each other while being coated with the other first phase particles 101 and the binder 141 is shown. FIG. 3C shows the granulated powder 151 in the same state as in FIG. 3A, but the sintering aid 13 and the first phase particles 101 are partially joined.
【0019】次に,上記第1相粒子としては各種セラミ
ック材料を用いることができる。又,金属材料を使用す
ることもできる。また,上記第2相粒子としては,電気
伝導性,熱伝導性,絶縁性,断熱性,誘電性,磁性,耐
磨耗性,耐酸化性,耐クリープ性,耐腐食性,耐熱性,
自己潤滑性,超塑性変形性,光学的特性,圧電性,熱電
特性,膨張性,快削性等の特性を発現可能な各種材料を
使用することができる。Next, various ceramic materials can be used as the first phase particles. Also, a metal material can be used. The second phase particles include electrical conductivity, thermal conductivity, insulation, heat insulation, dielectric properties, magnetism, abrasion resistance, oxidation resistance, creep resistance, corrosion resistance, heat resistance,
Various materials capable of exhibiting characteristics such as self-lubricating properties, superplastic deformation properties, optical properties, piezoelectric properties, thermoelectric properties, expandability, and free-cutting properties can be used.
【0020】これらの第1相粒子と第2相粒子との組み
合わせとしては,金属元素,希土類元素のうちから選択
される一種以上の珪化物,窒化物,炭化物,硼化物,硫
化物及び酸化物の組み合わせを挙げることができる。ま
た,マトリックス用の第1相粒子として金属元素を含む
材料を用いる場合には,周期律表の第1〜第6周期の中
から選択される一種以上の純金属及び合金と,上記セラ
ミックス材料の組み合わせを挙げることができる。The combination of the first phase particles and the second phase particles includes one or more of silicide, nitride, carbide, boride, sulfide and oxide selected from a metal element and a rare earth element. Can be cited. When a material containing a metal element is used as the first phase particles for the matrix, one or more pure metals and alloys selected from the first to sixth periods of the periodic table and one or more of the above ceramic materials are used. Combinations can be mentioned.
【0021】また,好適な例を以下に,(第1相粒子)
−(第2相粒子)という順序で記載する。即ち,窒化珪
素−炭化珪素,窒化珪素−窒化珪素,窒化珪素−シリ
カ,窒化珪素−酸化ジルコニア,窒化珪素−窒化硼素,
窒化珪素−窒化チタン,窒化珪素−硼化チタン,窒化珪
素−硼化ジルコニア,窒化珪素−二珪化モリブデン,窒
化珪素−イットリア,窒化珪素−酸化イットリビュー
ム,窒化珪素−フェライト磁石,窒化珪素−炭化チタ
ン,窒化珪素−窒化バナジウム,炭化珪素−アルミナ,
炭化珪素−窒化アルミ,炭化チタン−炭化珪素,アルミ
ナ−ジルコニア,アルミナ−ジルコン,アルミナ−窒化
珪素,アルミナ−ダイヤモンド,アルミナ−窒化アル
ミ,ムライト−アルミナ,ジルコニア−酸化カルシウ
ム,ジルコニア−イットリア,ジルコニア−酸化マグネ
シウム,ムライト−ジルコニア,サイアロン−炭化珪
素,ジルコニア−アルミナ,ガラス−炭化珪素,ガラス
−アルミナ,ガラス−カーボン,硼珪酸ガラス−アルミ
ナ,チタン酸ジルコン酸鉛−炭化珪素,チタン酸ジルコ
ン酸鉛−チタン酸バリウム,チタン酸鉛−チタン酸スト
ロンチウム,コーディエライト−ムライト,コーディエ
ライト−石英,コーディエライト−フェライト磁石,ア
ルミニウム−炭化珪素,ジルコニア−ニッケル・クロム
合金等を挙げることができる。Preferred examples are as follows (first phase particles)
-(Second phase particles). That is, silicon nitride-silicon carbide, silicon nitride-silicon nitride, silicon nitride-silica, silicon nitride-zirconia, silicon nitride-boron nitride,
Silicon nitride-titanium nitride, silicon nitride-titanium boride, silicon nitride-zirconia, silicon nitride-molybdenum disilicide, silicon nitride-yttria, silicon nitride-yttrium oxide, silicon nitride-ferrite magnet, silicon nitride-carbonized Titanium, silicon nitride-vanadium nitride, silicon carbide-alumina,
Silicon carbide-aluminum nitride, titanium carbide-silicon carbide, alumina-zirconia, alumina-zircon, alumina-silicon nitride, alumina-diamond, alumina-aluminum nitride, mullite-alumina, zirconia-calcium oxide, zirconia-yttria, zirconia-oxidation Magnesium, mullite-zirconia, sialon-silicon carbide, zirconia-alumina, glass-silicon carbide, glass-alumina, glass-carbon, borosilicate glass-alumina, lead zirconate titanate-silicon carbide, lead zirconate titanate-titanium Barium oxide, lead titanate-strontium titanate, cordierite-mullite, cordierite-quartz, cordierite-ferrite magnet, aluminum-silicon carbide, zirconia-nickel-chromium alloy, and the like. That.
【0022】また,上記第1相粒子としては,より粒径
の小さいものを使用することが好ましい。これにより第
1相粒子の焼結性が高くなり,仮焼粒子の保形性を高め
ることができる。よって確実に連続三次元ネットワーク
の発達した緻密性の高い焼結体を得ることができる。な
お,上記第1相粒子は造粒して粒状体とするため,第2
相粒子との粒径比が小さくとも,三次元ネットワークを
形成し難くするような問題は生じない。また,仮焼粒子
の凝集力は非常に高いため,ボールミルやアトライタの
ような強い力の加わる混合方法,更には高い剪断圧力が
付加されても,上記仮焼粒子は破壊され難い。It is preferable to use particles having a smaller particle size as the first phase particles. Thereby, the sinterability of the first phase particles is increased, and the shape retention of the calcined particles can be enhanced. Therefore, a highly dense sintered body in which a continuous three-dimensional network is developed can be reliably obtained. In addition, since the first phase particles are granulated into granules,
Even if the particle size ratio with the phase particles is small, there is no problem that it is difficult to form a three-dimensional network. Further, since the cohesive force of the calcined particles is very high, the calcined particles are hard to be broken even by a mixing method in which a strong force is applied such as a ball mill or an attritor or a high shear pressure is applied.
【0023】また,本発明にかかる「仮焼」とは,図4
(a)に示すごとく,上記造粒により作製された粒状体
(造粒粉)における,第1相粒子11と他の第1相粒子
11との接触点110を中心に固相反応を起こさせて両
者を接着し,凝集性の高い仮焼粒子152となすことを
示している。The “calcination” according to the present invention refers to FIG.
As shown in (a), a solid phase reaction is caused around a contact point 110 between the first phase particle 11 and another first phase particle 11 in the granular material (granulated powder) produced by the above granulation. Thus, the two particles are bonded to each other to form the calcined particles 152 having high cohesiveness.
【0024】又は,図4(b),(c)に示すごとく,
濡れ性がよく融点の低い材料である焼結助剤により第1
相粒子11を他の第1相粒子11に接着させることによ
り凝集性の高い仮焼粒子152となすことを示してい
る。そして,同図(b)のように焼結助剤142が第1
相粒子11の接触点110を中心に分布し,ここにおい
て両者を接着させている場合と,同図(c)のように焼
結助剤142が溶融し,第1相粒子11の全面を被覆
し,第1相粒子11の相互間を接着させる場合とがあ
る。なお,同図において示した仮焼粒子152は模式的
なもので,実際の仮焼粒子152には,図5に示すごと
く,多数の第1相粒子11が集合して形成されたものも
ある。Alternatively, as shown in FIGS. 4B and 4C,
The first with a sintering aid which is a material with good wettability and low melting point
This shows that the phase particles 11 are bonded to the other first phase particles 11 to form the calcined particles 152 having high cohesiveness. Then, as shown in FIG.
The sintering agent 142 is distributed around the contact point 110 of the phase particle 11 where the two are adhered, and as shown in FIG. In some cases, the first phase particles 11 are bonded to each other. It should be noted that the calcined particles 152 shown in the figure are schematic, and some actual calcined particles 152 are formed by assembling a large number of first phase particles 11 as shown in FIG. .
【0025】また,上記仮焼粒子の粒径は0.1〜20
00μm,上記第2相粒子の粒径は0.01〜500μ
mとし,(第2相粒子の粒径)/(仮焼粒子)の値は1
/3以下とするのが好ましい。これにより,第2相粒子
よりなる三次元ネットワークが発達し,第2相粒子の特
性を充分に発現させることができる。更に,上記第2相
粒子の粒子全体に対する添加割合は体積%で3〜70%
とすることが好ましい。また,5〜50%とすることが
特に好ましい。The particle size of the calcined particles is 0.1 to 20.
00 μm, the particle size of the second phase particles is 0.01 to 500 μm
m, and the value of (particle size of second phase particles) / (calcined particles) is 1
/ 3 or less. As a result, a three-dimensional network composed of the second phase particles develops, and the characteristics of the second phase particles can be sufficiently exhibited. Further, the addition ratio of the second phase particles to the whole particles is 3 to 70% by volume.
It is preferable that It is particularly preferable that the content be 5 to 50%.
【0026】また,上記第2相粒子としては,粒子状,
ウィスカ状,ファイバー状,板状等の形態を有するもの
を使用することができる。また,上記第2相粒子の原料
に焼結助剤を添加して混合した後,乾燥,粉砕等の工程
を経て作製された第2相粒子を使用することもできる。The second phase particles may be in the form of particles,
Those having a whisker-like, fiber-like, plate-like or other form can be used. Alternatively, the second phase particles produced by adding and mixing a sintering aid to the raw material of the second phase particles, followed by drying, pulverization, and the like may be used.
【0027】また,上記焼結助剤としては,希土類酸化
物である,Y2 O3 ,YN,Yb2O3 ,Eu2 O3 ,
La2 O3 ,CeO2 ,Nd2 O3 ,Er2 O3 ,Sm
2 O3 ,Sc2 O3 等を使用することができる。As the sintering aid, rare earth oxides such as Y 2 O 3 , YN, Yb 2 O 3 , Eu 2 O 3 ,
La 2 O 3 , CeO 2 , Nd 2 O 3 , Er 2 O 3 , Sm
2 O 3 , Sc 2 O 3 and the like can be used.
【0028】更に,酸化アルミニウム,窒化アルミニウ
ム,酸化マグネシウム,スピネル,酸化リチウム,二酸
化珪素,酸化硼素,TiN,BN,Mg3 N2 ,Be3
N2,MgSiN2 ,アルミニウム,炭化アルミニウ
ム,硼化アルミニウム,硼化クロム,硼化ジルコニウ
ム,Be2 SiO4 ,B4 C,炭化硼素,酸化ベリリウ
ム,スピネル,ジルコニア,ハフニア,ZrB2 ,Cr
B2 ,TiB2 ,ニッケル,更にはMg,Al,Y,S
i,La,Ce,Be,Zrの酸化物又は窒化物等の一
種又はこれらの組み合わせよりなる化合物等を使用する
ことができる。また,上記焼結助剤としては,上記第1
相粒子よりも粒径の小さいものを用いることが好まし
い。これにより,更に焼結性を高めることができる。Further, aluminum oxide, aluminum nitride, magnesium oxide, spinel, lithium oxide, silicon dioxide, boron oxide, TiN, BN, Mg 3 N 2 , Be 3
N 2 , MgSiN 2 , aluminum, aluminum carbide, aluminum boride, chromium boride, zirconium boride, Be 2 SiO 4 , B 4 C, boron carbide, beryllium oxide, spinel, zirconia, hafnia, ZrB 2 , Cr
B 2 , TiB 2 , nickel, and also Mg, Al, Y, S
Compounds composed of one or a combination of oxides or nitrides of i, La, Ce, Be, and Zr or the like can be used. In addition, as the sintering aid, the first
It is preferable to use those having a smaller particle size than the phase particles. Thereby, the sinterability can be further improved.
【0029】なお,本発明にて得られた複合粉を成形又
は圧密化して,成形体や圧密体(圧粉体)として使用す
ることができる。この場合にかかる成形方法としては,
例えば,金型成形,押出成形,圧縮成形,トランスファ
ー成形,ドクターブレード,,スクリーン印刷,鋳込成
形,射出成形,乾式・半乾式加圧,単膜成形,CIP,
HP,HIPのような加圧成形等の各種成形方法を利用
することができる。特に射出成形の場合には,仮焼粒子
と第2相粒子とを混合する際に,射出成形用のバインダ
ーを同時に添加,混合することが好ましい。また,本発
明にて得られた複合粉を焼結して,焼結体として使用す
ることもできる。更に,上述の成形を施した後,焼結す
ることもできる。なお,本発明では上記複合粉,その成
形体,圧密体,焼結体,成形後の焼結体等を全て複合体
として表現している。The composite powder obtained by the present invention can be molded or compacted and used as a compact or compact (compact). In this case, as a forming method,
For example, mold molding, extrusion molding, compression molding, transfer molding, doctor blade, screen printing, cast molding, injection molding, dry / semi-dry pressing, single film molding, CIP,
Various molding methods such as pressure molding such as HP and HIP can be used. In particular, in the case of injection molding, it is preferable to simultaneously add and mix a binder for injection molding when mixing the calcined particles and the second phase particles. Further, the composite powder obtained by the present invention can be sintered and used as a sintered body. Furthermore, after performing the above-mentioned molding, sintering can also be performed. In the present invention, the composite powder, the compact, the compact, the sintered compact, the sintered compact after molding, etc. are all expressed as a composite.
【0030】本発明の作用につき,以下に説明する。本
発明にかかる製造方法は,第1相粒子を造粒後,仮焼し
て所定の仮焼粒子とした上で,第2相粒子と混合する。
上記第1相粒子は造粒後に仮焼されているため,所定の
大きさの粒状体(造粒粉)となり,凝集強度(保形性)
はより高くなる。このため,上記仮焼粒子は混合の工程
において壊れることなくその形状等を略維持したまま第
2相粒子との混合が可能であり,そして複合体のマトリ
ックスを構成する結晶粒(結晶粒団)となる。The operation of the present invention will be described below. In the production method according to the present invention, the first phase particles are granulated, calcined to obtain predetermined calcined particles, and then mixed with the second phase particles.
Since the first phase particles are calcined after granulation, they become granules (granulated powder) of a predetermined size, and have cohesive strength (shape retention).
Will be higher. For this reason, the calcined particles can be mixed with the second phase particles without breaking in the mixing step while substantially maintaining their shapes and the like, and the crystal grains (crystal clusters) constituting the matrix of the composite Becomes
【0031】ただし,仮焼の温度を調節することによ
り,複合体を成形して成形体を作製する際に,該複合体
を潰すことも可能である。この場合には,上記成形とし
てプレス,CIP等を利用する際の加圧成形性を高める
ことや射出圧を低減することができる。However, by adjusting the calcining temperature, the composite can be crushed when the composite is formed to produce a molded body. In this case, it is possible to enhance the press moldability and to reduce the injection pressure when using a press, CIP or the like as the molding.
【0032】ここに,図5(a),(b)に示すごと
く,第1粒子11よりなる仮焼粒子152と第2相粒子
12との粒径に大きな差があるため,第2相粒子12は
仮焼粒子152の表面に分散して付着しやすくなる。ま
た,上記仮焼粒子152は多孔状であることから,該仮
焼粒子152と第2相粒子12とを混合することによ
り,第2相粒子12は仮焼粒子152の表面の各孔に容
易に入り込み,仮焼粒子152の表面に保持される場合
もある。Here, as shown in FIGS. 5A and 5B, there is a large difference in the particle size between the calcined particles 152 composed of the first particles 11 and the second phase particles 12, so that the second phase particles 12 are easily dispersed and adhered to the surface of the calcined particles 152. Further, since the calcined particles 152 are porous, by mixing the calcined particles 152 and the second phase particles 12, the second phase particles 12 can be easily inserted into each pore on the surface of the calcined particles 152. In some cases, and may be retained on the surface of the calcined particles 152.
【0033】なお,同図にかかる(a)は図4(a)に
対応し,第1相粒子11と他の第1相粒子11との接触
点を中心に両者の一部が結合又は焼結して形成された仮
焼粒子である。あるいは,図4(b)に対応し,焼結助
剤が第1粒子11と他の第1相粒子11の接触点を中心
に分布し,ここにおいて両者の一部が接着又は結合して
形成した仮焼粒子である。図5(b)は,図4(c)の
ように焼結助剤142が溶融し,第1相粒子11の全面
を被覆しつつ,第1相粒子11の相互間が接着又は結合
して形成された仮焼粒子152である。FIG. 4A corresponds to FIG. 4A, and a part of the first phase particle 11 is bonded or sintered around the contact point between the first phase particle 11 and the other first phase particle 11. These are calcined particles formed by bonding. Alternatively, corresponding to FIG. 4B, the sintering aid is distributed around the contact point between the first particle 11 and the other first phase particle 11, where a part of both is bonded or bonded. Calcined particles. FIG. 5B shows that the sintering aid 142 melts and coats or bonds between the first phase particles 11 while covering the entire surface of the first phase particles 11 as shown in FIG. The calcined particles 152 are formed.
【0034】これを更に本焼成することにより,第1相
粒子が緻密に焼結した焼結体(複合体)が得られる。こ
の焼結体中に形成される三次元ネットワークのセル1の
構造を,図1に示す。第1相粒子の結晶粒(又は結晶粒
団)10間(結晶粒界)には,第2相粒子12よりなる
均一な幅の三次元ネットワーク102が形成されること
となる。従って,第2相粒子12の特性が十分発現され
た複合体1を得ることができる。By further firing this, a sintered body (composite) in which the first phase particles are densely sintered is obtained. FIG. 1 shows the structure of the cell 1 of the three-dimensional network formed in the sintered body. A three-dimensional network 102 of uniform width composed of the second phase particles 12 is formed between the crystal grains (or crystal clusters) 10 of the first phase particles (grain boundaries). Therefore, it is possible to obtain the composite 1 in which the characteristics of the second phase particles 12 are sufficiently exhibited.
【0035】図1のセル1においては,結晶粒101か
らなるマトリックス10に対し第2相粒子より構成され
た幅が均一な連続三次元ネットワーク102が形成され
ている。In the cell 1 of FIG. 1, a continuous three-dimensional network 102 composed of second phase particles and having a uniform width is formed on a matrix 10 composed of crystal grains 101.
【0036】仮に図6に示すごとく,第1相粒子91,
第2相粒子92,焼結助剤93等が均一に混合した状態
から作製した場合には,図2に示すごとく,第2相粒子
92よりなる連続三次元ネットワーク902が形成され
難くなるため,第2相粒子92の特性を発現させること
は困難であった。As shown in FIG. 6, the first phase particles 91,
When the second phase particles 92, the sintering aid 93, and the like are manufactured from a uniformly mixed state, a continuous three-dimensional network 902 including the second phase particles 92 is hardly formed as shown in FIG. It was difficult to develop the characteristics of the second phase particles 92.
【0037】そして,本発明によれば,第2相粒子の混
合量を特に増加させることなく,第2相粒子が複数の第
1相結晶粒を,均一な幅で取り囲むようなセル構造の連
続又は不連続三次元ネットワークを形成することができ
るため,第2相粒子の添加による複合体の機械的・力学
的強度の低下も発生し難い。According to the present invention, a continuous cell structure in which the second phase particles surround the plurality of first phase crystal grains with a uniform width without particularly increasing the mixing amount of the second phase particles. Alternatively, since a discontinuous three-dimensional network can be formed, a decrease in mechanical and mechanical strength of the composite due to the addition of the second phase particles hardly occurs.
【0038】また,上記第1相粒子を造粒する際に第2
相粒子を添加することにより,複合効果を更に高めると
共に,第1相粒子と第2相粒子との間の熱膨張率差によ
る熱応力を緩和することができる。これにより耐久性に
優れた複合体を得ることができる。Further, when the first phase particles are granulated,
By adding the phase particles, the composite effect can be further enhanced, and the thermal stress due to the difference in thermal expansion coefficient between the first phase particles and the second phase particles can be reduced. Thereby, a composite having excellent durability can be obtained.
【0039】また,本発明においては,第2相粒子を造
粒する前に添加し,仮焼によって粒状体(造粒粉)内の
マトリックスを構成する結晶粒を成長させることによ
り,複合体に形成される連続三次元ネットワークのセル
内に第2相粒子のネットワーク構造を形成しやすくな
る。よって,より第2相粒子の特性を発現しやすくな
る。In the present invention, the second phase particles are added before granulation, and the grains constituting the matrix in the granules (granulated powder) are grown by calcination to form the composite. It becomes easy to form a network structure of the second phase particles in the cells of the formed continuous three-dimensional network. Therefore, the characteristics of the second phase particles are more easily exhibited.
【0040】例えば,後述する実施形態例4に示すごと
く,α−Si3 N4 粒子(マトリックスを構成する第1
相粒子),Y2 O3 ,Al2 O3 (焼結助剤)及びMo
Si2 (第2相粒子)を用いた複合体の製造方法におい
ては,造粒して得られた粒状体(造粒粉)を1600℃
で熱処理することにより,α−Si3 N4 がβ−Si3
N4 に変化して大きく粒成長する。このため,MoSi
2 粒子が再配列してネットワーク構造を形成しやすくな
るという効果を得ることができる。For example, as shown in Embodiment 4 which will be described later, α-Si 3 N 4 particles (first particles constituting a matrix)
Phase particles), Y 2 O 3 , Al 2 O 3 (sintering aid) and Mo
In a method for producing a composite using Si 2 (second phase particles), a granular material (granulated powder) obtained by granulation is heated to 1600 ° C.
Α-Si 3 N 4 is converted to β-Si 3
It changes to N 4 and grows large grains. For this reason, MoSi
An effect that two particles rearrange easily to form a network structure can be obtained.
【0041】更に,適量の第2相粒子を第1相粒子に添
加した後,第1相粒子を造粒することにより,その後の
工程で第1相粒子に付着・焼結させた第2相粒子が剥離
し難くなるという効果を得ることができる。Further, after adding an appropriate amount of the second-phase particles to the first-phase particles, the first-phase particles are granulated, so that the second-phase particles adhered and sintered to the first-phase particles in a subsequent step. The effect that particles are less likely to peel can be obtained.
【0042】以上のように,本発明によれば,必要な粒
径比を有する2種類以上の材料の組み合わせが容易にで
き,かつ第2相粒子によって均一に被覆することがで
き,更に第2相粒子よりなる幅が均一かつ連続的に形成
された三次元ネットワークを少ない添加量で確実に形成
することができ,第2相粒子の特性の発現と機械的・力
学的強度,熱的特性,電気的特性,化学的特性,光学的
特性とが並立した,複合体の製造方法を提供することが
できる。As described above, according to the present invention, it is possible to easily combine two or more kinds of materials having a required particle size ratio, and to uniformly coat with the second phase particles. A three-dimensional network with a uniform and continuous width consisting of phase particles can be reliably formed with a small amount of addition, and the characteristics of the second phase particles and the mechanical and mechanical strength, thermal properties, It is possible to provide a method for manufacturing a composite in which electrical characteristics, chemical characteristics, and optical characteristics are at the same time.
【0043】このような複合体の製造方法において,第
2相粒子として,例えば,金属元素から選択される硼化
物,窒化物,炭化物,珪化物,炭化物,酸化物及びその
複合化合物のうちの導電性の高い材料を用いた場合,電
気伝導性の付与された複合体を得ることができる。この
複合体粉末を用いて更に放電加工可能なセラミック焼結
体である複合体を作製することができる。In the method for producing such a composite, the second phase particles may be, for example, a conductive material selected from borides, nitrides, carbides, silicides, carbides, oxides and composite compounds thereof. When a material having high conductivity is used, a composite having electrical conductivity can be obtained. Using this composite powder, a composite that is a ceramic sintered body that can be further subjected to electrical discharge machining can be produced.
【0044】また,炭化物,窒化物,珪化物,硼化物,
金属系の熱伝導率の高い材料を第2相粒子として用いた
場合には,高い電気伝導性を持ちつつ高い熱伝導性が付
与された複合体を得ることができる。このような複合体
を用いて,基板材料,ヒータ,サーミスタ,熱電材料等
としての応用性の高い材料を得ることができる。In addition, carbides, nitrides, silicides, borides,
When a metal-based material having high thermal conductivity is used as the second phase particles, a composite having high electrical conductivity and high thermal conductivity can be obtained. By using such a composite, a material having high applicability as a substrate material, a heater, a thermistor, a thermoelectric material, or the like can be obtained.
【0045】また,鉄やステンレス等の金属を第1相粒
子とし,低熱伝導性で高い電気絶縁性のZrO2 ,Al
2 O3 ,SiO2 等の材料を第2相粒子として使用する
ことにより得られた複合体より,低熱伝導性や低鉄損の
軟磁性用の金属焼結体を得ることができる。Also, a metal such as iron or stainless steel is used as the first phase particles, and ZrO 2 , Al
From a composite obtained by using a material such as 2 O 3 or SiO 2 as the second phase particles, a metal sintered body for soft magnetism having low thermal conductivity and low iron loss can be obtained.
【0046】また,特に第1相粒子として金属材料を用
いた場合には,これより得られた複合体を金型成形する
際に仮焼粒子が超塑性変形しやすいことから,高い圧力
での成形を行うことができ,高い圧粉密度の圧粉体を得
ることができる。In particular, when a metal material is used as the first phase particles, the calcined particles are liable to be superplastically deformed during molding of the composite obtained therefrom. Molding can be performed, and a green compact having a high green compact density can be obtained.
【0047】また,本発明において作製された複合体は
より粗大な結晶粒団と,より微細な第2相粒子より形成
された三次元ネットワークを形成することも可能であ
る。このため,全体としては粗大粒子と微細粒子によっ
て形成されている。The composite prepared in the present invention can form a three-dimensional network formed by coarser crystal grains and finer second phase particles. For this reason, the whole is formed by coarse particles and fine particles.
【0048】ここに一般的にセラミック等の構成粒子が
粗大である場合には,破壊靱性,高温強度,耐クリープ
性及び熱伝導性等に優れることが知られており,一方,
構成粒子が微細である場合には室温強度,耐疲労性,耐
衝撃性に優れることが知られている。よって,本発明に
よれば破壊靱性,高温強度,耐クリープ性,室温強度,
耐疲労性,耐衝撃性を備えた複合体を得ることができ
る。また,上記複合体を成形,焼結等して作製した成形
体,焼結体は上述したごとき性質を備えることができ
る。Here, it is generally known that when the constituent particles such as ceramics are coarse, they are excellent in fracture toughness, high-temperature strength, creep resistance and thermal conductivity.
It is known that when the constituent particles are fine, they have excellent room temperature strength, fatigue resistance and impact resistance. Therefore, according to the present invention, fracture toughness, high temperature strength, creep resistance, room temperature strength,
A composite having fatigue resistance and impact resistance can be obtained. Further, a molded body and a sintered body produced by molding, sintering, and the like of the composite can have the above-described properties.
【0049】なお,本発明によって製造された複合体を
焼結して作成した焼結体は,発熱材,ガスセンサ,バリ
スタ,コンデンサ,湿度センサ,固体電解質,サーミス
タ,熱電素子,圧電材料,焦電材,高熱伝導材,断熱
材,高抵抗材,グロープラグ,記憶素子材料,磁性材,
軟磁性材,高低誘電材,放電加工材料,低膨張材,高膨
張材,高耐熱材,放熱用材料,高強度材,高靱性材,耐
磨耗性材,耐食材,耐酸化材,光学材料,制振材,電極
材料等に用いることができる。また,本発明によって製
造された複合体より製作した成形体,圧密体は,触媒材
料,磁性材料,フィルタ材料,断熱材,電極材,電気・
熱伝導材料等として用いることもできる。The sintered body produced by sintering the composite manufactured according to the present invention includes a heating material, a gas sensor, a varistor, a capacitor, a humidity sensor, a solid electrolyte, a thermistor, a thermoelectric element, a piezoelectric material, and a pyroelectric material. , High thermal conductive material, heat insulating material, high resistance material, glow plug, memory element material, magnetic material,
Soft magnetic materials, high and low dielectric materials, electric discharge machining materials, low expansion materials, high expansion materials, high heat resistance materials, heat dissipation materials, high strength materials, high toughness materials, wear resistant materials, corrosion resistant materials, oxidation resistant materials, optics It can be used for materials, vibration damping materials, electrode materials and the like. Also, the compacts and compacts manufactured from the composites manufactured according to the present invention include catalyst materials, magnetic materials, filter materials, heat insulating materials, electrode materials,
It can also be used as a heat conductive material.
【0050】[0050]
実施形態例1 本発明の実施形態例にかかる複合体(複合粉)の製造方
法及び該複合粉より作製した複合体(焼結体)の性能に
つき,試料及び比較試料を用いて説明する。本例にかか
る製造方法の概略について説明する。図3に示すごと
く,マトリックス用の材料からなる第1相粒子11を焼
結助剤13と共に造粒して粒状体151となす。次い
で,該粒状体151を仮焼成して,図4に示すごとく,
マトリックスの第1相粒子11の一部が焼結し合った多
孔状の仮焼粒子152となす。その後,図5に示すごと
く,該仮焼粒子152に第2相粒子を添加,混合して,
複合粉を得る。Embodiment 1 A method for producing a composite (composite powder) according to an embodiment of the present invention and the performance of a composite (sintered body) produced from the composite powder will be described using a sample and a comparative sample. The outline of the manufacturing method according to this example will be described. As shown in FIG. 3, first phase particles 11 made of a matrix material are granulated together with a sintering aid 13 to form granules 151. Next, the granular material 151 is pre-fired, and as shown in FIG.
A part of the first phase particles 11 of the matrix forms porous sintered particles 152 sintered together. Thereafter, as shown in FIG. 5, the second phase particles are added to the calcined particles 152 and mixed.
Obtain a composite powder.
【0051】以下,この複合粉より作製された試料1−
1となる複合体(焼結体)の製造方法について詳細に説
明する。まず,マトリックス用のセラミック材料からな
る第1相粒子として粒径0.5μm(比表面積;4〜9
m2 /g)のSi3 N4 を準備した。上記第1相粒子で
あるSi3 N4 を91重量%,焼結助剤であるY2 O3
を6重量%及びAl2 O3 を3重量%秤量して,これら
をボールミルで湿式混合した。以上により第1混合粉末
を得た。上記第1混合粉末を最大粒径が300μmとな
る粒子に造粒し,粒状体とした。その後,上記粒状体を
1600℃で仮焼して,多孔状の仮焼粒子とした。Hereinafter, Sample 1 made from this composite powder was used.
The method for producing the composite (sintered body) 1 will be described in detail. First, the first phase particles made of a ceramic material for a matrix have a particle size of 0.5 μm (specific surface area: 4 to 9).
m 2 / g) of Si 3 N 4 was prepared. 91% by weight of Si 3 N 4 as the first phase particles and Y 2 O 3 as a sintering aid
Was weighed at 6% by weight and Al 2 O 3 at 3% by weight, and these were wet-mixed with a ball mill. Thus, a first mixed powder was obtained. The first mixed powder was granulated into particles having a maximum particle size of 300 μm to obtain granules. Thereafter, the granular material was calcined at 1600 ° C. to obtain porous calcined particles.
【0052】次に,第2相粒子としてSiCを準備し
た。そして,粒径0.2μm(比表面積;9〜13m2
/g)のSi3 N4 を81重量%,焼結助剤であるY2
O3 を6重量%及びAl2 O3 を3重量%,そして上記
第2相粒子であるSiCを10重量%に秤量して,これ
らをボールミルで湿式混合した。以上により第2混合粉
末を得た。次に,上記仮焼粒子及び第2混合粉末を50
重量%づつ秤量し,これらをナイロンボールを用いて湿
式で仮焼粒子が壊れない条件下でボールミル混合した。
以上により本例にかかる複合粉を得た。Next, SiC was prepared as the second phase particles. The particle size is 0.2 μm (specific surface area: 9 to 13 m 2)
/ G) of 81% by weight of Si 3 N 4 and Y 2 as a sintering aid.
O 3 and 6 wt% and Al 2 O 3 3% by weight, and then weighed SiC is the second phase particles to 10 wt%, was wet-mixed together in a ball mill. Thus, a second mixed powder was obtained. Next, the calcined particles and the second mixed powder were mixed for 50 minutes.
The weight percentages were weighed, and they were mixed in a ball mill using a nylon ball in a wet condition under conditions in which the calcined particles were not broken.
Thus, a composite powder according to this example was obtained.
【0053】そして,上記複合粉を金型に充填し,20
MPaの押圧力で押圧し,直径60mmφ,高さ10m
mの円板状の成形体とした。更に,上記成形体を185
0℃の窒素ガス雰囲気下で60分間,加圧力20MPa
でホットプレスした。以上により本例にかかる複合体
(焼結体)を得た。これを試料1−1とする。Then, the above-mentioned composite powder is filled in a mold, and
Press with the pressing force of MPa, diameter 60mmφ, height 10m
m of a disk-shaped compact. Further, the above-mentioned molded body is 185
Under a nitrogen gas atmosphere at 0 ° C for 60 minutes, pressure 20MPa
Hot pressed. Thus, a composite (sintered body) according to this example was obtained. This is designated as Sample 1-1.
【0054】次に,本例にかかる複合粉より作製された
試料1−2となる複合体について詳細に説明する。ま
ず,上記試料1−1を作製した際に用いた仮焼粒子及び
第2混合粉末を準備する。次いで,上記仮焼粒子及び第
2混合粉末を50重量%づつ秤量し,試料1−1と同様
に混合し,本例にかかる複合粉を得た。Next, the composite serving as Sample 1-2 produced from the composite powder according to this example will be described in detail. First, the calcined particles and the second mixed powder used when preparing the sample 1-1 are prepared. Next, the calcined particles and the second mixed powder were weighed at 50% by weight and mixed in the same manner as in Sample 1-1 to obtain a composite powder according to the present example.
【0055】上記複合粉を87重量%,射出成形用のバ
インダーを13重量%(内訳はワセリン60体積%,ポ
リエチレン40体積%である)に秤量し,これらを混ぜ
て,混練機で混練した。その後,ニーダでペレットとし
た。上記ペレットを射出成形機にかけて,直径60mm
φ,高さ10mmの円板状の射出成形体を作製した。The composite powder was weighed to 87% by weight, and the binder for injection molding was weighed to 13% by weight (the breakdown was 60% by volume of petrolatum and 40% by volume of polyethylene), and these were mixed and kneaded with a kneader. Then, it was pelletized with a kneader. The above pellets are processed by an injection molding machine to a diameter of 60 mm.
A disk-shaped injection molded body having a diameter of φ and a height of 10 mm was produced.
【0056】上記射出成形体を300℃で2時間(窒素
ガス雰囲気下)保持した後,500℃(大気中)×2時
間の条件で脱脂し,1850℃の窒素ガス雰囲気下で6
0分間,加圧力20MPaでホットプレスした。以上に
より本例にかかる複合体を得た。これを試料1−2とす
る。After holding the above-mentioned injection molded body at 300 ° C. for 2 hours (under a nitrogen gas atmosphere), it was degreased under the conditions of 500 ° C. (in the air) × 2 hours, and then dried under nitrogen gas atmosphere at 1850 ° C. for 6 hours.
Hot pressing was performed at a pressure of 20 MPa for 0 minutes. Thus, the composite according to this example was obtained. This is designated as Sample 1-2.
【0057】次に,試料1−1,2をそれぞれ切断し,
その切断面をECR(Electron−Cyclot
ron−resonance)プラズマエッチングし
た。この切断面の微細構造をSEM(走査型電子顕微
鏡)により観察した。その結果,いずれの切断面におい
ても,粗大な複数のSi3 N4 結晶粒が島状に集まった
結晶粒団の周りに,微細なSi3 N4 結晶粒とSiC粒
子とが混在し,幅が広く,均一な連続相が3次元ネット
ワーク状に分散しているのが確認された。Next, the samples 1-1 and 1-2 were cut, respectively.
The cut surface is referred to as ECR (Electron-Cycle).
(ron-resonance) plasma etching. The fine structure of the cut surface was observed by SEM (scanning electron microscope). As a result, in each of the cut surfaces, fine Si 3 N 4 crystal grains and SiC particles are mixed around the cluster of coarse Si 3 N 4 crystal grains gathered in an island shape, and the width is reduced. , And it was confirmed that a uniform continuous phase was dispersed in a three-dimensional network.
【0058】ここに,比較試料C1について説明する。
粒径1.0μmのSi3 N4 を61重量%,Y2 O3 を
6重量%,Al2 O3を3重量%及び粒径0.6μmの
SiCを30重量%に秤量し,これらをボールミルで湿
式混合した。なお,この時点における第1相粒子91,
第2相粒子92,焼結助剤93は,図6に示すような均
一混合の状態を形成する。この材料を金型に充填し,2
0MPaの押圧力で押圧し,直径60mmφ,高さ10
mmの円板状の成形体とした。更に,上記成形体を窒素
ガス雰囲気下,1850℃で60分間,加圧力20MP
aでホットプレスした。以上により比較試料C1にかか
る焼結体を得た。Here, the comparative sample C1 will be described.
61% by weight of Si 3 N 4 having a particle size of 1.0 μm, 6% by weight of Y 2 O 3 , 3 % by weight of Al 2 O 3 and 30% by weight of SiC having a particle size of 0.6 μm were weighed. The mixture was wet-mixed in a ball mill. At this point, the first phase particles 91,
The second phase particles 92 and the sintering aid 93 form a uniform mixing state as shown in FIG. Fill the mold with this material,
Pressing with a pressing force of 0MPa, diameter 60mmφ, height 10
mm disk-shaped molded body. Further, the molded body was pressed at 1850 ° C. for 60 minutes under a nitrogen gas atmosphere at a pressure of 20 MPa
Hot-pressed in a. Thus, a sintered body according to Comparative Sample C1 was obtained.
【0059】上記比較試料C1を切断し,その切断面を
ECRプラズマエッチングした。この切断面の微細構造
をSEM観察した。その結果,Si3 N4 結晶粒の結晶
粒界をSiC結晶粒が不連続な3次元ネットワーク状に
分散しているのが確認された。The comparative sample C1 was cut, and the cut surface was subjected to ECR plasma etching. The microstructure of this cut surface was observed by SEM. As a result, it was confirmed that SiC crystal grains were dispersed in a discontinuous three-dimensional network at the crystal grain boundaries of the Si 3 N 4 crystal grains.
【0060】次に,本例における作用効果につき説明す
る。本例においては,第1相粒子11の少なくとも一部
を図3に示すごとく凝集させ,図4に示すごとく仮焼さ
せ,多孔状の仮焼粒子152とした後に,図5に示すご
とく第2相粒子12と混合して複合粉とし,これを更に
本焼して,焼結体を得た。図1はこの焼結体中に形成さ
れる三次元ネットワークのセル1の構造を示す。上記第
1相粒子11は造粒後に仮焼されているため,必要な大
きさの顆粒状態となっており,このため,高い保形性を
有している。よって,上記仮焼粒子152は各混合,成
形工程において壊れることなく,形状等をほぼ維持した
まま,焼結体のマトリックスを構成する結晶粒となる。Next, the operation and effect of this embodiment will be described. In this example, at least a part of the first phase particles 11 is aggregated as shown in FIG. 3 and calcined as shown in FIG. 4 to form porous calcined particles 152, and then the second particles as shown in FIG. The powder was mixed with the phase particles 12 to form a composite powder, which was further fired to obtain a sintered body. FIG. 1 shows a structure of a cell 1 of a three-dimensional network formed in the sintered body. Since the first phase particles 11 are calcined after granulation, they are in a granular state of a required size, and therefore have high shape retention. Therefore, the calcined particles 152 become crystal grains constituting the matrix of the sintered body without being broken in the respective mixing and forming steps, and while substantially maintaining the shape and the like.
【0061】そして,上記仮焼粒子152は多孔状であ
ることから,該仮焼粒子152と第2相粒子12とを混
合することにより,第2相粒子12は仮焼粒子152表
面の各孔に容易に入り込み,図5に示すごとく,仮焼粒
子152の表面に保持され,図1に示すごとく,焼結体
中のセル1に第2相粒子12よりなる連続的で幅が広く
均一な三次元ネットワーク102が形成される。従っ
て,第2相粒子の特性が十分発現された複合体を得るこ
とができる。Since the calcined particles 152 are porous, by mixing the calcined particles 152 and the second phase particles 12, the second phase particles 12 are formed in the respective pores on the surface of the calcined particles 152. 5 and held on the surface of the calcined particles 152, as shown in FIG. 5, and as shown in FIG. A three-dimensional network 102 is formed. Therefore, it is possible to obtain a composite in which the characteristics of the second phase particles are sufficiently exhibited.
【0062】そして,本例にかかる製造方法によれば,
従来技術において示した特開昭63−96883号公報
に開示されている複合材料のように,即ち,マトリック
ス材料となる第1相粒子と第2相粒子との粒径比が大き
くなる粉末を組合わせて製造する方法のように,粗大粒
を用いる必要がなく,更に仮焼粒子に焼結助剤を添加し
ていることから,仮焼粒子の大きさが大きくなっても緻
密な焼結性が得られやすいという特徴がある。According to the manufacturing method according to the present embodiment,
As in the case of the composite material disclosed in Japanese Patent Application Laid-Open No. 63-96883 as disclosed in the prior art, that is, a powder having a large particle size ratio between the first phase particles and the second phase particles serving as a matrix material is assembled. Unlike the method of manufacturing together, there is no need to use coarse particles, and a sintering aid is added to the calcined particles, so that even if the size of the calcined particles becomes large, dense sintering is possible. Is easy to obtain.
【0063】このことから,本例の複合体は焼結により
焼結体となす場合に低温焼結が可能となり,生産性の低
い製造方法から常圧焼結,ガス圧焼結等の生産性の高い
製造方法を利用することが可能となる。よって生産コス
トの大幅な削減が可能となる。また,上記仮焼粒子は粒
径が大きい状態での保形性が高いことから,湿式及び乾
式でのボールミルのような大きな力の加わる混合方法を
施しても,連続した三次元ネットワークを形成すること
ができる。From this, the composite of this example can be sintered at a low temperature when it is formed into a sintered body by sintering, and can be manufactured from low production methods such as normal pressure sintering and gas pressure sintering. Can be used. Therefore, the production cost can be significantly reduced. In addition, since the calcined particles have high shape retention in a state where the particle size is large, a continuous three-dimensional network is formed even when a mixing method in which a large force is applied, such as a wet or dry ball mill, is applied. be able to.
【0064】また,複合粉より焼結体を作製するに当た
って,大きな剪断力が加わるバインダとの混練,射出成
形を行っても,複合粉中の連続した三次元ネットワーク
を維持することができる。このことから,本例の方法に
より,複雑な形状の複合体(焼結体)の製造が容易とな
り,生産性を大幅に高めることができる。Further, in producing a sintered body from the composite powder, even if kneading with a binder to which a large shearing force is applied and injection molding, a continuous three-dimensional network in the composite powder can be maintained. Thus, the method of the present embodiment facilitates the production of a complex (sintered body) having a complicated shape, and can greatly increase the productivity.
【0065】そして,本発明によれば,第2相粒子の混
合量を特に増加させることなく,所望の幅の均一な三次
元ネットワークを形成することができるため,得られた
複合体の機械的・力学的強度を低下させることもない。According to the present invention, a uniform three-dimensional network having a desired width can be formed without particularly increasing the mixing amount of the second phase particles. -There is no decrease in mechanical strength.
【0066】一方,比較試料C1より,たとえ第1相粒
子を造粒したとしても,仮焼して保形性(凝集力)を高
めなくては,その後の製造プロセス中(特に射出成形
時)に造粒して粗大となった粒子が再び微粉末し,三次
元ネットワークの形成が阻害されることが分かった。On the other hand, from the comparative sample C1, even if the first phase particles are granulated, it must be calcined to increase the shape retention (cohesion) during the subsequent manufacturing process (particularly during injection molding). It was found that the coarse-granulated particles were re-pulverized into fine particles, which hindered the formation of a three-dimensional network.
【0067】そして,本例にかかる第2相粒子は,耐酸
化性,耐クリープ性及び電気,熱の伝導性に優れる特性
を発現することができる構造用の機能性材料である。こ
の材料を単独で焼成して作製したセラミックには低強
度,低靱性という問題があった。The second phase particles according to the present embodiment are structural functional materials capable of exhibiting excellent properties of oxidation resistance, creep resistance, and electrical and thermal conductivity. Ceramics produced by sintering this material alone have problems of low strength and low toughness.
【0068】しかし,本例に示すごとく,第1相粒子よ
りなるマトリックス中に連続三次元ネットワークを形成
するよう分散させることで,高強度,高靱性及び高耐酸
化性,耐クリープ性を発現できると共に,少量の導電性
材料の添加,電気伝導性をも発現できる複合体を得るこ
とができる。更に,本例の製造方法によれば,第2相粒
子の混合量を調整することにより,所望の熱伝導性及び
電気抵抗値を容易に得ることができる。However, as shown in this example, high strength, high toughness, high oxidation resistance, and creep resistance can be exhibited by dispersing in a matrix composed of the first phase particles so as to form a continuous three-dimensional network. At the same time, it is possible to obtain a composite in which a small amount of conductive material is added and electric conductivity can be exhibited. Further, according to the production method of the present example, desired thermal conductivity and electric resistance can be easily obtained by adjusting the mixing amount of the second phase particles.
【0069】実施形態例2 本例は,第2相粒子としてMoSi2 を使用した複合粉
より作製した複合体(焼結体)の試料2−1,2を比較
試料C2と共に説明する。なお,上記第2相粒子は高い
電気伝導性を発現する物質で,本例にかかる焼結体とす
ることにより,MoSi2 の強度の低さ,高温大気中
(800℃以下)で容易に分解するという特性が補われ
て,高強度,高温における安定性を得ることができる。Embodiment 2 In this embodiment, samples 2-1 and 2 of a composite (sintered body) made from a composite powder using MoSi 2 as the second phase particles will be described together with a comparative sample C2. The second phase particles are substances that exhibit high electrical conductivity. The sintered body according to the present example has low strength of MoSi 2 and easily decomposes in a high temperature atmosphere (800 ° C. or lower). The high strength and the stability at high temperatures can be obtained.
【0070】試料2−1の複合体について説明する。ま
ず,マトリックス用のセラミック材料からなる第1相粒
子として,粒径0.2μm(比表面積;9〜13m2 /
g)のSi3 N4 を準備した。上記第1相粒子であるS
i3 N4 を91重量%,焼結助剤であるY2 O3 を6重
量%及びAl2 O3 を3重量%秤量して,これらをボー
ルミルで湿式混合した。以上により第1混合粉末を得
た。The composite of Sample 2-1 will be described. First, as the first phase particles made of a ceramic material for a matrix, a particle size of 0.2 μm (specific surface area: 9 to 13 m 2 /
g) Si 3 N 4 was prepared. The first phase particles S
i 3 N 4 to 91 wt%, a Y 2 O 3 is a sintering aid was weighed 6 wt% and Al 2 O 3 3% by weight was wet-mixed together in a ball mill. Thus, a first mixed powder was obtained.
【0071】上記第1混合粉末を最大粒径50〜80μ
mとなる粒子に造粒し,粒状体とした。その後,上記粒
状体を1600℃×4時間(窒素ガス雰囲気中),常圧
で仮焼して,多孔状の仮焼粒子とした。次に,第2相粒
子である粒径1.0μmのMoSi2 を10体積%,上
記仮焼粒子を90体積%に秤量し,これらをナイロンボ
ールを用いて湿式ボールミル混合し,複合粉を得た。The above-mentioned first mixed powder has a maximum particle size of 50 to 80 μm.
The particles were granulated into particles having a particle size of m to obtain a granular material. Thereafter, the granules were calcined at 1600 ° C. for 4 hours (in a nitrogen gas atmosphere) at normal pressure to obtain porous calcined particles. Next, 10% by volume of MoSi 2 having a particle size of 1.0 μm as the second phase particles and 90% by volume of the calcined particles were weighed and mixed by a wet ball mill using nylon balls to obtain a composite powder. Was.
【0072】次に,実施形態例1と同様に上記複合粉を
金型内に充填し,20MPaの押圧力で押圧し,直径6
0mmφ,高さ10mmの円板状の成形体とした。更
に,上記成形体を1800℃のアルゴンガス雰囲気下で
60分間,加圧力20MPaでホットプレスした。以上
により試料2−1にかかる複合体を得た。Next, as in the first embodiment, the above-described composite powder is filled in a mold, pressed with a pressing force of 20 MPa, and
It was a disk-shaped compact having a diameter of 0 mm and a height of 10 mm. Further, the compact was hot-pressed at a pressure of 20 MPa in an argon gas atmosphere at 1800 ° C. for 60 minutes. Thus, the composite according to Sample 2-1 was obtained.
【0073】次に,試料2−2の複合体について説明す
る。まず,マトリックス用のセラミック材料からなる第
1相粒子として,粒径0.2μm,比表面積9〜13m
2 /gのSi3 N4 を準備した。上記第1相粒子である
Si3 N4 を91重量%,焼結助剤であるY2 O3 を6
重量%及びAl2 O3 を3重量%に秤量して,これらを
仮焼粒子が壊れない条件下でボールミルで湿式混合し
た。以上により第1混合粉末を得た。Next, the complex of Sample 2-2 will be described. First, as the first phase particles made of a ceramic material for a matrix, the particle size is 0.2 μm, and the specific surface area is 9 to 13 m.
2 / g of Si 3 N 4 was prepared. 91% by weight of Si 3 N 4 as the first phase particles and 6% of Y 2 O 3 as a sintering aid
% By weight and Al 2 O 3 were weighed to 3% by weight, and these were wet-mixed with a ball mill under the condition that the calcined particles were not broken. Thus, a first mixed powder was obtained.
【0074】上記第1混合粉末をスプレードライヤーを
用いて最大粒径50〜80μmの粒子に造粒し,粒状体
とした。その後,上記粒状体を1600℃×4時間(窒
素ガス雰囲気中),常圧で仮焼して,多孔状の仮焼粒子
を得た。次に,第2相粒子である粒径1.0μmのMo
Si2 を10重量%,上記仮焼粒子を87重量%,射出
成形用のバインダーを13重量%に秤量し,これらを混
練機で混練し,複合粉を得た。The first mixed powder was granulated into particles having a maximum particle size of 50 to 80 μm by using a spray drier to obtain granules. Thereafter, the granules were calcined at 1600 ° C. for 4 hours (in a nitrogen gas atmosphere) at normal pressure to obtain porous calcined particles. Next, Mo having a particle diameter of 1.0 μm, which is a second phase particle, is used.
10% by weight of Si 2 , 87% by weight of the calcined particles, and 13% by weight of a binder for injection molding were weighed and kneaded with a kneader to obtain a composite powder.
【0075】その後は実施形態例1と同様に上記混練し
た複合粉を射出成形し,直径60mmφ,高さ10mの
円板状の成形体を作製した。上記成形体を1800℃の
アルゴンガス雰囲気下で60分間,加圧力20MPaで
ホットプレスした。以上により試料2−2にかかる複合
体を得た。Thereafter, the kneaded composite powder was injection-molded in the same manner as in Embodiment 1 to produce a disk-shaped compact having a diameter of 60 mm and a height of 10 m. The compact was hot-pressed at a pressure of 20 MPa in an argon gas atmosphere at 1800 ° C. for 60 minutes. Thus, a composite according to Sample 2-2 was obtained.
【0076】次に,試料2−1,2をそれぞれ切断し,
実施形態例1と同様に得られた切断面をECRプラズマ
エッチングした。上記切断面の微細構造をSEMにより
観察した。その結果,いずれの切断面においても,複数
のSi3 N4 結晶粒が島状に集合した結晶粒団の周り
に,MoSi2 が均一な幅で,かつ連続した3次元ネッ
トワーク状に存在しているのが確認された。Next, the samples 2-1 and 2-2 were cut, respectively.
The cut surface obtained in the same manner as in the first embodiment was subjected to ECR plasma etching. The microstructure of the cut surface was observed by SEM. As a result, on any of the cut surfaces, MoSi 2 is present in a continuous three-dimensional network with a uniform width around a cluster of a plurality of Si 3 N 4 grains aggregated in an island shape. Was confirmed.
【0077】ここに,比較試料C2−1について説明す
る。粒径10μmのSi3 N4 を61重量%と,Y2 O
3 を6重量%,Al2 O3を3重量%,粒径1.0μm
のMoSi2 を30重量%に秤量した。これらをナイロ
ンボールを用いて湿式ボールミル混合した。この材料を
実施形態例1と同様に金型内に充填し,20MPaの押
圧力で押圧し,直径60mmφ,高さ10mmの円板状
の成形体を得た。上記成形体を窒素ガス雰囲気下,18
00℃で60分間,加圧力20MPaでホットプレスし
た。以上により比較試料C2−1にかかる焼結体を得
た。Here, the comparative sample C2-1 will be described. 61% by weight of Si 3 N 4 having a particle size of 10 μm and Y 2 O
3 at 6% by weight, Al 2 O 3 at 3% by weight, particle size 1.0 μm
Of MoSi 2 was weighed to 30% by weight. These were wet ball mill mixed using nylon balls. This material was filled in a mold in the same manner as in Example 1, and pressed with a pressing force of 20 MPa to obtain a disk-shaped molded body having a diameter of 60 mm and a height of 10 mm. The above molded body was placed in a nitrogen gas atmosphere for 18 minutes.
Hot pressing was performed at 00 ° C. for 60 minutes at a pressure of 20 MPa. Thus, a sintered body according to Comparative Sample C2-1 was obtained.
【0078】上記比較試料C2−1の焼結体を切断し,
実施形態例1と同様に得られた切断面をECRプラズマ
エッチングした。上記切断面の微細構造をSEM観察し
た。その結果,Si3 N4 結晶粒の粒界相に,3次元ネ
ットワーク状ではあるが,幅が不均一(局所的に不連続
なところがある)な状態となってMoSi2 が連続的に
分散しているのが確認された。これが原因で,比較試料
C2−1の焼結体は初期抵抗値ばらつきが大きく,連続
通電耐久性(高温での抵抗値安定性)に劣っていた。The sintered body of the comparative sample C2-1 was cut.
The cut surface obtained in the same manner as in the first embodiment was subjected to ECR plasma etching. The microstructure of the cut surface was observed by SEM. As a result, in the grain boundary phase of the Si 3 N 4 crystal grains, a three-dimensional network but a non-uniform width (there are local discontinuities) is present, and MoSi 2 is continuously dispersed. It was confirmed that. Due to this, the sintered body of Comparative Sample C2-1 had a large initial resistance value variation and was inferior in continuous current durability (resistance stability at high temperature).
【0079】また,比較試料C2−2について説明す
る。粒径0.2μm,比表面積が9m2 /gのSi3 N
4 を91重量%,Y2 O3を6重量%,Al2 O3 を3
重量%に秤量した。これらをボールミルで湿式混合した
混合粉末をスプレードライヤーを用いて最大粒径50〜
80μmの造粒体とした。次に,この造粒体にMoSi
2 と射出成形用のバインダーとを加えて,これらを混練
機で混練した。Next, the comparative sample C2-2 will be described. Si 3 N having a particle size of 0.2 μm and a specific surface area of 9 m 2 / g
4 91 wt%, Y 2 O 3 and 6 wt%, Al 2 O 3 of 3
Weighed to weight%. The mixture powder obtained by wet mixing these with a ball mill is subjected to a maximum particle size of 50 to 50 using a spray dryer.
The granules were 80 μm. Next, MoSi was added to the granules.
2 and a binder for injection molding were added, and these were kneaded with a kneader.
【0080】得られた材料を実施形態例1と同様に射出
成形し,直径60mmφ,高さ10mm程度の円板状の
成形体を作製した。上記成形体を脱脂後,アルゴンガス
雰囲気下,1800℃,60分間,加圧力20MPaで
ホットプレスした。以上により比較試料C2−2にかか
る焼結体を得た。The obtained material was injection-molded in the same manner as in Example 1 to produce a disk-shaped molded body having a diameter of 60 mmφ and a height of about 10 mm. After degreasing the molded body, it was hot-pressed at 1800 ° C. for 60 minutes under a pressure of 20 MPa in an argon gas atmosphere. Thus, a sintered body according to Comparative Sample C2-2 was obtained.
【0081】上記比較試料C2−2の焼結体を切断し,
実施形態例1と同様に切断面をECRプラズマエッチン
グした。上記切断面の微細構造をSEM観察した。その
結果,Si3 N4 結晶粒の粒界にMoSi2 がランダム
に分散しているのが確認された。これにより,上記比較
試料C2−2は比抵抗値が極端に高く,発熱体として劣
っていた。The sintered body of the comparative sample C2-2 was cut,
The cut surface was subjected to ECR plasma etching similarly to the first embodiment. The microstructure of the cut surface was observed by SEM. As a result, it was confirmed that MoSi 2 was randomly dispersed in the grain boundaries of the Si 3 N 4 crystal grains. As a result, the comparative sample C2-2 had an extremely high specific resistance and was inferior as a heating element.
【0082】実施形態例3 本例は,マトリックス用の材料の第1相粒子として金属
材料である鉄粉末を,第2相粒子としてジルコニア(Z
rO2 )を使用した金属性の複合体(焼結体)について
説明する。なお,上記第2相粒子は低熱伝導性及び電気
絶縁性を発現する物質で,本例にかかる焼結体とするこ
とにより,ZrO2 の低靱性,低強度,非磁性という欠
点を補って,金属に高断熱性及び低鉄損の軟磁性という
優れた性質を与えることができる。Embodiment 3 In this embodiment, iron powder which is a metal material is used as the first phase particles of the matrix material, and zirconia (Z
A metallic composite (sintered body) using (rO 2 ) will be described. The second phase particles are a substance exhibiting low thermal conductivity and electrical insulation. By forming the sintered body according to the present example, the disadvantages of ZrO 2 such as low toughness, low strength and non-magnetism can be compensated. Metals can be given excellent properties such as high heat insulation and soft magnetism with low iron loss.
【0083】まず,金属材料からなる第1相粒子とし
て,粒径0.6μmの鉄粉末を準備した。上記第1相粒
子をスプレードライヤーを用いて最大粒径80μmに造
粒体とした。上記造粒体を,750℃×1時間(真空
中)で仮焼きして,多孔状の仮焼粒子を得た。First, iron powder having a particle diameter of 0.6 μm was prepared as first phase particles made of a metal material. The first phase particles were formed into granules having a maximum particle size of 80 μm using a spray dryer. The granules were calcined at 750 ° C. for 1 hour (in vacuum) to obtain porous calcined particles.
【0084】次に,上記仮焼粒子を80体積%,第2相
粒子である粒径0.2mのZrO2粉末を20体積%に
秤量し,これらをジルコニアボールを用いて乾式でボー
ルミル混合し,多孔状の仮焼粒子の周囲がZrO2 粒子
で均一に被覆された複合粉を得た。Next, 80% by volume of the above calcined particles and 20% by volume of a ZrO 2 powder having a particle size of 0.2 m as the second phase particles were weighed, and these were dry-ball-mixed using zirconia balls. Thus, a composite powder was obtained in which the porous calcined particles were uniformly coated with ZrO 2 particles.
【0085】上記複合粉を金型内に充填し,7t/cm
2 の押圧力で押圧し,直径10mmφ,高さ3mmの円
板状の成形体を得た。上記成形体を,真空中で1200
℃で4時間焼成した。以上により金属性複合体を得た。The above composite powder was filled in a mold, and 7 t / cm
By pressing with a pressing force of 2, a disk-shaped molded body having a diameter of 10 mmφ and a height of 3 mm was obtained. The above-mentioned molded body is 1200
Calcination was performed at 4 ° C. for 4 hours. Thus, a metallic composite was obtained.
【0086】上記複合体を切断し,切断面の微細構造を
金属顕微鏡により観察した。その結果,島状に集合した
約60μmの大きさの鉄結晶粒団の周りに,ZrO2 が
均一な幅で連続的に分散した3次元ネットワーク構造が
形成されているのが確認された。更に,本例の製造方法
によれば,複合粉を金型で成形する際に高い圧力を加え
ても粒子構造は破壊されず,従来の圧粉体と比較して高
密度(相対密度;98%)のものが得られることが分か
った。The composite was cut, and the fine structure of the cut surface was observed with a metallographic microscope. As a result, it was confirmed that a three-dimensional network structure in which ZrO 2 was continuously dispersed with a uniform width was formed around an iron crystal cluster having a size of about 60 μm which was gathered in an island shape. Furthermore, according to the production method of this example, even when a high pressure is applied when molding the composite powder with a mold, the particle structure is not destroyed, and a higher density (relative density; %) Was obtained.
【0087】実施形態例4 本例は,本発明にかかる製造方法により作製した複合体
(焼結体)の電気抵抗特性を従来技術にかかる焼結体と
比較説明するものである。まず,第1相粒子であるα−
Si3 N4 (宇部興産製)と,焼結助剤であるY2 O3
(信越化学製)とを実施形態例1と同様にして造粒し,
粒状体(造粒粉)とした。この粒状体は粒径50μmで
ある。上記粒状体温度1600℃で仮焼して,仮焼粒子
を作製した。上記仮焼粒子をナイロンボールを用い,仮
焼粒子90重量%,第2相粒子であるSiCを10重量
%秤量し,湿式で約1時間ボールミル混合した。以上に
より本例にかかる複合粉を得た。Embodiment 4 In this embodiment, the electrical resistance characteristics of a composite (sintered body) produced by the manufacturing method according to the present invention will be described in comparison with a sintered body according to the prior art. First, the first phase particles, α-
Si 3 N 4 (made by Ube Industries) and sintering aid Y 2 O 3
(Manufactured by Shin-Etsu Chemical Co., Ltd.) and granulated in the same manner as in Embodiment 1.
Granules (granulated powder) were obtained. This granular material has a particle size of 50 μm. The particles were calcined at a temperature of 1600 ° C. to produce calcined particles. Using a nylon ball, the calcined particles were weighed at 90% by weight of the calcined particles and 10% by weight of SiC as the second phase particles, and were ball-milled for about 1 hour in a wet system. Thus, a composite powder according to this example was obtained.
【0088】上記複合粉を一軸成形し,温度1850℃
(窒素ガス雰囲気中),1時間,20MPaの条件でホ
ットプレスした。これにより得られた焼結体から2×2
×20mmの試験片を切り出して,試験に供した。この
試験片の電気抵抗値を測定したところ1.7×103 Ω
cmであった。The above composite powder is uniaxially formed, and the temperature is 1850 ° C.
(In a nitrogen gas atmosphere), hot-pressed for 1 hour at 20 MPa. From the sintered body thus obtained, 2 × 2
A test piece of × 20 mm was cut out and used for the test. When the electric resistance value of this test piece was measured, it was 1.7 × 10 3 Ω.
cm.
【0089】次に,比較例として,上述した試験片を作
製するに使用した第1相粒子であるSi3 N4 ,第2相
粒子であるSiC,焼結助剤であるY2 O3 をそのまま
ナイロンボールを用いて湿式に混合し,この混合粉末を
成形・ホットプレスした試験片を作製した。この試験片
の電気抵抗値を測定したところ,5×108 Ωcmであ
った。Next, as comparative examples, Si 3 N 4 as the first phase particles, SiC as the second phase particles, and Y 2 O 3 as the sintering aid used for preparing the above-described test piece were used. The mixture was wet-mixed using a nylon ball as it was, and the mixed powder was molded and hot pressed to prepare a test piece. The measured electrical resistance of the test piece was 5 × 10 8 Ωcm.
【0090】以上の試験より,本例にかかる複合体はS
iCの連続的で均一な導電パスが形成されており,その
電気抵抗値は比較した試験片と比べて5桁も低い値であ
ることが分かった。即ち,本例にかかる焼結体は第2相
粒子の特性を強く発現できる特徴を有することが分かっ
た。From the above test, it was found that the composite according to this example was S
It was found that a continuous and uniform conductive path of iC was formed, and the electric resistance value was five orders of magnitude lower than the comparative test piece. That is, it was found that the sintered body according to the present example had a feature capable of strongly expressing the characteristics of the second phase particles.
【発明の効果】上記のごとく,本発明によれば,必要な
粒径比を有する2種類以上の材料の組み合わせが容易に
でき,かつ第2相粒子によって均一に被覆することがで
き,更に第2相粒子よりなる幅が均一かつ連続的に形成
された三次元ネットワークを少ない添加量で確実に形成
することができ,第2相粒子の特性の発現と機械的・力
学的強度,熱的特性,電気的特性,化学的特性,光学的
特性とが並立した,複合体の製造方法を提供することが
できる。As described above, according to the present invention, it is possible to easily combine two or more kinds of materials having a required particle size ratio, and to uniformly coat with the second phase particles. A three-dimensional network consisting of two-phase particles with a uniform and continuous width can be reliably formed with a small amount of addition, and the characteristics of the second-phase particles, mechanical and mechanical strength, and thermal characteristics It is possible to provide a method for producing a composite in which electrical characteristics, chemical characteristics, and optical characteristics are made parallel.
【図1】本発明にかかる,複合体を構成する焼結体内部
の第2相粒子よりなる三次元ネットワークのセル構造を
示す説明図。FIG. 1 is an explanatory diagram showing a cell structure of a three-dimensional network including second phase particles inside a sintered body constituting a composite according to the present invention.
【図2】従来例にかかる,焼結体内部の三次元ネットワ
ークの説明図。FIG. 2 is an explanatory view of a three-dimensional network inside a sintered body according to a conventional example.
【図3】本発明にかかる,造粒により得られた粒状体の
説明図。FIG. 3 is an explanatory view of a granular material obtained by granulation according to the present invention.
【図4】本発明にかかる,仮焼により得られた仮焼粒子
の説明図。FIG. 4 is an explanatory diagram of calcined particles obtained by calcining according to the present invention.
【図5】本発明にかかる,仮焼粒子に混合された第2相
粒子の説明図。FIG. 5 is an explanatory view of second phase particles mixed with calcined particles according to the present invention.
【図6】従来例にかかる,第1相粒子と第2相粒子と焼
結助剤とが均一に分散した状態の説明図。FIG. 6 is an explanatory view showing a state in which first phase particles, second phase particles, and a sintering aid are uniformly dispersed according to a conventional example.
1...焼結体中のセル, 10,90...マトリックス, 11,91...第1相粒子, 12,92...第2相粒子, 13,142,93...焼結助剤, 151...粒状体, 152...仮焼粒子, 1. . . Cell in sintered body, 10, 90. . . Matrix, 11, 91. . . First phase particles, 12, 92. . . Second phase particles, 13, 142, 93. . . Sintering aid, 151. . . Granules, 152. . . Calcined particles,
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 1/05 C04B 35/64 L ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 1/05 C04B 35/64 L
Claims (1)
子を,又は焼結助剤と共に,もしくは更に第2相粒子を
加え,造粒して粒状体となし,該粒状体を仮焼成して,
マトリックスの第1相粒子の一部が焼結し合った多孔状
の仮焼粒子となし,該仮焼粒子に第2相粒子を添加,混
合することを特徴とする複合体の製造方法。A first phase particle comprising a material for a matrix, or together with a sintering aid, or a second phase particle is further added, and granulated to form a granular material. ,
A method for producing a composite, characterized in that a part of the first phase particles of a matrix is converted into sintered porous calcined particles, and the second phase particles are added to the calcined particles and mixed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9212559A JPH1143373A (en) | 1997-07-22 | 1997-07-22 | Production of composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9212559A JPH1143373A (en) | 1997-07-22 | 1997-07-22 | Production of composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1143373A true JPH1143373A (en) | 1999-02-16 |
Family
ID=16624706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9212559A Pending JPH1143373A (en) | 1997-07-22 | 1997-07-22 | Production of composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1143373A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004203671A (en) * | 2002-12-25 | 2004-07-22 | Tosoh Corp | Conductive zirconia sintered compact and method of manufacturing the same |
JP2010037197A (en) * | 2009-09-25 | 2010-02-18 | Murata Mfg Co Ltd | Method for producing glass ceramic substrate |
CN106735252A (en) * | 2017-03-23 | 2017-05-31 | 上海昌润极锐超硬材料有限公司 | A kind of method for manufacturing boric diamond composite sheet |
CN108526469A (en) * | 2017-03-06 | 2018-09-14 | 精工爱普生株式会社 | Metal powder injection molded compound, formed body, sintered body and manufacturing method |
CN111253150A (en) * | 2020-03-03 | 2020-06-09 | 武汉理工大学 | Preparation method of mullite-corundum composite ceramic substrate for electronic packaging |
CN114551989A (en) * | 2022-02-09 | 2022-05-27 | 山东创鲁先进电池科技有限公司 | Garnet type solid electrolyte and preparation method thereof |
CN115504792A (en) * | 2022-10-18 | 2022-12-23 | 福建华清电子材料科技有限公司 | Preparation method of high-strength aluminum nitride ceramic |
-
1997
- 1997-07-22 JP JP9212559A patent/JPH1143373A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004203671A (en) * | 2002-12-25 | 2004-07-22 | Tosoh Corp | Conductive zirconia sintered compact and method of manufacturing the same |
JP4544394B2 (en) * | 2002-12-25 | 2010-09-15 | 東ソー株式会社 | Conductive zirconia sintered body and method for producing the same |
JP2010037197A (en) * | 2009-09-25 | 2010-02-18 | Murata Mfg Co Ltd | Method for producing glass ceramic substrate |
CN108526469A (en) * | 2017-03-06 | 2018-09-14 | 精工爱普生株式会社 | Metal powder injection molded compound, formed body, sintered body and manufacturing method |
JP2018145481A (en) * | 2017-03-06 | 2018-09-20 | セイコーエプソン株式会社 | Powder metal injection molding compound, metal powder molding, manufacturing method for sintered body, and sintered body |
CN106735252A (en) * | 2017-03-23 | 2017-05-31 | 上海昌润极锐超硬材料有限公司 | A kind of method for manufacturing boric diamond composite sheet |
CN111253150A (en) * | 2020-03-03 | 2020-06-09 | 武汉理工大学 | Preparation method of mullite-corundum composite ceramic substrate for electronic packaging |
CN114551989A (en) * | 2022-02-09 | 2022-05-27 | 山东创鲁先进电池科技有限公司 | Garnet type solid electrolyte and preparation method thereof |
CN114551989B (en) * | 2022-02-09 | 2023-03-24 | 山东创鲁先进电池科技有限公司 | Garnet type solid electrolyte and preparation method thereof |
CN115504792A (en) * | 2022-10-18 | 2022-12-23 | 福建华清电子材料科技有限公司 | Preparation method of high-strength aluminum nitride ceramic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6245439B1 (en) | composite material and method for the manufacture | |
WO2006038489A1 (en) | Conductive silicon nitride material and process for producing the same | |
JP3830382B2 (en) | Ceramic sintered body and method for producing the same | |
JP3230793B2 (en) | Ceramic heating element | |
JPH1143373A (en) | Production of composite material | |
JPS59102862A (en) | Composite sintered ceramics | |
JPH05246760A (en) | Zirconia-based composite ceramic sintered compact and its production | |
JP3358775B2 (en) | Composite material and method for producing the same | |
JP2882877B2 (en) | Zirconia porcelain and method for producing the same | |
JPH05279129A (en) | Low-thermally conductive ceramic and its production | |
JPH07331358A (en) | Composite material | |
JP4041879B2 (en) | Ceramic porous body and method for producing the same | |
JP3605632B2 (en) | High-strength porous alumina and method for producing the same | |
JP3225873B2 (en) | MgO composite ceramics and method for producing the same | |
JP2925089B2 (en) | Ceramic composite sintered body and method of manufacturing the same | |
Chen et al. | Joining particulate and whisker ceramic composites by plastic flow | |
JP2566580B2 (en) | Silicon carbide / silicon nitride composite sintered body | |
JP3709691B2 (en) | Composite material | |
JP3329990B2 (en) | Conductive ceramics | |
JPH11217270A (en) | Honeycomb structure | |
JPH089743B2 (en) | Composite ceramic sintered body and manufacturing method thereof | |
JP3881936B2 (en) | Thermal barrier coating material | |
JPH0832590B2 (en) | Silicon carbide sintered body and manufacturing method thereof | |
JPH1135378A (en) | Material having composite structure | |
JP2002173373A (en) | Aluminum nitride sintered compact, method of producing the same and electronic component using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041022 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041207 |