JPH05246760A - Zirconia-based composite ceramic sintered compact and its production - Google Patents

Zirconia-based composite ceramic sintered compact and its production

Info

Publication number
JPH05246760A
JPH05246760A JP4117723A JP11772392A JPH05246760A JP H05246760 A JPH05246760 A JP H05246760A JP 4117723 A JP4117723 A JP 4117723A JP 11772392 A JP11772392 A JP 11772392A JP H05246760 A JPH05246760 A JP H05246760A
Authority
JP
Japan
Prior art keywords
zirconia
fine particles
sintered body
composite ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4117723A
Other languages
Japanese (ja)
Other versions
JP2659082B2 (en
Inventor
Masahiro Nawa
正弘 名和
Andaautsudo Ronarudo
ロナルド・アンダーウッド
Koichi Niihara
晧一 新原
Atsushi Nakahira
敦 中平
Toru Sekino
徹 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Publication of JPH05246760A publication Critical patent/JPH05246760A/en
Application granted granted Critical
Publication of JP2659082B2 publication Critical patent/JP2659082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the strength and toughness of a zirconia-based ceramic sintered compact. CONSTITUTION:This composite ceramic sintered compact is composed of partially stabilized zirconia matrix grains contg. 5-30mol% CeO2 and a dispersed phase of fine particles of one or more among Al2O3, SiC, Si3N4 and B4C or one or more of the carbides nitrides or borides of the groups IVa, Va and VIa elements of the periodic table. The fine particles have a higher m.p. than the sintering temp. of the zirconia matrix and the dispersed phase has been dispersed as a second phase in the matrix grains. When this sintered compact is produced, a powdery mixture contg. partially stabilized zirconia powder contg. 5-30mol% CeO2 and the above-mentioned fine particles having <=1mum average particle diameter is sintered at a temp. below the m.p. of the fine particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば構造用材料な
どに好適なジルコニア系複合セラミック焼結体及びその
製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconia-based composite ceramic sintered body suitable for, for example, structural materials and a method for producing the same.

【0002】[0002]

【従来の技術】多結晶セラミック焼結体は、優れた耐熱
性、耐磨耗性及び耐食性を有するため、自動車エンジン
用ターボチャージャーロータ、種々の刃物類、切削バイ
ト、メカニカルシール、スポーツレジャー用品等の幅広
い用途で使用されつつある。しかし、セラミックは本来
共有結合性やイオン結合性が強く、金属材料のように転
移または塑性変形等を示さないため、クラックの先端の
応力集中を緩和できず、材料中の微細な欠陥や表面傷を
起点として容易に破断する。このようにセラミックは靱
性が低く非常に脆いため、大型の部品や複雑な形状を有
する部品の構成材料としては適切でなく、自ずと成形品
の形状や寸法などに制限が加わるのが実情である。
2. Description of the Related Art Polycrystalline ceramic sintered bodies have excellent heat resistance, wear resistance, and corrosion resistance, so that turbocharger rotors for automobile engines, various blades, cutting tools, mechanical seals, sports leisure goods, etc. Is being used in a wide range of applications. However, ceramics are originally strong in covalent bond and ionic bond and do not show transition or plastic deformation like metal materials, so stress concentration at the tip of crack cannot be relaxed, and minute defects and surface scratches in the material cannot be relaxed. Fractures easily starting from. Since ceramic has low toughness and is extremely brittle in this way, it is not suitable as a constituent material for large parts or parts having a complicated shape, and the shape and size of the molded product are naturally limited.

【0003】そこで、このセラミックの脆さを改善する
ために、セラミック焼結体のマトリツクスに粒子及びウ
ィスカー等を分散させて、クラックの進展を阻止するこ
とにより、靱性と強度の向上をはかる試みがなされてい
る。この強靱性の向上をはかる有効な手段として追究さ
れているセラミックの複合化は、粒子分散からウィスカ
ー分散及び繊維強化へ、また、多結晶セラミックの粒界
を複合化するミクロ複合から、粒内を複合化するナノ複
合へと移行している。なかでも、セラミックの最小構成
単位である結晶粒自身を複合化したナノ複合材料は、高
強度化及び高温域での強度改善に著しい効果があること
が報告されている。
Therefore, in order to improve the brittleness of the ceramic, it has been attempted to improve the toughness and strength by dispersing particles, whiskers and the like in the matrix of the ceramic sintered body so as to prevent the progress of cracks. Has been done. Ceramic compounding, which has been sought as an effective means for improving the toughness, is performed from particle dispersion to whisker dispersion and fiber reinforcement, and from microcomposite that combines grain boundaries of polycrystalline ceramics to It is shifting to composite nanocomposites. Among them, it has been reported that the nanocomposite material in which the crystal grains themselves, which are the minimum structural units of ceramics, are compounded has a remarkable effect in increasing the strength and improving the strength in the high temperature region.

【0004】例えば、酸化物セラミックをマトリックス
とする系では、特開昭64−87552号に、α−アル
ミナマトリックスの粒内をSiC微粒子で複合化したア
ルミナ焼結体は高強度化及び高温域での強度改善に効果
があることが述べられている。この他にも、同様の手法
でAl2 3 /Si3 4 、MgO/SiC系ナノ複合
材料は高強度を示すことが知られている。さらに、非酸
化物セラミックをマトリックスとする系について一例を
挙げると、「粉末および粉末冶金,Vol.36,p236〜p243
(1989)」の文献に〔Si(CH)3 2 NHをアンモ
ニアと水素の雰囲気中でCVD法により非晶質のSi−
C−Nの複合粉末を得、この複合粉末を出発原料として
Si3 4 マトリックス粒子内に、SiC粒子が分散し
たSi34 /SiCのナノ複合材料は高強度化されて
いることが報告されている。
For example, in a system using an oxide ceramic as a matrix, in JP-A-64-87552, an alumina sintered body obtained by compounding the inside of α-alumina matrix with SiC fine particles has high strength and high temperature range. Is said to be effective in improving the strength of. In addition to this, it is known that Al 2 O 3 / Si 3 N 4 and MgO / SiC nanocomposite materials exhibit high strength by the same method. Furthermore, one example of a system using a non-oxide ceramic as a matrix is "Powder and powder metallurgy, Vol.36, p236-p243.
(1989) ”, [Si (CH) 3 ] 2 NH was added to amorphous Si- by CVD method in an atmosphere of ammonia and hydrogen.
It was reported that a C—N composite powder was obtained, and a Si 3 N 4 / SiC nanocomposite material in which SiC particles were dispersed in Si 3 N 4 matrix particles using this composite powder as a starting material had high strength. Has been done.

【0005】これらの複合セラミック焼結体のうち、ミ
クロ複合材料においては、ZrO2粒子、及びウイスカ
ー等で複合した系では、10MPam1/2 程度の破壊靱
性値を示し、また、SiC等の長繊維で複合した系で
は、20〜30MPam1/2 にも及ぶ高い破壊靱性値を
達成する。しかし、強度は多結晶セラミックマトリック
ス単体の5〜6割程度の向上にとどまり、さらなる強度
の向上が望まれている。
Among these composite ceramic sintered bodies, the microcomposite material has a fracture toughness value of about 10 MPam 1/2 in a system composed of ZrO 2 particles and whiskers, and also has a long fracture length such as SiC. Fiber-composite systems achieve high fracture toughness values up to 20-30 MPam 1/2 . However, the strength is only about 50 to 60% that of the polycrystalline ceramic matrix alone, and further improvement in strength is desired.

【0006】一方、ナノ複合材料においては、強度の向
上は高温域を含めて認められるものの、靱性の改善は多
結晶セラミックマトリックスの3〜4割程度の向上で、
ミクロ複合材料のような大きな靱性向上の寄与は認めら
れない。
On the other hand, in the nanocomposite material, although the improvement in strength is recognized in the high temperature range, the improvement in toughness is improved by about 30 to 40% of the polycrystalline ceramic matrix.
No significant contribution to the improvement of toughness as in the microcomposite material is recognized.

【0007】このように、多結晶セラミック複合材料に
おいては、強度及び靱性のさらなる向上が期待されてい
て、安定化剤としてCeO2 を添加した部分安定化ジル
コニア焼結体においても強度及び靱性の向上した焼結体
が求められている。
As described above, further improvement in strength and toughness is expected in the polycrystalline ceramic composite material, and the strength and toughness are also improved in the partially stabilized zirconia sintered body to which CeO 2 is added as a stabilizer. There is a demand for sintered bodies.

【0008】[0008]

【発明が解決しようとする課題】この発明は、高強度及
び高靱性を有するジルコニア系複合セラミック焼結体及
びその製法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a zirconia-based composite ceramic sintered body having high strength and high toughness and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】ジルコニア系複合セラミ
ック焼結体に関する発明は、CeO2 を5〜30モル%
含む部分安定化ジルコニアマトリックス粒子内に、第2
相として、前記ジルコニアマトリックスの焼結温度より
も高い融点を持ち、且つAl2 3 、SiC、Si3
4 若しくはB4 C又は周期律表のIVa、Va、VIa族に
属する元素の炭化物、窒化物若しくはほう化物の中から
選ばれた少なくとも一種以上よりなる微粒子の分散相を
有していることを特徴とするものであり、このジルコニ
ア系複合セラミック焼結体の製法に関する発明はCeO
2 を5〜30モル%含む部分安定化ジルコニア粉末と、
Al2 3 、SiC、Si3 4 若しくはB4 C又は周
期律表のIVa、Va、VIa族に属する元素の炭化物、窒
化物若しくはほう化物の中から選ばれた少なくとも一種
以上よりなる、平均粒径が1μm以下である微粒子とを
含む混合粉末を、前記の平均粒径が1μm以下である微
粒子の融点よりも低い温度で焼結することを特徴とする
ものである。
The invention relating to a zirconia-based composite ceramic sintered body is 5 to 30 mol% of CeO 2.
Second, in the partially stabilized zirconia matrix particles containing
The phase has a melting point higher than the sintering temperature of the zirconia matrix, and is Al 2 O 3 , SiC, Si 3 N
4 or B 4 C or having a dispersed phase of fine particles of at least one selected from carbides, nitrides and borides of elements belonging to IVa, Va and VIa groups of the periodic table The invention relating to the method for producing the zirconia-based composite ceramic sintered body is CeO.
Partially stabilized zirconia powder containing 5 to 30 mol% of 2 ,
An average of at least one selected from Al 2 O 3 , SiC, Si 3 N 4 or B 4 C or carbides, nitrides or borides of elements belonging to groups IVa, Va and VIa of the periodic table. It is characterized in that a mixed powder containing fine particles having a particle diameter of 1 μm or less is sintered at a temperature lower than the melting point of the fine particles having an average particle diameter of 1 μm or less.

【0010】以下、この発明を詳細に説明する。本発明
におけるセラミックマトリックスを構成する部分安定化
ジルコニアは、CeO2 を5〜30モル%含んでいるこ
とが重要である。この範囲であれば、ジルコニアは主と
して正方晶、または正方晶と立方晶の混合相からなり、
高い強度が得られるので好ましく、CeO2 が5モル%
より少ないと、準安定相である正方晶化が不十分とな
り、また、30モル%を越えると、立方晶の量が増加
し、その結果充分な強度が得られなくなるので好ましく
ない。
The present invention will be described in detail below. It is important that the partially stabilized zirconia constituting the ceramic matrix in the present invention contains 5 to 30 mol% of CeO 2 . Within this range, zirconia is mainly tetragonal, or a mixed phase of tetragonal and cubic,
CeO 2 is preferably 5 mol% because high strength can be obtained.
When the amount is less than the above, tetragonal crystallization which is a metastable phase becomes insufficient, and when it exceeds 30 mol%, the amount of cubic crystals increases, and as a result, sufficient strength cannot be obtained, which is not preferable.

【0011】また、CeO2 を安定化剤とした部分安定
化ジルコニアの粉末を得る方法としては、安定化剤とジ
ルコニアの粉末とを混合する方法、CeとZrとを含む
水溶液を用いて湿式合成法により粉末を得る方法等があ
る。本発明の部分安定化ジルコニアの粉末は常圧焼結、
加圧焼結等により緻密化され、焼結過程で分散相を大半
マトリックスの粒子内に取り込むためには、焼結中に粒
子成長するものでなければならない。一方、このマトリ
ックスに分散される微粒子は、焼結後に微粒子として分
散しているためには、該マトリックスの焼結温度より高
い融点を持つ微粒子に限定される。そして、本発明者等
はこのような高い融点を持つ微粒子としては各種の金属
があることを見出したので平成3年特許願第23544
6号として既に特許出願を行ったが、さらに金属の微粒
子以外にAl2 3 、SiC、Si3 4 若しくはB4
C又は周期律表のIVa、Va、VIa族に属する元素の炭
化物、窒化物若しくはほう化物の中から選ばれた少なく
とも一種以上よりなる微粒子も前記金属の微粒子と同様
の効果があることを見出し本発明に到ったものである。
Further, as a method for obtaining a powder of partially stabilized zirconia using CeO 2 as a stabilizer, a method of mixing a stabilizer and a powder of zirconia, a wet synthesis using an aqueous solution containing Ce and Zr. There is a method of obtaining powder by the method. The partially stabilized zirconia powder of the present invention is pressure-sintered,
In order to be densified by pressure sintering or the like and most of the dispersed phase be incorporated in the particles of the matrix during the sintering process, the particles must grow during the sintering. On the other hand, since the fine particles dispersed in this matrix are dispersed as fine particles after sintering, they are limited to fine particles having a melting point higher than the sintering temperature of the matrix. Then, the present inventors have found that there are various metals as the fine particles having such a high melting point, and therefore, the 1991 patent application No. 23544.
The patent application was already filed as No. 6, but in addition to the fine particles of metal, Al 2 O 3 , SiC, Si 3 N 4 or B 4
It has been found that fine particles of at least one selected from the group consisting of carbides, nitrides or borides of C or elements belonging to groups IVa, Va and VIa of the periodic table have the same effect as the fine particles of the metal. It is an invention.

【0012】そして、前記の微粒子は焼結過程でマトリ
ックス粒子内に取り込まれるためには微細なものでなけ
ればならず、平均粒径が1μm以下であることが望まし
く、また、焼結後にマトリックス粒子内にすべて分散し
ていることが望ましいが、一部マトリックスの粒界にあ
ってもかまわない。本発明におけるセラミックマトリッ
クスを構成する部分安定化ジルコニアに対する前記の微
粒子の分散相の添加量は、添加後の総量に対し0.5〜
50容量%が望ましく、さらに好ましくは2.5〜30
容量%である。すなわち、分散相が2.5容量%以下で
は強度向上の効果が少なく、30容量%以上では緻密化
が次第に困難となり、緩やかに強度低下を示すようにな
る。さらに50容量%を越えると、複合焼結体の相対密
度が95%以下になり緻密な焼結体を得ることが困難と
なり、その結果著しい強度劣化を示すようになる。
The fine particles must be fine in order to be incorporated into the matrix particles during the sintering process, and the average particle size is preferably 1 μm or less. It is desirable that all of them are dispersed inside, but it may be partly at the grain boundaries of the matrix. The amount of the dispersed phase of the above-mentioned fine particles added to the partially stabilized zirconia constituting the ceramic matrix in the present invention is 0.5 to the total amount after addition.
50% by volume is desirable, more preferably 2.5-30
Volume%. That is, when the dispersed phase is 2.5% by volume or less, the effect of improving the strength is small, and when the dispersed phase is 30% by volume or more, the densification becomes gradually difficult and the strength gradually decreases. Further, if it exceeds 50% by volume, the relative density of the composite sintered body becomes 95% or less, and it becomes difficult to obtain a dense sintered body, and as a result, the strength is remarkably deteriorated.

【0013】なお、マトリックスと分散相の組合せを熱
膨張係数の関係で触れると、マトリックスよりも熱膨張
係数の小さい分散相が分散されていると、さらにマトリ
ックスの強靱性の向上に有効に寄与する点で好ましい
が、必ずしもこれに限定されるものではない。本発明の
マトリックスであるCeO2 を安定化剤とした部分安定
化ジルコニアは、通常、熱膨張係数が大きく、上記に示
した分散相は、マトリックスよりも小さい熱膨張係数を
有する点をも満足する。
When the combination of the matrix and the disperse phase is referred to in terms of the coefficient of thermal expansion, if the disperse phase having a smaller coefficient of thermal expansion than the matrix is dispersed, it contributes effectively to further improving the toughness of the matrix. This is preferable, but the present invention is not necessarily limited to this. The partially stabilized zirconia using CeO 2 as a matrix stabilizer of the present invention usually has a large coefficient of thermal expansion, and the dispersed phase shown above also satisfies the point that it has a coefficient of thermal expansion smaller than that of the matrix. ..

【0014】次に本発明に係るジルコニア系複合セラミ
ック焼結体の強靱化の改善効果のメカニズムについて考
察を加える。
Next, the mechanism of the effect of improving the toughness of the zirconia-based composite ceramic sintered body according to the present invention will be considered.

【0015】マトリックスを構成するCeO2 系部分安
定化ジルコニアセラミックの粒内あるいは一部粒界に分
散された微粒子は、焼結の過程でセラミックの粒が異常
に成長するのを抑制する作用を有し、その結果、マトリ
ックスは微細な組織で構成され、破壊源寸法の減少をも
たらし強度が大幅に上昇する。加えてセラミックのマト
リックスに分散した微粒子によりクラックの進展過程に
おいて、クラックの先端が湾曲(ボーイング)、あるい
は偏曲(ディフレクション)されることにより、焼結体
の靱性が向上する。
The fine particles dispersed in the grains of CeO 2 type partially stabilized zirconia ceramic constituting the matrix or partially in the grain boundaries have the effect of suppressing abnormal growth of the ceramic grains during the sintering process. However, as a result, the matrix is composed of a fine structure, which reduces the size of the fracture source and significantly increases the strength. In addition, due to the fine particles dispersed in the ceramic matrix, the tip of the crack is curved (bowing) or deflected (deflection) in the course of crack development, thereby improving the toughness of the sintered body.

【0016】さらに、マトリックスを構成するCeO2
系部分安定化ジルコニアセラミックの粒内あるいは一部
粒界に分散された微粒子がマトリックスを構成するセラ
ミックよりも熱膨張係数が小さい系では、分散された微
粒子は強度及び靱性の向上に、より有効に作用する。セ
ラミックと微粒子との熱膨張率が一致していない場合
は、焼結後の冷却過程において、マトリックス内及び微
粒子の周辺に残留応力場が形成され、この残留応力場が
クラックの進展経路に影響を与える。すなわち、微粒子
がセラミックよりも熱膨張係数が小さいと、焼結後の冷
却過程において微粒子の周辺に引張応力が発生し、微粒
子の周辺には残留引張応力場が形成されるので、クラッ
クは微粒子に引き寄せられるように進展し、その結果と
してセラミックの粒内破壊が誘導される。このように、
クラックは微粒子に衝突して進む確率が増えるので、ク
ラックの進展が有効に阻止されるのである。併せて、マ
トリックス中に分散された微粒子の軸方向には、残留圧
縮応力が焼結後の冷却過程において発生し、これにより
セラミックの結晶粒自身が大幅に強化されるので、一層
の強度改善が達成されるのである。
Further, CeO 2 which constitutes the matrix
In a system in which fine particles dispersed in the grains of the partially stabilized zirconia ceramic or in some grain boundaries have a smaller thermal expansion coefficient than the ceramic constituting the matrix, the dispersed fine particles are more effective in improving strength and toughness. To work. If the coefficient of thermal expansion of the ceramic and that of the fine particles do not match, a residual stress field is formed in the matrix and around the fine particles during the cooling process after sintering, and this residual stress field affects the crack propagation path. give. That is, when the thermal expansion coefficient of the fine particles is smaller than that of the ceramic, tensile stress is generated around the fine particles in the cooling process after sintering, and a residual tensile stress field is formed around the fine particles, so cracks are generated in the fine particles. It develops to be attracted, which induces intragranular fracture of the ceramic. in this way,
Since the probability that the crack will collide with the fine particles will increase, the progress of the crack will be effectively prevented. At the same time, a residual compressive stress is generated in the axial direction of the fine particles dispersed in the matrix during the cooling process after sintering, and the crystal grains themselves of the ceramic are greatly strengthened by this, further improving the strength. It will be achieved.

【0017】上記した本発明に係るジルコニア系複合セ
ラミック焼結体を得るための製法として、CeO2 を5
〜30モル%含む部分安定化ジルコニア粉末と、Al2
3、SiC、Si3 4 若しくはB4 C又は周期律表
のIVa、Va、VIa族に属する元素の炭化物、窒化物若
しくはほう化物の中から選ばれた少なくとも一種以上よ
りなる、平均粒径が1μm以下である微粒子とを含む混
合粉末を、前記の平均粒径が1μm以下である微粒子の
融点よりも低い温度で焼結する点に、製法上の特徴を有
する。そして、この混合粉末は、原料粉末であるCeO
2 系部分安定化ジルコニア粉末と分散相である平均粒径
1μm以下の微粒子とを所定量配合したものをエタノー
ル、アセトン、トルエン等を溶媒として湿式ボールミル
混合し、次いで乾燥する方法等により得られる。
As a manufacturing method for obtaining the above-mentioned zirconia-based composite ceramic sintered body according to the present invention, 5% of CeO 2 is used.
Partially stabilized zirconia powder containing ~ 30 mol% and Al 2
An average particle diameter of at least one selected from O 3 , SiC, Si 3 N 4 or B 4 C or carbides, nitrides or borides of elements belonging to the IVa, Va and VIa groups of the periodic table. Is characterized in that the mixed powder containing fine particles having a particle size of 1 μm or less is sintered at a temperature lower than the melting point of the particles having an average particle size of 1 μm or less. And this mixed powder is CeO which is a raw material powder.
It is obtained by a method in which a predetermined amount of 2 type partially stabilized zirconia powder and fine particles having a mean particle size of 1 μm or less, which is a dispersed phase, are mixed in a wet ball mill using ethanol, acetone, toluene or the like as a solvent, and then dried.

【0018】本発明では、上記の混合粉末を常用の成形
法である乾式プレスあるいは射出成形法等により所望の
形状に成形し、さらに、常圧焼結、真空焼結、ガス圧焼
結、ホットプレス焼結、又は熱間静水圧加圧焼結(HI
P)等により焼結して、緻密化された焼結体を得る。な
お、成形と焼結は、別々に行ってもよく、同時でもよ
く、制限はない。
In the present invention, the above-mentioned mixed powder is molded into a desired shape by a dry molding method or an injection molding method, which are commonly used molding methods, and further, normal pressure sintering, vacuum sintering, gas pressure sintering, hot molding. Press sintering or hot isostatic pressing (HI
P) or the like is sintered to obtain a densified sintered body. The molding and sintering may be performed separately or simultaneously, and there is no limitation.

【0019】また、焼結の雰囲気は、部分安定化ジルコ
ニアの原料粉末並びにAl2 3 、SiC、Si3 4
及びB4 C並びに周期律表のIVa、Va、VIa族に属す
る元素の炭化物、窒化物及びほう化物の酸化を防ぐた
め、真空、窒素ガス、アルゴンガスの如き不活性ガス雰
囲気が適当である。また、熱間静水圧加圧焼結では、予
め常圧焼結、ホットプレス等で開気孔の少ない予備焼結
体を作製し、これを熱間静水圧加圧処理する方法あるい
は成形体に金属やガラスで気密シールを施してカプセル
化し、これを熱間静水圧加圧処理する方法のいずれも適
用できる。
Further, the sintering atmosphere is such that the partially stabilized zirconia raw material powder and Al 2 O 3 , SiC, Si 3 N 4 are used.
In order to prevent the oxidation of B 4 C and B 4 C and carbides, nitrides and borides of elements belonging to groups IVa, Va and VIa of the periodic table, vacuum, an inert gas atmosphere such as nitrogen gas and argon gas is suitable. Further, in hot isostatic pressing, a pre-sintered body with few open pores is prepared beforehand by normal pressure sintering, hot pressing, etc., and hot isostatic pressing is performed on the pre-sintered body or the formed body is made of metal. Any of the methods of encapsulating by air-tightly sealing with glass or glass and subjecting this to hot isostatic pressing can be applied.

【0020】ジルコニア系複合セラミック焼結体の製法
において、上記の混合粉末を用いて得られる成形体を、
単斜晶ジルコニア粉末に埋め込んで焼結するようにする
と、より緻密な焼結体を得ることがきるので望ましい。
この場合の成形体を得る方法については、特に限定はな
く、乾式プレスあるいは射出成形法等により所望の形状
に成形すればよい。そして、この場合の焼結について
は、得られた成形体を単斜晶ジルコニア粉末に埋め込ん
だ状態で、焼結条件に耐える容器内に挿入し、その後、
容積一定、あるいはわずかの加圧条件下で焼結するよう
にすればよい。単斜晶ジルコニア粉末は、約1170℃
以上、2370℃以下の温度範囲では高温安定相である
正方晶ジルコニア粉末となり、約1170℃以下の温度
域では単斜晶ジルコニアに結晶変態し、この結晶変態時
に約4%の体積膨張を示すという性質を有している。従
って、成形体を単斜晶ジルコニア粉末に埋め込んだ状態
で行なう焼結をこの結晶変態温度以上で行えば、疑似熱
間静水圧加圧焼結(疑似HIP焼結)を行ったことにな
り、熱間静水圧加圧焼結と類似の効果が達成され、より
緻密な焼結体が得られるようになるのである。さらに、
従来、安定化剤であるCeO2 はカーボン雰囲気中等の
還元雰囲気中では還元されてCe2 3 となりやすく、
そのために、還元雰囲気中で焼結した場合には焼結後の
結晶相が正方晶となりにくいという問題や、焼結体が割
れる問題等が生じるので、カーボン雰囲気中等の還元雰
囲気中での焼結は一般的に困難であったが、成形体を単
斜晶ジルコニア粉末に埋め込んで焼結するようにする
と、焼結時にカーボンヒーター等のカーボン源と焼結体
とを遮断できるので、CeO2 の還元を抑制でき、従来
のCeO2 の還元に伴う問題を改善できるるという効果
もある。
In the method for producing a zirconia-based composite ceramic sintered body, a molded body obtained by using the above-mentioned mixed powder is
Embedding in monoclinic zirconia powder for sintering is preferable because a denser sintered body can be obtained.
The method for obtaining the molded body in this case is not particularly limited, and it may be molded into a desired shape by a dry press, an injection molding method, or the like. Then, for the sintering in this case, in a state in which the obtained molded body is embedded in the monoclinic zirconia powder, inserted into a container that withstands the sintering conditions, then,
Sintering may be performed under a constant volume or a slight pressure condition. Monoclinic zirconia powder is about 1170 ℃
As described above, tetragonal zirconia powder which is a high temperature stable phase is obtained in the temperature range of 2370 ° C. or lower, and crystallized into monoclinic zirconia in the temperature range of about 1170 ° C. or lower, and exhibits a volume expansion of about 4% during this crystal transformation. It has the property. Therefore, if the sintering performed in the state where the compact is embedded in the monoclinic zirconia powder is performed at the crystal transformation temperature or higher, it means that the pseudo hot isostatic pressing (pseudo HIP sintering) is performed. The effect similar to that of hot isostatic pressing is achieved, and a denser sintered body can be obtained. further,
Conventionally, CeO 2 which is a stabilizer is easily reduced to Ce 2 O 3 in a reducing atmosphere such as a carbon atmosphere,
Therefore, when sintered in a reducing atmosphere, there are problems that the crystal phase after sintering is less likely to be tetragonal and that the sintered body is cracked. Therefore, sintering in a reducing atmosphere such as a carbon atmosphere occurs. generally it was difficult, when such sintered embed the shaped body to monoclinic zirconia powder, it is possible to cut off the carbon source and the sintered body such as a carbon heater during sintering of CeO 2 There is also an effect that the reduction can be suppressed and the problems associated with the conventional reduction of CeO 2 can be improved.

【0021】また、アルミナ粒子分散型の複合セラミッ
ク焼結体の場合には、分散種であるアルミナ粒子の原料
としてγ−Al2 3 粉末を用いることは一次粒子径が
非常に細かいので好ましいが、反面、大きな比表面積を
有し、かさ高いため、常用の成形法(乾式プレス法、あ
るいは射出成形法等)で所望の形状を付与することが困
難であるという問題があった。そこで、このようなγ−
Al2 3 粉末を用いる場合の製法について検討したと
ころ、CeO2 を5〜30モル%含む部分安定化ジルコ
ニア粉末と、γ−Al2 3 粉末とを含む混合粉末を、
1000℃以上、焼結温度以下の温度で仮焼した後、粉
砕して得られた仮焼粉末を焼結するようにすると、常用
の成形法で所望の形状を付与することが可能となり、緻
密な焼結体を得ることができるようになることを見出し
た。この場合の仮焼温度としては、γ−α転移温度(約
1000℃)以上であり、仮焼後に粉砕しやすいように
する観点から、1300℃以下であることが好ましい。
In the case of the alumina particle dispersion type composite ceramic sintered body, it is preferable to use γ-Al 2 O 3 powder as a raw material for the alumina particles as the dispersion species because the primary particle diameter is very small. On the other hand, since it has a large specific surface area and is bulky, there is a problem that it is difficult to give a desired shape by a usual molding method (dry pressing method, injection molding method, etc.). Therefore, such γ−
When a manufacturing method using Al 2 O 3 powder was examined, a mixed powder containing partially stabilized zirconia powder containing 5 to 30 mol% of CeO 2 and γ-Al 2 O 3 powder was prepared.
If the calcined powder obtained by crushing after calcination at a temperature of 1000 ° C. or higher and the sintering temperature or lower is sintered, it is possible to give a desired shape by a conventional molding method, and it is possible to obtain a compact shape. It has been found that an excellent sintered body can be obtained. In this case, the calcination temperature is preferably γ-α transition temperature (about 1000 ° C.) or higher, and 1300 ° C. or lower from the viewpoint of facilitating pulverization after calcination.

【0022】[0022]

【実施例】【Example】

(実施例1〜6及び比較例1〜2)CeO2 を表1に示
すごとく5〜35モル%含む部分安定化ジルコニア粉末
に、平均粒径0.2μm、純度98%以上のβ−SiC
の微粒子を5容量%添加したものを、ポリエチレン被覆
鉄製ボールとポリエチレン容器を用い、アセトンを溶媒
として24時間湿式ボールミル混合した。得られた粉末
を静水圧プレスによりφ60mm、厚さ5mmの円盤状
成形体とし、アルゴン雰囲気中、焼結温度1600℃、
保持時間2時間の条件下で焼結した。
Examples 1 to 6 and Comparative Examples 1 to 2 Partially stabilized zirconia powder containing CeO 2 in an amount of 5 to 35 mol% as shown in Table 1 was used, and β-SiC having an average particle size of 0.2 μm and a purity of 98% or more was used.
5% by volume of the fine particles of 1. was mixed in a wet ball mill for 24 hours using acetone as a solvent and a polyethylene-coated iron ball and a polyethylene container. The obtained powder was formed into a disk-shaped compact having a diameter of 60 mm and a thickness of 5 mm by isostatic pressing, and the sintering temperature was 1600 ° C. in an argon atmosphere.
Sintering was performed under the condition of holding time of 2 hours.

【0023】これらの焼結体は相対密度99%以上、気
孔率1%以下の緻密なものであり、走査型電子顕微鏡、
及び透過型電子顕微鏡による観察により、SiCの微粒
子が部分安定化ジルコニア粒内に存在していることが確
認された。
These sintered bodies are dense with a relative density of 99% or more and a porosity of 1% or less.
Also, it was confirmed by observation with a transmission electron microscope that the SiC fine particles were present in the partially stabilized zirconia grains.

【0024】次いで、前記の円盤状の焼結体から切断、
研削加工して、4×3×35mmの試料を作製し、この
試料につき、JISR1601により、室温における3
点曲げ強度を測定した。また、前記試料の表面を鏡面に
研磨し、JISR1607によるSEPB法により、破
壊靱性値を測定した。以上の測定結果を表1に示す。
Then, the disc-shaped sintered body is cut,
Grinding is performed to prepare a sample of 4 × 3 × 35 mm, and this sample is subjected to 3 at room temperature according to JISR1601.
The point bending strength was measured. Further, the surface of the sample was mirror-polished and the fracture toughness value was measured by the SEPB method according to JIS R1607. Table 1 shows the above measurement results.

【0025】上記試料をX線回折により、結晶相の同定
を行い、次いで各相の割合を定量した。その結果を表1
にジルコニアの結晶相として示す。但し、ジルコニアの
結晶相の記号については、Tは正方晶、Cは立方晶、M
は単斜晶をそれぞれ表している。
Crystal phases were identified in the above sample by X-ray diffraction, and then the proportion of each phase was quantified. The results are shown in Table 1.
Is shown as a crystal phase of zirconia. However, regarding the symbol of the crystal phase of zirconia, T is tetragonal, C is cubic, and M is
Represents monoclinic crystals, respectively.

【0026】[0026]

【表1】 [Table 1]

【0027】(実施例7〜19)CeO2 を12モル%
含む部分安定化ジルコニア粉末に、表2及び表3に示す
ごとく、平均粒径1μm以下の種々の微粒子を5容量%
添加したものを、ポリエチレン被覆鉄製ボールとポリエ
チレン容器を用い、アセトンを溶媒として24時間湿式
ボールミル混合した。但し、表3で微粒子が2種類のも
のは、それぞれの種類を2.5容量%、総量で5容量%
となるよう調整した。得られた粉末を高純度アルミナ製
モールドを用いて、アルゴン雰囲気中、表2及び表3に
示す焼結温度で、保持時間2時間、プレス圧力30MP
aの条件下で焼結し、φ50mm、厚さ4mmの円盤状
成形体を得た。
(Examples 7 to 19) 12 mol% CeO 2
As shown in Tables 2 and 3, the partially stabilized zirconia powder containing 5% by volume of various fine particles having an average particle size of 1 μm or less was added.
The added product was mixed in a wet ball mill for 24 hours using acetone as a solvent, using a polyethylene-coated iron ball and a polyethylene container. However, in Table 3, two types of fine particles have 2.5% by volume of each type, and the total amount is 5% by volume.
It was adjusted so that The obtained powder was molded in a high purity alumina mold in an argon atmosphere at a sintering temperature shown in Tables 2 and 3 for a holding time of 2 hours and a pressing pressure of 30MP.
Sintering was carried out under the condition of a to obtain a disk-shaped compact having a diameter of 50 mm and a thickness of 4 mm.

【0028】これらの焼結体は相対密度99%以上、気
孔率1%以下の緻密なものであり、走査型電子顕微鏡、
及び透過型電子顕微鏡による観察により、表2及び表3
に示す種々の微粒子は、部分安定化ジルコニア粒内に存
在していることが確認された。また、ジルコニアの結晶
相はすべて正方晶であった。
These sintered bodies are dense with a relative density of 99% or more and a porosity of 1% or less.
And Tables 2 and 3 by observation with a transmission electron microscope.
It was confirmed that the various fine particles shown in (3) are present in the partially stabilized zirconia grains. The crystal phase of zirconia was all tetragonal.

【0029】次いで、前記の円盤状の焼結体から切断、
研削加工して、4×3×35mmの試料を作製し、この
試料につき、JISR1601により室温における3点
曲げ強度を測定した。また、前記試料の表面を鏡面に研
磨しJISR1607によるSEPB法により破壊靱性
値を測定した。以上の測定結果を表2及び表3に示す。
Then, the disc-shaped sintered body is cut,
Grinding was performed to prepare a sample of 4 × 3 × 35 mm, and the 3-point bending strength at room temperature was measured according to JISR1601 for this sample. The surface of the sample was mirror-polished and the fracture toughness value was measured by the SEPB method according to JIS R1607. The above measurement results are shown in Tables 2 and 3.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】(比較例3〜15)CeO2 を12モル%
含む部分安定化ジルコニア粉末に添加する微粒子とし
て、表4及び表5に示すごとく、平均粒径1μmを越え
る種々の微粒子を用いた以外は実施例7〜19と同様に
して円盤状成形体を得た。
Comparative Examples 3 to 15 12 mol% CeO 2
As the fine particles to be added to the partially stabilized zirconia powder containing, as shown in Table 4 and Table 5, disk-shaped compacts were obtained in the same manner as in Examples 7 to 19 except that various fine particles having an average particle size of more than 1 μm were used. It was

【0033】次いで、前記の円盤状の焼結体から切断、
研削加工して、4×3×35mmの試料を作製し、この
試料につき、JISR1601により室温における3点
曲げ強度を測定した。また、前記試料の表面を鏡面に研
磨しJISR1607によるSEPB法により破壊靱性
値を測定した。以上の測定結果を表4及び表5に示す。
Then, the disc-shaped sintered body is cut,
Grinding was performed to prepare a sample of 4 × 3 × 35 mm, and the 3-point bending strength at room temperature was measured according to JISR1601 for this sample. The surface of the sample was mirror-polished and the fracture toughness value was measured by the SEPB method according to JIS R1607. The above measurement results are shown in Tables 4 and 5.

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】(実施例20〜25及び比較例16〜1
7)CeO2 を12モル%含む部分安定化ジルコニア粉
末に、平均粒径0.2μm、純度98%以上のβ−Si
Cの微粒子を表6に示すごとく0〜60容量%添加した
ものを、ポリエチレン被覆鉄製ボールとポリエチレン容
器を用い、アセトンを溶媒として24時間湿式ボールミ
ル混合した。得られた粉末を高純度アルミナ製モールド
を用いてアルゴン雰囲気中、焼結温度1600℃、保持
時間2時間、プレス圧力30MPaの条件下で焼結し、
φ50mm,厚さ4mmの円盤状焼結体を得た。
(Examples 20 to 25 and Comparative Examples 16 to 1)
7) β-Si having an average particle size of 0.2 μm and a purity of 98% or more is added to partially stabilized zirconia powder containing 12 mol% CeO 2.
The fine particles of C added as shown in Table 6 in an amount of 0 to 60% by volume were mixed in a wet ball mill for 24 hours using a polyethylene-coated iron ball and a polyethylene container and acetone as a solvent. The obtained powder is sintered using a high-purity alumina mold in an argon atmosphere under the conditions of a sintering temperature of 1600 ° C., a holding time of 2 hours, and a pressing pressure of 30 MPa,
A disk-shaped sintered body with a diameter of 50 mm and a thickness of 4 mm was obtained.

【0037】これらの焼結体の中でSiCの添加量が5
0容量%以下のものは、相対密度99%以上、気孔率1
%以下の緻密なものであり、走査型電子顕微鏡、及び透
過型電子顕微鏡による観察により、SiCの微粒子が部
分安定化ジルコニア粒内に存在していることが確認され
た。但し、SiC添加量が30容量%を越えると、添加
量の増加に伴い次第に緻密化が困難となる傾向を示し、
60容量%においては、相対密度が95%以下となっ
た。
Among these sintered bodies, the addition amount of SiC was 5
Those with 0% by volume or less have a relative density of 99% or more and a porosity of 1
%, And it was confirmed by observation with a scanning electron microscope and a transmission electron microscope that SiC fine particles were present in the partially stabilized zirconia grains. However, if the amount of SiC added exceeds 30% by volume, densification tends to gradually become difficult as the amount added increases,
At 60% by volume, the relative density was 95% or less.

【0038】次いで、前記の円盤状の焼結体から切断、
研削加工して、4×3×35mmの試料を作製し、この
試料につき、JISR1601により室温における3点
曲げ強度を測定した。また、前記試料の表面を鏡面に研
磨しJISR1607によるSEPB法により破壊靱性
値を測定した。以上の測定結果を表6に示す。
Then, the disc-shaped sintered body was cut,
Grinding was performed to prepare a sample of 4 × 3 × 35 mm, and the 3-point bending strength at room temperature was measured according to JISR1601 for this sample. The surface of the sample was mirror-polished and the fracture toughness value was measured by the SEPB method according to JIS R1607. Table 6 shows the above measurement results.

【0039】表6に示した数値を用いて、SiCの添加
量の変化に伴う室温における3点曲げ強度の変化を図1
に、SiCの添加量の変化に伴う破壊靱性値の変化を図
2にそれぞれ示す。なお、焼結体中のSiCの含有量
(容量%)を調べたところ、SiCの含有量(容量%)
とSiCの添加量(容量%)とはよく一致していた。図
1、図2より、SiCの添加量(含有量)が30容量%
までは添加量(含有量)の増大と共に、3点曲げ強度、
破壊靱性値共に向上し、30〜50容量%では、添加量
(含有量)の増大と共に3点曲げ強度、破壊靱性値共に
緩やかな減少を示した。そして、添加量(含有量)が6
0容量%での3点曲げ強度、破壊靱性値は部分安定化ジ
ルコニア単体の3点曲げ強度、破壊靱性値より低い値と
なった。
Using the values shown in Table 6, the change in the three-point bending strength at room temperature with the change in the amount of SiC added is shown in FIG.
2 shows changes in the fracture toughness value with changes in the amount of SiC added, respectively. When the content of SiC (volume%) in the sintered body was examined, the content of SiC (volume%)
And the added amount of SiC (% by volume) were in good agreement. 1 and 2, the amount of SiC added (content) is 30% by volume.
Up to 3 points bending strength,
Both the fracture toughness values were improved, and at 30 to 50% by volume, the three-point bending strength and the fracture toughness values gradually decreased with the increase of the added amount (content). And the added amount (content) is 6
The three-point bending strength and fracture toughness value at 0% by volume were lower than the three-point bending strength and fracture toughness value of the partially stabilized zirconia alone.

【0040】[0040]

【表6】 [Table 6]

【0041】(実施例26〜34)CeO2 を12モル
%含む部分安定化ジルコニア粉末に、表7に示すごとく
平均粒径1μm以下の種々の微粒子を5容量%添加した
ものを、ポリエチレン被覆鉄製ボールとポリエチレン容
器を用い、アセトンを溶媒として24時間湿式ボールミ
ル混合した。得られた粉末を静水圧プレスによりφ60
mm、厚さ5mmの円盤状の成型体を得た。得られた成
型体を平均粒径2μmの単斜晶ジルコニア粉末とともに
内径65mmの高純度アルミナ製モールドの中に埋め込
み、アルゴン雰囲気中で、表7に示す焼結温度で、保持
時間3時間の条件下で焼結した。なお、焼結中のアルミ
ナ容器(アルミナ製モールド)内の容器を一定に保つた
め、上パンチにわずかの荷重(約0.1MPa)を加え
た条件で焼結し、冷却後、単斜晶ジルコニア粉末の中か
ら焼結体を取り出した。
(Examples 26-34) Partially stabilized zirconia powder containing 12 mol% of CeO 2 was added with 5% by volume of various fine particles having an average particle size of 1 μm or less as shown in Table 7, and was made of polyethylene-coated iron. Wet ball mill mixing was performed for 24 hours using acetone as a solvent using a ball and a polyethylene container. Φ60 of the obtained powder is obtained by isostatic pressing.
A disk-shaped molded body having a thickness of 5 mm and a thickness of 5 mm was obtained. The obtained molded body was embedded in a high-purity alumina mold having an inner diameter of 65 mm together with a monoclinic zirconia powder having an average particle diameter of 2 μm, and the sintering temperature shown in Table 7 was used in an argon atmosphere, and the holding time was 3 hours. Sintered under. In order to keep the container inside the alumina container (alumina mold) during sintering constant, sintering was performed under a condition where a slight load (about 0.1 MPa) was applied to the upper punch, and after cooling, monoclinic zirconia was used. The sintered body was taken out of the powder.

【0042】実施例26〜34で得られた焼結体は、相
対密度99%以上、気孔率1%以下の緻密なものであ
り、走査型電子顕微鏡、及び透過型電子顕微鏡による観
察により、表7に示す種々の微粒子が部分安定化ジルコ
ニア粒内に存在していることが確認された。また、得ら
れた焼結体中のジルコニアの結晶相はすべて正方晶であ
った。
The sintered bodies obtained in Examples 26 to 34 were dense ones having a relative density of 99% or more and a porosity of 1% or less, and were observed by a scanning electron microscope and a transmission electron microscope. It was confirmed that various fine particles shown in 7 exist in the partially stabilized zirconia particles. The crystal phase of zirconia in the obtained sintered body was all tetragonal.

【0043】次いで、前記の円盤状の焼結体から切断、
研削加工して、4×3×35mmの試料を作製し、この
試料につき、JISR1601により室温における3点
曲げ強度を測定した。また、前記試料の表面を鏡面に研
磨しJISR1607によるSEPB法により破壊靱性
値を測定した。以上の測定結果を表7に示す。
Then, the disc-shaped sintered body was cut,
Grinding was performed to prepare a sample of 4 × 3 × 35 mm, and the 3-point bending strength at room temperature was measured according to JISR1601 for this sample. The surface of the sample was mirror-polished and the fracture toughness value was measured by the SEPB method according to JIS R1607. Table 7 shows the above measurement results.

【0044】[0044]

【表7】 [Table 7]

【0045】(実施例35)CeO2 を12モル%含む
部分安定化ジルコニア粉末に、比表面積300g/m2
のγ−Al2 3 粉末(微粒子)を5容量%添加したも
のを、ポリエチレン被覆鉄製ボールとポリエチレン容器
を用い、アセトンを溶媒として24時間湿式ボールミル
混合した。得られた混合粉末を大気中、1200℃で3
時間仮焼した後、ジルコニア製ボールとジルコニア容器
を用い、24時間乾式粉砕した。こうして得られた仮焼
粉末を用いて、静水圧プレスによりφ60mm、厚さ5
mmの円盤状の成型体を得た。得られた成型体を大気
中、焼結温度1550℃、保持時間3時間の条件下で焼
結した。得られた焼結体は、相対密度99%以上、気孔
率1%以下の緻密なものであり、走査型電子顕微鏡、及
び透過型電子顕微鏡による観察により、Al2 3 微粒
子が部分安定化ジルコニア粒内に存在していることが確
認された。また、得られた焼結体中のジルコニアの結晶
相はすべて正方晶であった。
Example 35 A partially stabilized zirconia powder containing 12 mol% of CeO 2 was added to a specific surface area of 300 g / m 2.
5% by volume of the γ-Al 2 O 3 powder (fine particles) was mixed in a wet ball mill for 24 hours with acetone as a solvent using a polyethylene-coated iron ball and a polyethylene container. The obtained mixed powder was heated at 1200 ° C. in air for 3
After calcination for a period of time, dry pulverization was performed for 24 hours using a zirconia ball and a zirconia container. Using the calcined powder thus obtained, a hydrostatic pressure press was used to obtain a diameter of 60 mm and a thickness of 5
A disc-shaped molded body of mm was obtained. The obtained molded body was sintered in the atmosphere under the conditions of a sintering temperature of 1550 ° C. and a holding time of 3 hours. The obtained sintered body was a dense one having a relative density of 99% or more and a porosity of 1% or less, and by observation with a scanning electron microscope and a transmission electron microscope, Al 2 O 3 fine particles were partially stabilized zirconia. It was confirmed that they were present in the grains. The crystal phase of zirconia in the obtained sintered body was all tetragonal.

【0046】次いで、前記の円盤状の焼結体から切断、
研削加工して、4×3×35mmの試料を作製し、この
試料につき、JISR1601により室温における3点
曲げ強度を測定した。また、前記試料の表面を鏡面に研
磨しJISR1607によるSEPB法により破壊靱性
値を測定した。以上の測定結果を表8に示す。
Then, the disc-shaped sintered body was cut,
Grinding was performed to prepare a sample of 4 × 3 × 35 mm, and the 3-point bending strength at room temperature was measured according to JISR1601 for this sample. The surface of the sample was mirror-polished and the fracture toughness value was measured by the SEPB method according to JIS R1607. Table 8 shows the above measurement results.

【0047】(比較例18)実施例35における仮焼処
理を行なわずに、直ちに焼結するようにした他は、実施
例35と同様にして焼結体を得たのが比較例18であ
る。
(Comparative Example 18) In Comparative Example 18, a sintered body was obtained in the same manner as in Example 35, except that the calcining treatment in Example 35 was not performed and sintering was immediately performed. ..

【0048】CeO2 を12モル%含む部分安定化ジル
コニア粉末に、比表面積300g/m2 のγ−Al2
3 粉末(微粒子)を5容量%添加したものを、ポリエチ
レン被覆鉄製ボールとポリエチレン容器を用い、アセト
ンを溶媒として24時間湿式ボールミル混合した。得ら
れた混合粉末を仮焼処理を行なわずに、直ちに静水圧プ
レスにより成型し、φ60mm、厚さ5mmの円盤状の
成型体を得た。得られた成型体を大気中、焼結温度15
50℃、保持時間3時間の条件下で焼結した。得られた
焼結体は、相対密度97%以下と緻密化が不十分なもの
であった。
Γ-Al 2 O having a specific surface area of 300 g / m 2 was added to partially stabilized zirconia powder containing 12 mol% CeO 2.
Three powders (fine particles) added in an amount of 5% by volume were mixed in a wet ball mill for 24 hours using acetone as a solvent and a polyethylene-coated iron ball and a polyethylene container. The obtained mixed powder was immediately molded by a hydrostatic press without performing a calcination treatment to obtain a disk-shaped molded body having a diameter of 60 mm and a thickness of 5 mm. The obtained molded body is sintered in air at a sintering temperature of 15
Sintering was performed under the conditions of 50 ° C. and a holding time of 3 hours. The obtained sintered body had a relative density of 97% or less and was insufficiently densified.

【0049】得られた焼結体から切断、研削加工して、
4×3×35mmの試料を作製し、この試料につき、J
ISR1601により室温における3点曲げ強度を測定
した。また、前記試料の表面を鏡面に研磨しJISR1
607によるSEPB法により破壊靱性値を測定した。
以上の測定結果を表8に示す。
By cutting and grinding the obtained sintered body,
A sample of 4 × 3 × 35 mm was prepared, and J
Three-point bending strength at room temperature was measured by ISR1601. In addition, the surface of the sample is mirror-polished to JIS R1
The fracture toughness value was measured by the SEPB method according to 607.
Table 8 shows the above measurement results.

【0050】[0050]

【表8】 [Table 8]

【0051】[0051]

【発明の効果】本発明に係るジルコニア系複合セラミッ
ク焼結体は、前述のとおり、焼結された部分安定化ジル
コニアマトリックス粒子内に、該マトリックスの焼結温
度よりも高い融点を持つ微粒子が分散されているので、
強度、靱性が向上する。
As described above, in the zirconia-based composite ceramic sintered body according to the present invention, fine particles having a melting point higher than the sintering temperature of the matrix are dispersed in the partially stabilized zirconia matrix particles that have been sintered. Since it has been
Strength and toughness are improved.

【0052】そして、CeO2 を5〜30モル%含む部
分安定化ジルコニア粉末及びAl23 、SiC、Si
3 4 若しくはB4 C又は周期律表のIVa、Va、VIa
族に属する元素の炭化物、窒化物若しくはほう化物の中
から選ばれた少なくとも一種以上よりなる、平均粒径1
μm以下の微粒子とを含む混合粉末を、前記微粒子の融
点よりも低い温度で焼結するジルコニア系複合セラミッ
ク焼結体の製法によって優れた性能を有するジルコニア
系複合セラミック焼結体を製造することができる。
Then, partially stabilized zirconia powder containing 5 to 30 mol% of CeO 2 and Al 2 O 3 , SiC, Si
3 N 4 or B 4 C or IVa, Va, VIa of the periodic table
Average particle size 1 consisting of at least one selected from carbides, nitrides or borides of elements belonging to the group
A zirconia-based composite ceramic sintered body having excellent performance can be produced by a method for producing a zirconia-based composite ceramic sintered body in which a mixed powder containing fine particles having a size of μm or less is sintered at a temperature lower than the melting point of the fine particles. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例20〜25及び比較例16〜1
7に係る複合セラミック焼結体についての、SiCの添
加量と室温における3点曲げ強度との関係を示したグラ
フである。
FIG. 1 is an example of the present invention 20-25 and comparative examples 16-1.
9 is a graph showing the relationship between the amount of SiC added and the three-point bending strength at room temperature for the composite ceramic sintered body according to No. 7.

【図2】本発明の実施例20〜25及び比較例16〜1
7に係る複合セラミック焼結体についての、SiCの添
加量と破壊靱性値との関係を示したグラフである。
[Fig. 2] Examples 20 to 25 of the present invention and Comparative examples 16 to 1
7 is a graph showing the relationship between the amount of SiC added and the fracture toughness value for the composite ceramic sintered body according to No. 7.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新原 晧一 大阪府枚方市香里カ丘9丁目7番地香里合 同宿舎1142 (72)発明者 中平 敦 大阪府吹田市青山台1丁目2番地C33− 307号 (72)発明者 関野 徹 大阪府豊中市西緑丘2丁目2番3−341号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Niihara 9-7 Korikaoka, Hirakata-shi, Osaka 1142 Kori Camp, 1142 (72) Inventor Atsushi Nakahira 1-2-2 Aoyamadai, Suita, Osaka C33- No. 307 (72) Inventor Toru Sekeno 2-3-3341, Nishimidoka, Toyonaka City, Osaka Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 CeO2 を5〜30モル%含む部分安定
化ジルコニアマトリックス粒子内に、第2相として、前
記ジルコニアマトリックスの焼結温度よりも高い融点を
持ち、且つAl2 3 、SiC、Si3 4 若しくはB
4 C又は周期律表のIVa、Va、VIa族に属する元素の
炭化物、窒化物若しくはほう化物の中から選ばれた少な
くとも一種以上よりなる微粒子の分散相を有することを
特徴とするジルコニア系複合セラミック焼結体。
1. A partially stabilized zirconia matrix particle containing 5 to 30 mol% of CeO 2 has a second phase having a melting point higher than the sintering temperature of the zirconia matrix, and Al 2 O 3 , SiC, Si 3 N 4 or B
4 C or the Periodic Table of the IVa, Va, carbides of elements belonging to Group VIa, zirconia composite ceramic and having a nitride compound or boron dispersed phase of fine particles at least consisting of one or more selected from among fluoride Sintered body.
【請求項2】 複合セラミック焼結体中のジルコニアの
結晶相が、主として正方晶または正方晶と立方晶からな
る請求項1記載のジルコニア系複合セラミック焼結体。
2. The zirconia-based composite ceramic sintered body according to claim 1, wherein the crystal phase of zirconia in the composite ceramic sintered body is mainly tetragonal or tetragonal and cubic.
【請求項3】 上記分散相の含有量が0.5〜50容量
%である請求項2記載のジルコニア系複合セラミック焼
結体。
3. The zirconia-based composite ceramic sintered body according to claim 2, wherein the content of the dispersed phase is 0.5 to 50% by volume.
【請求項4】 CeO2 を5〜30モル%含む部分安定
化ジルコニア粉末と、Al2 3 、SiC、Si3 4
若しくはB4 C又は周期律表のIVa、Va、VIa族に属
する元素の炭化物、窒化物若しくはほう化物の中から選
ばれた少なくとも一種以上よりなる、平均粒径が1μm
以下である微粒子とを含む混合粉末を、前記の平均粒径
が1μm以下である微粒子の融点よりも低い温度で焼結
することを特徴とするジルコニア系複合セラミック焼結
体の製法。
4. A partially stabilized zirconia powder containing 5 to 30 mol% of CeO 2 , and Al 2 O 3 , SiC, Si 3 N 4
Or B 4 C or at least one selected from carbides, nitrides and borides of elements belonging to the IVa, Va and VIa groups of the Periodic Table, having an average particle size of 1 μm
A method for producing a zirconia-based composite ceramic sintered body, which comprises sintering a mixed powder containing the following fine particles at a temperature lower than the melting point of the fine particles having an average particle diameter of 1 μm or less.
【請求項5】 上記の混合粉末を用いて得られる成形体
を、単斜晶ジルコニア粉末に埋め込んで焼結することを
特徴とする請求項4記載のジルコニア系複合セラミック
焼結体の製法。
5. The method for producing a zirconia-based composite ceramic sintered body according to claim 4, wherein the molded body obtained by using the mixed powder is embedded in monoclinic zirconia powder and sintered.
【請求項6】 上記の混合粉末がCeO2 を5〜30モ
ル%含む部分安定化ジルコニア粉末と、γ−Al2 3
粉末とを含む混合粉末であり、この混合粉末を、100
0℃以上、焼結温度以下の温度で仮焼した後、粉砕して
得られた仮焼粉末を焼結することを特徴とする請求項4
又は5記載のジルコニア系複合セラミック焼結体の製
法。
6. The partially stabilized zirconia powder, wherein the mixed powder contains 5 to 30 mol% of CeO 2 , and γ-Al 2 O 3
And a mixed powder containing powder, and the mixed powder is
The calcined powder obtained by pulverizing after calcination at a temperature of 0 ° C. or higher and a sintering temperature or lower is sintered.
Alternatively, the method for producing the zirconia-based composite ceramic sintered body according to item 5.
JP4117723A 1991-05-30 1992-05-11 Manufacturing method of zirconia-based composite ceramic sintered body Expired - Lifetime JP2659082B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3-127132 1991-05-20
JP12713291 1991-05-30
JP23159891 1991-09-11
JP3-231598 1991-09-11

Publications (2)

Publication Number Publication Date
JPH05246760A true JPH05246760A (en) 1993-09-24
JP2659082B2 JP2659082B2 (en) 1997-09-30

Family

ID=26463148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117723A Expired - Lifetime JP2659082B2 (en) 1991-05-30 1992-05-11 Manufacturing method of zirconia-based composite ceramic sintered body

Country Status (1)

Country Link
JP (1) JP2659082B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728636A (en) * 1995-01-30 1998-03-17 Matsushita Elec. Works, Ltd. Zirconia based ceramic material
US5854158A (en) * 1996-10-01 1998-12-29 Matsushita Electric Works, Ltd. ZrO2 based ceramic material and method of producing the same
US5863850A (en) * 1995-09-21 1999-01-26 Matsushita Electric Works, Ltd. Process of making zirconia based ceramic material
JPH1157237A (en) * 1997-08-19 1999-03-02 Matsushita Electric Works Ltd Ceramic knife
US7012036B2 (en) 2002-07-19 2006-03-14 Matsushita Electric Works, Ltd. ZrO2-Al2O3 composite ceramic material and production method thereof
US7162321B2 (en) * 1999-12-07 2007-01-09 Inocermic Gesellschaft Fuer Innovative Keyamik Mbh Method for producing a high-strength ceramic dental prosthesis
JP2007112712A (en) * 2006-11-20 2007-05-10 Kyocera Corp Drawing die
US7928028B2 (en) 2004-03-23 2011-04-19 Panasonic Electric Works Co., Ltd. ZrO2-Al2O3 composite ceramic material and production method therefor
WO2011081103A1 (en) 2009-12-28 2011-07-07 パナソニック電工株式会社 Method for producing zirconia-alumina composite ceramic material, zirconia-alumina composite granulated powder, and zirconia beads
JP2012241218A (en) * 2011-05-18 2012-12-10 Mitsubishi Materials Corp Oxide sputtering target and method of manufacturing the same, and buffer powder used therefor
WO2018074017A1 (en) * 2016-10-17 2018-04-26 住友電気工業株式会社 Sintered body and cutting tool including same
CN115745602A (en) * 2022-12-12 2023-03-07 富耐克超硬材料股份有限公司 Zirconia-based ceramic composite material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203738A1 (en) * 2016-05-27 2017-11-30 住友電気工業株式会社 Sintered body and cutting tool containing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251568A (en) * 1985-04-26 1986-11-08 日立金属株式会社 High strength zro2 base sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251568A (en) * 1985-04-26 1986-11-08 日立金属株式会社 High strength zro2 base sintered body

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728636A (en) * 1995-01-30 1998-03-17 Matsushita Elec. Works, Ltd. Zirconia based ceramic material
US5863850A (en) * 1995-09-21 1999-01-26 Matsushita Electric Works, Ltd. Process of making zirconia based ceramic material
US5854158A (en) * 1996-10-01 1998-12-29 Matsushita Electric Works, Ltd. ZrO2 based ceramic material and method of producing the same
CN1075479C (en) * 1996-10-01 2001-11-28 松下电工株式会社 ZrO2 based ceramic material and method of producing the same
JPH1157237A (en) * 1997-08-19 1999-03-02 Matsushita Electric Works Ltd Ceramic knife
US7162321B2 (en) * 1999-12-07 2007-01-09 Inocermic Gesellschaft Fuer Innovative Keyamik Mbh Method for producing a high-strength ceramic dental prosthesis
US7012036B2 (en) 2002-07-19 2006-03-14 Matsushita Electric Works, Ltd. ZrO2-Al2O3 composite ceramic material and production method thereof
US7928028B2 (en) 2004-03-23 2011-04-19 Panasonic Electric Works Co., Ltd. ZrO2-Al2O3 composite ceramic material and production method therefor
US8093168B2 (en) 2004-03-23 2012-01-10 Panasonic Electric Works Co., Ltd. ZrO2-Al2O3 composite ceramic material and production method therefor
JP2007112712A (en) * 2006-11-20 2007-05-10 Kyocera Corp Drawing die
WO2011081103A1 (en) 2009-12-28 2011-07-07 パナソニック電工株式会社 Method for producing zirconia-alumina composite ceramic material, zirconia-alumina composite granulated powder, and zirconia beads
JP2012241218A (en) * 2011-05-18 2012-12-10 Mitsubishi Materials Corp Oxide sputtering target and method of manufacturing the same, and buffer powder used therefor
WO2018074017A1 (en) * 2016-10-17 2018-04-26 住友電気工業株式会社 Sintered body and cutting tool including same
CN109906212A (en) * 2016-10-17 2019-06-18 住友电气工业株式会社 Sintered body and cutting element comprising the sintered body
JPWO2018074017A1 (en) * 2016-10-17 2019-08-08 住友電気工業株式会社 Sintered body and cutting tool including the same
CN115745602A (en) * 2022-12-12 2023-03-07 富耐克超硬材料股份有限公司 Zirconia-based ceramic composite material and preparation method and application thereof
CN115745602B (en) * 2022-12-12 2024-01-05 富耐克超硬材料股份有限公司 Zirconia-based ceramic composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2659082B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
JP2651332B2 (en) Zirconia-based composite ceramic sintered body and method for producing the same
JP2703207B2 (en) Zirconia-based composite ceramic sintered body and method for producing the same
US5656218A (en) Method for making high performance self-reinforced silicon carbide using a pressureless sintering process
Petrovic et al. ZrO2‐Reinforced MoSi2 Matrix Composites
JP2659082B2 (en) Manufacturing method of zirconia-based composite ceramic sintered body
US6139791A (en) Method of making in-situ toughened alpha prime SiAlon-based ceramics
US5296301A (en) Sintered ceramic-metal composite product and method of fabricating the same
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
US4889834A (en) SiC-Al2 O3 composite sintered bodies and method of producing the same
SE459494B (en) SEATED IN PREPARATION OF CERAMIC COMPOSITES CONTAINING SILICON OXYNITRIDE AND Zirconia Oxide
JPH0539535A (en) Combined ceramic sintered body and its manufacture
JP4070254B2 (en) Composite sintered body of silicon nitride and silicon carbide and method for producing the same
Takano et al. Microstructure and mechanical properties of ZrO 2 (2Y)-toughened Al 2 O 3 ceramics fabricated by spark plasma sintering
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPH05330926A (en) Boride-based composite ceramic sintered compact
JPH0812425A (en) Zirconic composite ceramic sintered compact and its production
JP2694354B2 (en) Silicon nitride sintered body
JP2001080961A (en) High strength zirconia-base ceramic sintered compact and its production
JPH05339045A (en) Nonlinear ceramics
JPH0832590B2 (en) Silicon carbide sintered body and manufacturing method thereof
JP2000001370A (en) Silicon nitride-base sintered compact and its production
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH02167857A (en) Highly tough mullite-based calcined body and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 15

EXPY Cancellation because of completion of term