JPH1142514A - Manufacture of bearing - Google Patents

Manufacture of bearing

Info

Publication number
JPH1142514A
JPH1142514A JP9219130A JP21913097A JPH1142514A JP H1142514 A JPH1142514 A JP H1142514A JP 9219130 A JP9219130 A JP 9219130A JP 21913097 A JP21913097 A JP 21913097A JP H1142514 A JPH1142514 A JP H1142514A
Authority
JP
Japan
Prior art keywords
bearing
housing
press
bearing main
guide pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9219130A
Other languages
Japanese (ja)
Other versions
JP3701107B2 (en
Inventor
Takeshi Yanase
剛 柳瀬
Makoto Kondo
近藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP21913097A priority Critical patent/JP3701107B2/en
Publication of JPH1142514A publication Critical patent/JPH1142514A/en
Application granted granted Critical
Publication of JP3701107B2 publication Critical patent/JP3701107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/26Systems consisting of a plurality of sliding-contact bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • B29C66/612Making circumferential joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a bearing which can high accurately obtain a coaxial degree of a plurality of bearing main units without being influenced by dimensional accuracy of a housing. SOLUTION: In both ends of a press fit hole 2a of a resin-made housing 2, a metal-made bearing main unit 3 inserted to a guide pin 12 is press fitted by an upper/lower punch 10, 11. Here in the upper/lower punch 10, 11, ultrasonic vibration is given from a horn 13, 14. The ultrasonic vibration is transmitted to the housing 2 and the bearing main unit 3, between both thereof, friction heat is generated. By this friction heat, an internal peripheral surface of the housing 2 is fused, as a result, the bearing main unit 3, while fusing the housing 2, is press fitted. After press fitting, the ultrasonic vibration is stopped, the bearing main unit 3 is fused in the housing. An internal peripheral surface of the housing 2 into contact with the bearing main unit 3 is fused, so that a residual degree of elastic stress is small, even when the guide pin 12 is extracted, by preventing the bearing main unit 3 from moving, a coaxial degree of a bearing hole 3a of the bearing main unit 3 is well held.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、筒状のハウジング
の内部に複数の軸受本体が圧入により組み込まれてなる
軸受の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bearing in which a plurality of bearing bodies are press-fitted inside a cylindrical housing.

【0002】[0002]

【従来の技術】各種モータ用の軸受として、スリーブ状
のハウジングの内部に、2つあるいはそれ以上の数の軸
受本体が、圧入により組み込まれたものが用いられてい
る。例えば、ハウジングの内部の両端に、軸受本体が互
いに離れた状態で1つずつ組み込まれた構造のものなど
がある。このような軸受は、複数の軸受本体が実質的に
回転軸を支持することから、それら軸受本体における軸
受孔の同軸度に高い精度が要求されてくる。その理由と
しては、同軸度が低いと、片当たりによる偏摩耗や、そ
れに伴う摩擦抵抗の増大を招き、特にモータ用としての
軸受性能が劣ってしまうからである。その同軸度を高め
るために、従来では、リーマ加工等による補正加工を施
していた。ところが、例えば軸受本体が焼結金属である
場合、リーマ加工を行うと内周面の気孔分布状態が悪化
し、焼結金属の特性を損失させる可能性があった。ま
た、補正加工を施すこと自体が工程および装置の増大を
招くので、好ましいものではなかった。したがって、軸
受本体をハウジングの内部に圧入した時点で高精度な同
軸度が得られれば最も望ましく、そのために次のような
製造方法が採用されている。
2. Description of the Related Art As bearings for various motors, two or more bearing bodies are press-fitted into a sleeve-shaped housing. For example, there is a structure in which a bearing main body is incorporated one by one at both ends inside a housing while being separated from each other. In such a bearing, since a plurality of bearing bodies substantially support the rotating shaft, high precision is required for the coaxiality of the bearing holes in the bearing bodies. The reason is that if the coaxiality is low, uneven wear due to one-sided contact and accompanying increase in frictional resistance are caused, and especially the bearing performance for motors is inferior. Conventionally, in order to increase the coaxiality, correction processing such as reamer processing has been performed. However, for example, when the bearing body is made of a sintered metal, the reaming process deteriorates the pore distribution state of the inner peripheral surface, and may cause the loss of the properties of the sintered metal. Further, since the correction processing itself increases the number of steps and devices, it is not preferable. Therefore, it is most desirable that a high-precision coaxiality be obtained when the bearing body is pressed into the interior of the housing. For this purpose, the following manufacturing method is employed.

【0003】すなわち、軸受本体の軸受孔に対して摺動
可能に挿入され得るガイドピンをハウジングの内部に挿
入し、ハウジングの両側において軸受本体の軸受孔にガ
イドピンを挿入し、次いで、各軸受本体をガイドピンに
沿ってハウジング内に圧入する。この後、ガイドピンを
抜き取る。この方法によれば、予め各軸受本体の軸受孔
がガイドピンによって同軸的に定められ、ガイドピンを
抜き取った後にもその状態が保持されることにより、上
記のような補正加工を必要としない。
That is, a guide pin which can be slidably inserted into a bearing hole of a bearing body is inserted into the housing, and the guide pin is inserted into a bearing hole of the bearing body on both sides of the housing. The main body is pressed into the housing along the guide pins. Thereafter, the guide pins are removed. According to this method, the bearing hole of each bearing body is previously determined coaxially by the guide pin, and the state is maintained even after the guide pin is pulled out, so that the above-described correction processing is not required.

【0004】[0004]

【発明が解決しようとする課題】ところで、ハウジング
の材質としては、金属および樹脂があげられる。樹脂製
のハウジングは、通常射出成形で製造されるので、加工
を要する金属製のものより低価格で得られるものの、寸
法精度が金属製のハウジングよりも劣るといった不利な
面があった。このため、軸受本体が圧入されることによ
り減じられる内側の肉部すなわち圧入代が不均一になる
ことがある。このようなハウジングに対して上記方法を
適用した場合、ガイドピンを抜き取った後に、樹脂が弾
性復帰して軸受本体が径方向に偏って移動してしまい、
その結果として高精度な同軸度が損なわれるといった問
題が生じていた。この問題に対しては、圧入代を、不均
一の度合いを無視できる程度に大きく設定するといった
打開策が考えられるが、その場合には、強度的に金属よ
り劣る樹脂製のハウジングに割れが生じるおそれがあ
り、実現が困難である。したがって、本発明は、複数の
軸受本体の同軸度が、ハウジングの寸法精度に影響され
ることなく高精度で得ることのできる軸受の製造方法を
提供することを目的としている。
The material of the housing includes metal and resin. Since a resin housing is usually manufactured by injection molding, it can be obtained at a lower price than a metal housing which requires processing, but has a disadvantage in that dimensional accuracy is inferior to a metal housing. For this reason, the inner wall portion reduced by press-fitting the bearing main body, that is, the press-fitting margin may become non-uniform. When the above method is applied to such a housing, the resin is elastically restored and the bearing body is displaced in the radial direction after the guide pin is pulled out,
As a result, there has been a problem that high-precision coaxiality is impaired. To solve this problem, it is conceivable to solve the problem by setting the press-fitting margin large enough to ignore the degree of non-uniformity, but in this case, cracks occur in the resin housing which is inferior to metal in strength. There is a possibility that it is difficult to realize. Therefore, an object of the present invention is to provide a method of manufacturing a bearing in which the coaxiality of a plurality of bearing bodies can be obtained with high accuracy without being affected by the dimensional accuracy of the housing.

【0005】[0005]

【課題を解決するための手段】本発明は、筒状のハウジ
ングの内部に、複数の軸受本体が、それぞれの軸受孔が
互いに同軸的となる状態で圧入されてなる軸受の製造す
る方法であって、ハウジングを軸受本体よりも融点が低
い材質で製造し、このハウジングの内部に、軸受本体の
軸受孔に摺動可能に挿入され得るガイドピンを挿入する
とともに、各軸受本体の軸受孔にガイドピンを挿入する
ことにより、このガイドピンで各軸受本体を支持し、次
いで、各軸受本体もしくはハウジングの少なくとも一方
に高周波振動を与えながら、各軸受本体をガイドピンに
沿ってハウジングの内部に圧入することを特徴としてい
る。上記製造方法によれば、軸受本体をハウジングに圧
入する際、高周波振動により両者の間に摩擦熱が発生す
る。その摩擦熱により、融点が低い方つまりハウジング
の軸受本体に接する内周面が溶融する。すなわち、軸受
本体はハウジングの内周面を溶融しながら圧入されてい
き、圧入後はハウジングに対し溶着されることになる。
この後、ガイドピンを抜き取って軸受を得る。複数の軸
受本体は、ガイドピンに沿ってハウジング内に圧入され
るので、圧入された時点で同軸度が高い。軸受本体がハ
ウジングに溶着した後、ガイドピンを抜き取っても、軸
受本体の周囲のハウジング内周面は溶融した後なので弾
性応力の残存度が小さく、その弾性応力による軸受本体
の移動が抑えられる。その結果複数の軸受本体の軸受孔
においては、ガイドピンが挿入された状態のままの高い
同軸度が保持される。
SUMMARY OF THE INVENTION The present invention is a method for manufacturing a bearing in which a plurality of bearing bodies are press-fitted into a cylindrical housing with their respective bearing holes coaxial with each other. The housing is made of a material having a melting point lower than that of the bearing body, and a guide pin that can be slidably inserted into a bearing hole of the bearing body is inserted into the housing, and a guide is inserted into the bearing hole of each bearing body. By inserting the pin, each bearing main body is supported by the guide pin, and then, while applying high-frequency vibration to at least one of the bearing main body or the housing, each bearing main body is pressed into the housing along the guide pin. It is characterized by: According to the above manufacturing method, when the bearing body is press-fitted into the housing, frictional heat is generated between the two due to high-frequency vibration. The frictional heat causes the lower melting point, that is, the inner peripheral surface of the housing in contact with the bearing body to melt. That is, the bearing body is press-fitted while melting the inner peripheral surface of the housing. After the press-fitting, the bearing body is welded to the housing.
Thereafter, the guide pin is removed to obtain a bearing. Since the plurality of bearing bodies are press-fitted into the housing along the guide pins, the coaxiality is high at the time of press-fitting. Even if the guide pins are removed after the bearing main body is welded to the housing, the inner peripheral surface of the housing around the bearing main body is melted, so that the residual elastic stress is small, and the movement of the bearing main body due to the elastic stress is suppressed. As a result, high coaxiality is maintained in the bearing holes of the plurality of bearing bodies while the guide pins are inserted.

【0006】例えば、前記軸受本体を青銅系軸受材料等
からなる金属製とし、前記ハウジングを樹脂製とすれ
ば、このハウジングを軸受本体よりも融点の低いものと
することができる。また、樹脂でハウジングを製造する
とその寸法精度がばらつく傾向にあって軸受本体の圧入
代が大きくなる場合があるが、たとえ圧入代が大きくな
ろうとも、圧入によって溶融するから弾性応力の残存度
は小さい。したがって、同軸度は保持されるとともに、
軸受本体の圧入に伴うハウジングの割れが防がれる。ま
た、前記軸受本体の外周面に、ローレット、段、溝等の
凹凸加工を施しておくと、ハウジング内周面との接触面
積増大に伴う摩擦力の増大や機械的固着が図られ、ハウ
ジングとの結合力が高まる。
For example, if the bearing body is made of a metal such as a bronze bearing material and the housing is made of a resin, the housing can have a lower melting point than the bearing body. In addition, when the housing is made of resin, the dimensional accuracy tends to vary, so that the press-fit allowance of the bearing body may increase. small. Therefore, while maintaining coaxiality,
Cracking of the housing due to press-fitting of the bearing body is prevented. In addition, when the outer peripheral surface of the bearing main body is subjected to knurling, steps, grooves and the like, unevenness processing such as a knurl, a step, a groove, and the like, an increase in frictional force due to an increase in the contact area with the inner peripheral surface of the housing and mechanical fixation are achieved. Increases the binding power of

【0007】また、高周波の周波数は、軸受本体と接す
るハウジング内周面が摩擦熱により溶融するのであれば
数100KHz程度であってもよい。本発明者等の検討
によれば、例えばハウジングが樹脂の場合、高周波の周
波数は1KHz以上であると効果的であり、超音波域で
ある1.4KHz以上であればさらに効果的であること
が判明している。周波数は20KHzあれば充分であ
り、20KHzを超えてもそれ以上の効果の向上は望め
ない。よって、高周波は、周波数が1〜20KHzであ
ることが望ましく、超音波であればさらに好適である。
高周波を周波数が20KHzの超音波により得る場合に
は、20000回/秒の振動を軸受本体もしくはハウジ
ングに与えることが可能であり、しかも、振幅も0.1
mm以下にすることができる。したがって、0.1秒間
に2000回もの振動を軸受本体もしくはハウジングに
与えることができるので、極めて短時間で軸受本体のハ
ウジング内への圧入およびハウジングへの溶着が完了す
る。
The high frequency may be about several hundred KHz as long as the inner peripheral surface of the housing in contact with the bearing body is melted by frictional heat. According to the study of the present inventors, for example, when the housing is made of resin, it is effective that the frequency of the high frequency is 1 KHz or more, and it is more effective if the frequency is 1.4 KHz or more in the ultrasonic range. It is known. A frequency of 20 KHz is sufficient, and even if it exceeds 20 KHz, no further improvement in the effect can be expected. Therefore, the high frequency is desirably a frequency of 1 to 20 KHz, and more preferably an ultrasonic wave.
When a high frequency is obtained by ultrasonic waves having a frequency of 20 KHz, 20,000 vibrations / second can be given to the bearing body or the housing, and the amplitude is also 0.1%.
mm or less. Therefore, as many as 2,000 vibrations can be applied to the bearing body or the housing in 0.1 second, so that the press-fitting of the bearing body into the housing and the welding to the housing are completed in a very short time.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態について説明する。図1は、一実施形態に係る
軸受の製造方法を実施し得るに好適な金型装置を示して
おり、この金型装置によって、図2に示す軸受1が製造
される。この軸受1は、スリーブ状のハウジング2の中
心に形成された圧入孔2aの両端に、内外の周面が平滑
なリング状の軸受本体3が圧入されてなるものである。
各軸受本体3は、例えば青銅系軸受材料により同一寸法
に成形されており、これら軸受本体3の軸受孔3aに挿
入される回転軸4を、回転自在に支持する。ハウジング
2の圧入孔2aの径は軸受本体3の外径よりも僅かに小
さく、その差が軸受本体3の圧入代として設定されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a mold apparatus suitable for carrying out the method for manufacturing a bearing according to one embodiment, and the bearing 1 shown in FIG. 2 is manufactured by this mold apparatus. The bearing 1 is formed by press-fitting a ring-shaped bearing body 3 having a smooth inner and outer peripheral surfaces into both ends of a press-fit hole 2a formed at the center of a sleeve-like housing 2.
Each bearing main body 3 is formed to have the same dimensions by, for example, a bronze bearing material, and rotatably supports the rotating shaft 4 inserted into the bearing hole 3a of the bearing main body 3. The diameter of the press-fit hole 2 a of the housing 2 is slightly smaller than the outer diameter of the bearing body 3, and the difference is set as the press-fit allowance of the bearing body 3.

【0009】図1に示した金型装置は、上パンチ10
と、この上パンチ10の下方に配設された下パンチ11
と、これら上下のパンチ10,11に挿入される丸棒状
のガイドピン12と、上下のパンチ10,11に当接さ
せられる上下のホーン13,14とを備えている。ガイ
ドピン12の径は、軸受本体3の軸受孔3aに摺動的に
挿入され得る寸法に設定されている。したがって、ガイ
ドピン12を軸受本体3の軸受孔3aに挿入すると、軸
受本体3は、径方向にぶれることなく、かつガイドピン
12に沿って摺動可能に支持されるようになっている。
また、上下のパンチ10,11の中心には、ガイドピン
12が挿入されるピン挿入孔10a,11aが、それぞ
れ互いに同軸的に形成されている。これらピン挿入孔1
0a,11aの径は、軸受本体3の軸受孔3aと同一の
径に設定されている。これにより、ピン挿入孔10a,
11aにガイドピン12が挿入された状態では、双方が
径方向にぶれることなく軸方向に沿って相対的に摺動す
るようになっている。上下のホーン13,14は、それ
ぞれ上下のパンチ10,11に所定周波数の超音波振動
を与えるものである。
The mold device shown in FIG.
And a lower punch 11 disposed below the upper punch 10.
And a round bar-shaped guide pin 12 inserted into the upper and lower punches 10 and 11, and upper and lower horns 13 and 14 abutted on the upper and lower punches 10 and 11. The diameter of the guide pin 12 is set to a size that can be slidably inserted into the bearing hole 3 a of the bearing body 3. Therefore, when the guide pin 12 is inserted into the bearing hole 3a of the bearing main body 3, the bearing main body 3 is supported so as not to be displaced in the radial direction and to be slidable along the guide pin 12.
Pin insertion holes 10a and 11a into which the guide pins 12 are inserted are formed coaxially with each other at the centers of the upper and lower punches 10 and 11, respectively. These pin insertion holes 1
The diameters of 0a and 11a are set to the same diameter as the bearing hole 3a of the bearing body 3. Thereby, the pin insertion holes 10a,
When the guide pin 12 is inserted into the 11a, both slide relatively in the axial direction without being displaced in the radial direction. The upper and lower horns 13 and 14 apply ultrasonic vibration of a predetermined frequency to the upper and lower punches 10 and 11, respectively.

【0010】次に、上記金型装置により図2に示した軸
受1を製造する方法を説明する。まず、下パンチ11の
下方からピン挿入孔11aにガイドピン12を挿入し、
ガイドピン12の上端部がピン挿入孔11aから上方に
突出したら、その上端部を下側の軸受本体3の軸受孔3
aに挿入する。次に、上下のパンチ10,11の間にハ
ウジング2を配置し、ガイドピン12にはめ込んだ軸受
本体3をほぼその位置に保持しながら、ガイドピン12
を押し上げてハウジング2の圧入孔2aに挿入してい
く。圧入孔2aからガイドピン12の上端部が突出した
ら、その上端部を上側の軸受本体3の軸受孔3aに挿入
し、さらにガイドピン12を押し上げて上パンチ10の
ピン挿入孔10aに挿入する。この後、上下のホーン1
3,14を上下のパンチ10,11にそれぞれ当接させ
る。また、図示せぬダイス等により、ハウジング2を、
その圧入孔2aがガイドピン12と同軸的になるよう配
置する。
Next, a method of manufacturing the bearing 1 shown in FIG. 2 using the above-described mold apparatus will be described. First, the guide pin 12 is inserted into the pin insertion hole 11a from below the lower punch 11,
When the upper end of the guide pin 12 projects upward from the pin insertion hole 11a, the upper end of the guide pin 12 is inserted into the bearing hole 3 of the lower bearing body 3.
Insert into a. Next, the housing 2 is arranged between the upper and lower punches 10 and 11, and the guide pin 12 is held while the bearing body 3 fitted to the guide pin 12 is held substantially at that position.
To be inserted into the press-fit hole 2a of the housing 2. When the upper end of the guide pin 12 projects from the press-fit hole 2a, the upper end is inserted into the bearing hole 3a of the upper bearing body 3, and the guide pin 12 is further pushed up to be inserted into the pin insertion hole 10a of the upper punch 10. After this, the upper and lower horns 1
The upper and lower punches 3, 11 are brought into contact with the upper and lower punches 10, 11, respectively. Further, the housing 2 is moved by a die (not shown) or the like.
The press-fit hole 2a is arranged so as to be coaxial with the guide pin 12.

【0011】以上のようにして金型装置にハウジング2
および2つの軸受本体3をセットしたら、作動させた上
下のホーン13,14を上下のパンチ10,11にそれ
ぞれ当接させながら、上下のパンチ10,11をハウジ
ング2方向に移動させて、上下の軸受本体3をハウジン
グ2の圧入孔2aに圧入する。この圧入工程において、
各ホーン13,14から発する超音波振動は、上下のパ
ンチ10,11から各軸受本体3に伝わり、さらに、軸
受本体3からハウジング2に伝わる。すると、軸受本体
3の外周面とハウジング2の内周面との間に摩擦が生
じ、その摩擦熱によって軸受本体3よりも融点が低いハ
ウジング2の内周面が溶融する。つまり、軸受本体3は
ハウジング2の内周面を溶融しながら、かつ自身は溶融
することなく圧入孔2aに圧入されていく。上下のパン
チ10,11がハウジング2の端面にそれぞれ当接した
時点で上下の軸受本体3の圧入が完了し、この後、ホー
ン13,14の作動を停止する。続いて、溶融したハウ
ジング2の内周面が軸受本体3の外周面に溶着する時間
をおいた後、上下のパンチ10,11を開き、ガイドピ
ン12を上下の軸受本体3から抜き取って、図2に示す
軸受1を得る。
As described above, the housing 2 is inserted into the mold apparatus.
After setting the two bearing bodies 3, the upper and lower horns 13, 14 are moved in the direction of the housing 2 while the upper and lower horns 13, 14 are brought into contact with the upper and lower punches 10, 11, respectively. The bearing body 3 is press-fitted into the press-fitting hole 2a of the housing 2. In this press-in process,
The ultrasonic vibrations emitted from the horns 13 and 14 are transmitted from the upper and lower punches 10 and 11 to the respective bearing bodies 3 and further transmitted from the bearing bodies 3 to the housing 2. Then, friction occurs between the outer peripheral surface of the bearing main body 3 and the inner peripheral surface of the housing 2, and the inner peripheral surface of the housing 2 having a lower melting point than the bearing main body 3 is melted by the frictional heat. That is, the bearing body 3 is pressed into the press-fitting hole 2a while melting the inner peripheral surface of the housing 2 and without itself melting. When the upper and lower punches 10 and 11 abut against the end surfaces of the housing 2 respectively, the press-fitting of the upper and lower bearing main bodies 3 is completed, and thereafter, the operations of the horns 13 and 14 are stopped. Subsequently, after allowing time for the inner peripheral surface of the melted housing 2 to fuse to the outer peripheral surface of the bearing main body 3, the upper and lower punches 10 and 11 are opened, and the guide pin 12 is pulled out from the upper and lower bearing main bodies 3, and FIG. 2 is obtained.

【0012】上記製造方法によれば、各軸受本体3は、
軸受孔3aに挿入されたガイドピン12に沿ってハウジ
ング2の圧入孔2aに圧入されるので、まず、圧入され
た時点における軸受孔3aの同軸度が高い。そして、ハ
ウジング2の内周面は、軸受本体3が圧入される際に超
音波振動によって溶融し、その後軸受本体3の外周面に
溶着する。つまり、軸受本体3はハウジング2に超音波
溶着される。このため、ハウジング2の内周面に残存す
る弾性応力は小さくなっている。したがって、たとえハ
ウジング2の圧入孔2aの寸法精度が劣っていて圧入代
が不均一であったとしても、ガイドピン12を上下の軸
受本体3から抜き取った後にハウジング2の弾性復帰に
より軸受本体3が径方向に偏って移動することがない。
その結果、各軸受本体3の軸受孔3aは、ガイドピン1
2が挿入された状態のままの高い同軸度が保持される。
According to the above manufacturing method, each bearing body 3 is
Since it is press-fitted into the press-fitting hole 2a of the housing 2 along the guide pin 12 inserted into the bearing hole 3a, first, the coaxiality of the bearing hole 3a at the time of press-fitting is high. The inner peripheral surface of the housing 2 is melted by ultrasonic vibration when the bearing main body 3 is press-fitted, and then welded to the outer peripheral surface of the bearing main body 3. That is, the bearing body 3 is ultrasonically welded to the housing 2. Therefore, the elastic stress remaining on the inner peripheral surface of the housing 2 is small. Therefore, even if the press-fit hole 2a of the housing 2 is inferior in dimensional accuracy and the press-fit allowance is not uniform, the bearing body 3 is returned by the elastic return of the housing 2 after the guide pins 12 are removed from the upper and lower bearing bodies 3. It does not move radially.
As a result, the bearing hole 3a of each bearing body 3 is
A high coaxiality is maintained with the state of 2 being inserted.

【0013】なお、上記一実施形態では、各軸受本体3
を、上下のホーン13,14により超音波振動を与えな
がら同時にハウジング2内に圧入しているが、圧入は同
時でなく順番に行ってもよい。また、上記のように圧入
を同時に行う場合、一方の軸受本体3のみに超音波振動
を与えながらでもよい。さらに、一方の軸受本体3を超
音波振動を与えず通常のようにハウジング2内に圧入
し、この後、他方の軸受本体3を、超音波振動を与えな
がらハウジング2内に圧入してもよい。いずれの場合
も、結果として双方の軸受本体3に超音波振動が伝わ
り、これら軸受本体3はハウジング2に超音波溶着され
る。
In the above embodiment, each bearing body 3
Are simultaneously pressed into the housing 2 while applying ultrasonic vibrations by the upper and lower horns 13 and 14, but the press-fitting may be performed sequentially instead of simultaneously. When press-fitting is performed simultaneously as described above, ultrasonic vibration may be applied to only one of the bearing bodies 3. Furthermore, one of the bearing bodies 3 may be press-fitted into the housing 2 as usual without applying ultrasonic vibration, and then the other bearing body 3 may be press-fitted into the housing 2 while applying ultrasonic vibration. . In either case, as a result, ultrasonic vibration is transmitted to both bearing bodies 3, and these bearing bodies 3 are ultrasonically welded to the housing 2.

【0014】図3および図4は、軸受本体の変形例を示
している。上記一実施形態の軸受本体3においては、そ
の外周面が平滑であったが、図3に示す軸受本体3Aの
外周面には、軸方向に沿った複数の溝5によってローレ
ット6が形成されている。これによってハウジング2の
内周面との溶着面積が広くなり、抜け止め作用が発揮さ
れる。また、図4に示す軸受本体3Bの外周面には、軸
方向の中央部に周溝7が形成されている。この周溝7に
は、軸受本体3Bがハウジング2内に圧入される際に溶
融した樹脂が流入し、軸受本体3Bはハウジング2に対
して機械的にも固着する。周溝7はハウジング2からの
抜け方向に直交しているから、周溝7内に流入して固化
した樹脂により抜け止め作用が大幅に向上し、ハウジン
グ2に対する結合力が高くなる。このように、軸受本体
のローレットや周溝、あるいは段等の凹凸加工を外周面
に施すことにより、軸受本体がハウジング2から抜けに
くくなり、結合力の向上が図られる。
FIGS. 3 and 4 show a modification of the bearing body. In the bearing main body 3 of the above-described embodiment, the outer peripheral surface is smooth. However, a knurl 6 is formed on the outer peripheral surface of the bearing main body 3A shown in FIG. 3 by a plurality of grooves 5 along the axial direction. I have. As a result, the area of welding to the inner peripheral surface of the housing 2 is increased, and a retaining action is exhibited. In addition, a circumferential groove 7 is formed on the outer peripheral surface of the bearing main body 3B shown in FIG. The resin melted when the bearing main body 3B is pressed into the housing 2 flows into the circumferential groove 7, and the bearing main body 3B is mechanically fixed to the housing 2 as well. Since the circumferential groove 7 is orthogonal to the direction in which the circumferential groove 7 comes off from the housing 2, the resin that has flowed into the circumferential groove 7 and has been solidified significantly improves the retaining function, and increases the bonding force to the housing 2. In this manner, by performing unevenness processing such as knurls, circumferential grooves, or steps on the outer peripheral surface of the bearing main body, the bearing main body is less likely to come off from the housing 2 and the coupling force is improved.

【0015】[0015]

【実施例】次に、上記一実施形態に基づいて軸受を製造
した具体的な実施例1,2について説明する。 [実施例1]圧入孔の真円度が50μmの樹脂製ハウジ
ング内に、内径5mmφ、外径10mmφ、軸長6mm
の2つの軸受本体を、上下のパンチに超音波振動を与え
ながら図1に示した方法で圧入し、試料 1を作製し
た。また、圧入孔の真円度が100μmの樹脂製ハウジ
ングに、同様の軸受本体を、超音波振動を与えながら圧
入して試料 2を作製した。ハウジングの材質は、ポリ
カーボネートにガラス強化繊維を30%混合させた樹脂
とした。ハウジングの圧入孔の圧入代は、内径の最小値
を基準に20μmに設定した。したがって、試料 1の
ハウジングの圧入代は20〜70μm、試料 2の圧入
代は20〜120μmの範囲にある。また、軸受本体は
青銅系軸受材料により製造されたものを使用した。これ
ら軸受本体をハウジング内に圧入する際の上下のパンチ
に与える超音波振動は、周波数20kHz、振幅20μ
m、振動方向は軸方向、振動時間を0.1秒とした。ま
た、ハウジングや軸受本体の寸法および用いた金型装置
を同一とし、超音波振動を与えずに軸受本体をハウジン
グ内に圧入して試料 3、試料 4を作製し、これらを
比較例とした。上記試料 1〜試料 4に対し、上下の
軸受本体の内径と、上下の軸受本体による貫通寸法を測
定し、これらの寸法差を同軸度として評価した結果を、
表1に示す。
Next, specific examples 1 and 2 in which a bearing is manufactured based on the above embodiment will be described. [Example 1] Inside a resin housing having a roundness of a press-in hole of 50 µm, an inner diameter of 5 mm, an outer diameter of 10 mm, and a shaft length of 6 mm.
The two bearing bodies were press-fitted by applying the ultrasonic vibration to the upper and lower punches by the method shown in FIG. The same bearing body was press-fitted into a resin housing having a press-fitting hole having a roundness of 100 μm while applying ultrasonic vibration to produce Sample 2. The material of the housing was a resin in which 30% of glass reinforced fiber was mixed with polycarbonate. The press-fitting allowance of the press-fitting hole in the housing was set to 20 μm based on the minimum value of the inner diameter. Therefore, the press-in allowance for the housing of sample 1 is in the range of 20 to 70 μm, and the press-in allowance for sample 2 is in the range of 20 to 120 μm. The bearing body used was made of a bronze bearing material. The ultrasonic vibration applied to the upper and lower punches when these bearing bodies are pressed into the housing has a frequency of 20 kHz and an amplitude of 20 μm.
m, the vibration direction was the axial direction, and the vibration time was 0.1 second. Further, the dimensions of the housing and the bearing main body and the used mold apparatus were the same, and the bearing main body was pressed into the housing without applying ultrasonic vibration to prepare Samples 3 and 4, which were used as comparative examples. For the above samples 1 to 4, the inner diameters of the upper and lower bearing bodies and the penetration dimensions of the upper and lower bearing bodies were measured.
It is shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1でわかるように、超音波振動を与えな
がら軸受本体をハウジング内に圧入して得た試料 1と
試料 2においては、ともに同軸度が2μmという小さ
い値を示した。特に試料 2の場合、ハウジングの真円
度が100μmで試料 1のハウジングの2倍であり、
圧入代もそれだけ大きいにもかかわらず、試料 1と同
一の同軸度を示した。一方、超音波振動を与えない試料
3と試料 4のうち、試料 3の同軸度は4〜5μm
と実施例より2倍以上の値を示した。また、試料 4は
ハウジングに割れが発生したので未測定とした。これ
は、ハウジングの圧入代が大きく軸受本体の圧入時にハ
ウジングに過大な負荷がかかったものと想定される。以
上により、超音波振動を与えながら、ガイドピンに沿っ
て軸受本体をハウジング内に圧入させることにより、ハ
ウジングの圧入孔に寸法誤差があっても、良好な同軸度
を得ることができた。
As can be seen from Table 1, the coaxiality of the samples 1 and 2 obtained by press-fitting the bearing body into the housing while applying ultrasonic vibration showed a small value of 2 μm in coaxiality. In particular, in the case of sample 2, the roundness of the housing is 100 μm, twice that of the housing of sample 1,
Despite the large press-in allowance, it showed the same concentricity as Sample 1. On the other hand, among the samples 3 and 4 to which no ultrasonic vibration is applied, the coaxiality of the sample 3 is 4 to 5 μm.
And a value twice or more than that of the example. Sample 4 was not measured because a crack occurred in the housing. This is presumably because the housing press-fitting margin is large and an excessive load is applied to the housing during press-fitting of the bearing body. As described above, by applying the bearing main body into the housing along the guide pins while applying ultrasonic vibration, it was possible to obtain a good coaxiality even if there was a dimensional error in the press-fitting hole of the housing.

【0018】[実施例2]次に、軸受本体の外周面の形
状とハウジングに対する結合力の関係を評価した実施例
2について説明する。外周面の種類は、上記一実施形態
のような平滑面の他に、図3に示したローレットが形成
されたものと、図4に示した周溝が形成されたものの3
種類とした。これら軸受本体を、超音波振動を与えなが
らと与えない場合の2条件でハウジングに圧入して試料
を作製した。そして、これら試料の軸受本体をハウジン
グから抜去し、そのときに要した抜去力を表2に示す。
なお、ハウジングの真円度は50μmである。
Second Embodiment Next, a description will be given of a second embodiment in which the relationship between the shape of the outer peripheral surface of the bearing body and the coupling force to the housing is evaluated. The type of the outer peripheral surface is three types: one in which the knurl shown in FIG. 3 is formed and the one in which the peripheral groove shown in FIG.
Type. These bearing bodies were press-fitted into the housing under two conditions, with and without ultrasonic vibration, to produce a sample. Then, the bearing bodies of these samples were removed from the housing, and the removal force required at that time is shown in Table 2.
The roundness of the housing is 50 μm.

【0019】[0019]

【表2】 [Table 2]

【0020】表2によると、まず外周面が平滑な場合、
超音波振動有りの方が結合力が低いことがわかる。これ
は、超音波振動によって溶融するハウジングの内周面が
軸受本体に接して倣うので、ハウジングから軸受本体に
作用する弾性応力が超音波振動無しの場合よりも小さい
からと考えられる。結合力の面からのみ評価すれば超音
波振動無しで圧入した方がよいが、その場合は上記実施
例1で明らかなように同軸度が劣ってしまう。外周面が
ローレットで超音波振動有りの場合、溶融した樹脂が溝
に流入して接触面積が増大するに伴い摩擦力が増大して
いると考えられる。このため、凹凸の延びる方向が抜け
方向であるものの、弾性応力により結合する超音波振動
無しの場合と比べても、結合力があまり低下していな
い。外周面が周溝で超音波振動有りの場合、抜け方向に
直交する周溝に溶融した樹脂が流入することにより、軸
受本体は機械的にもハウジングに固着していると考えら
れる。このため、超音波振動無しの場合よりも結合力が
高くなっている。
According to Table 2, first, when the outer peripheral surface is smooth,
It can be seen that the bonding force is lower when there is ultrasonic vibration. This is presumably because the inner peripheral surface of the housing, which is melted by the ultrasonic vibration, comes into contact with the bearing main body, so that the elastic stress acting on the bearing main body from the housing is smaller than that without ultrasonic vibration. If it is evaluated only from the viewpoint of the bonding force, it is better to press-fit without ultrasonic vibration, but in that case, the coaxiality is inferior as is clear in the first embodiment. When the outer peripheral surface is knurled and has ultrasonic vibration, it is considered that the frictional force increases as the molten resin flows into the groove and the contact area increases. For this reason, although the direction in which the irregularities extend is the detaching direction, the coupling force is not significantly reduced as compared with the case without ultrasonic vibration coupled by elastic stress. When the outer peripheral surface is a circumferential groove and there is ultrasonic vibration, it is considered that the molten resin flows into the circumferential groove orthogonal to the pull-out direction, so that the bearing body is mechanically fixed to the housing. For this reason, the coupling force is higher than in the case without ultrasonic vibration.

【0021】[0021]

【発明の効果】以上説明したように、本発明は、高周波
振動を与えながら複数の軸受本体をガイドピンに沿って
ハウジング内に圧入するので、軸受本体周囲のハウジン
グ内周面が摩擦熱により溶融されて弾性応力の残存度が
小さくなり、その結果、ガイドピンを抜き取った後でも
軸受本体の移動が抑えられ、高い同軸度が保持される。
As described above, according to the present invention, a plurality of bearing bodies are pressed into the housing along the guide pins while applying high-frequency vibration, so that the inner peripheral surface of the housing around the bearing bodies is melted by frictional heat. As a result, the residual degree of elastic stress is reduced, and as a result, the movement of the bearing main body is suppressed even after the guide pin is pulled out, and high coaxiality is maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態に係る軸受の製造方法を
実施し得るに好適な金型装置を示す断面図である。
FIG. 1 is a cross-sectional view showing a mold device suitable for carrying out a method for manufacturing a bearing according to an embodiment of the present invention.

【図2】 本発明の一実施形態に係る軸受の一例を示す
断面図である。
FIG. 2 is a sectional view showing an example of a bearing according to an embodiment of the present invention.

【図3】 本発明の一実施形態に係る軸受の一変形例を
示す斜視図である。
FIG. 3 is a perspective view showing a modification of the bearing according to the embodiment of the present invention.

【図4】 軸受の他の変形例を示す斜視図である。FIG. 4 is a perspective view showing another modified example of the bearing.

【符号の説明】[Explanation of symbols]

1…軸受、2…ハウジング、3…軸受本体、3a…軸受
孔、6…ローレット、7…周溝、12…ガイドピン。
DESCRIPTION OF SYMBOLS 1 ... Bearing, 2 ... Housing, 3 ... Bearing main body, 3a ... Bearing hole, 6 ... Knurl, 7 ... Peripheral groove, 12 ... Guide pin.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 筒状のハウジングの内部に、複数の軸受
本体が、それぞれの軸受孔が互いに同軸的となる状態で
圧入されてなる軸受の製造方法であって、 前記ハウジングを、前記軸受本体よりも融点が低い材質
で製造し、 このハウジングの内部に、前記軸受本体の軸受孔に摺動
可能に挿入され得るガイドピンを挿入するとともに、各
軸受本体の軸受孔にガイドピンを挿入することにより、
このガイドピンで各軸受本体を支持し、 次いで、各軸受本体もしくはハウジングの少なくとも一
方に高周波振動を与えながら、各軸受本体を前記ガイド
ピンに沿ってハウジングの内部に圧入することを特徴と
する軸受の製造方法。
1. A method of manufacturing a bearing in which a plurality of bearing bodies are press-fitted into a cylindrical housing in a state where respective bearing holes are coaxial with each other. Manufactured with a material having a melting point lower than that of the bearing body, and a guide pin which can be slidably inserted into a bearing hole of the bearing body is inserted into the housing, and a guide pin is inserted into a bearing hole of each bearing body. By
A bearing, wherein each guide body is supported by the guide pin, and then each bearing body is press-fitted into the housing along the guide pin while applying high-frequency vibration to at least one of the bearing body or the housing. Manufacturing method.
【請求項2】 前記軸受本体は金属製であり、前記ハウ
ジングは、軸受本体よりも融点が低い樹脂製であること
を特徴とする請求項1に記載の軸受の製造方法。
2. The method according to claim 1, wherein the bearing body is made of metal, and the housing is made of a resin having a lower melting point than the bearing body.
【請求項3】 前記軸受本体の外周面に、ローレット、
段、溝等の凹凸加工が施されていることを特徴とする請
求項1または2に記載の軸受の製造方法。
3. A knurl, on an outer peripheral surface of the bearing body,
3. The method for manufacturing a bearing according to claim 1, wherein unevenness processing such as steps and grooves is performed.
【請求項4】 前記高周波の周波数が1〜20KHzで
あることを特徴とする請求項1〜3のいずれかに記載の
軸受の製造方法。
4. The method for producing a bearing according to claim 1, wherein the high frequency is 1 to 20 KHz.
【請求項5】 前記高周波は超音波であることを特徴と
する請求項1〜3のいずれかに記載の軸受の製造方法。
5. The method according to claim 1, wherein the high frequency is an ultrasonic wave.
JP21913097A 1997-07-30 1997-07-30 Manufacturing method of bearing Expired - Fee Related JP3701107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21913097A JP3701107B2 (en) 1997-07-30 1997-07-30 Manufacturing method of bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21913097A JP3701107B2 (en) 1997-07-30 1997-07-30 Manufacturing method of bearing

Publications (2)

Publication Number Publication Date
JPH1142514A true JPH1142514A (en) 1999-02-16
JP3701107B2 JP3701107B2 (en) 2005-09-28

Family

ID=16730717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21913097A Expired - Fee Related JP3701107B2 (en) 1997-07-30 1997-07-30 Manufacturing method of bearing

Country Status (1)

Country Link
JP (1) JP3701107B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004141A1 (en) * 2000-07-04 2002-01-17 Schmittersysco Gmbh Production method, device and steering rod guiding element for gear rack steering housing
WO2003027521A1 (en) * 2001-09-21 2003-04-03 Sony Corporation Bearing unit and motor using the bearing unit
GB2395247A (en) * 2002-11-12 2004-05-19 Tsubakimoto Chain Co A timing belt tensioner for an automobile having plastic outer and inner bodies secured by ultrasonic welding
JP2004169896A (en) * 2002-11-22 2004-06-17 Ntn Corp Winding unit and method of manufacturing the same
WO2005008088A1 (en) * 2003-07-23 2005-01-27 Ntn Corporation Fluid bearing device
JP2007211973A (en) * 2006-01-10 2007-08-23 Ntn Corp Fluid bearing and its manufacturing method
CN100400914C (en) * 2003-09-18 2008-07-09 Ntn株式会社 Fluid bearing device
US8120220B2 (en) 2006-01-10 2012-02-21 Ntn Corporation Fluid dynamic bearing device and manufacturing method therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10033305C2 (en) * 2000-07-04 2003-05-28 Schmittersysco Gmbh Method of manufacturing rack and pinion steering housings
WO2002004141A1 (en) * 2000-07-04 2002-01-17 Schmittersysco Gmbh Production method, device and steering rod guiding element for gear rack steering housing
US7011449B2 (en) 2001-09-21 2006-03-14 Sony Corporation Bearing unit and motor using same
WO2003027521A1 (en) * 2001-09-21 2003-04-03 Sony Corporation Bearing unit and motor using the bearing unit
KR100995838B1 (en) 2001-09-21 2010-11-23 소니 주식회사 Bearing unit and motor using the bearing unit
CN100335806C (en) * 2001-09-21 2007-09-05 索尼公司 Bearing unit and motor using the bearing unit
US7073946B2 (en) 2001-09-21 2006-07-11 Sony Corporation Bearing unit, and motor using same
US7044640B2 (en) 2001-09-21 2006-05-16 Sony Corporation Bearing unit, and motor using same
US7458909B2 (en) 2002-11-12 2008-12-02 Tsubakimoto Chain Co. Tensioner
GB2395247B (en) * 2002-11-12 2005-10-12 Tsubakimoto Chain Co Tensioner
GB2395247A (en) * 2002-11-12 2004-05-19 Tsubakimoto Chain Co A timing belt tensioner for an automobile having plastic outer and inner bodies secured by ultrasonic welding
JP2004169896A (en) * 2002-11-22 2004-06-17 Ntn Corp Winding unit and method of manufacturing the same
WO2005008088A1 (en) * 2003-07-23 2005-01-27 Ntn Corporation Fluid bearing device
CN100400912C (en) * 2003-07-23 2008-07-09 Ntn株式会社 Fluid bearing device
US7690845B2 (en) 2003-07-23 2010-04-06 Ntn Corporation Fluid bearing device
JP2005042838A (en) * 2003-07-23 2005-02-17 Ntn Corp Fluid bearing device
KR101081805B1 (en) 2003-07-23 2011-11-09 엔티엔 가부시키가이샤 fluid bearing device
US8079760B2 (en) 2003-07-23 2011-12-20 Ntn Corporation Fluid bearing device
CN100400914C (en) * 2003-09-18 2008-07-09 Ntn株式会社 Fluid bearing device
US7625124B2 (en) 2003-09-18 2009-12-01 Ntn Corporation Fluid bearing device
JP2007211973A (en) * 2006-01-10 2007-08-23 Ntn Corp Fluid bearing and its manufacturing method
US8120220B2 (en) 2006-01-10 2012-02-21 Ntn Corporation Fluid dynamic bearing device and manufacturing method therefor

Also Published As

Publication number Publication date
JP3701107B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP4695337B2 (en) Conductive contact and conductive contact unit
US20110204276A1 (en) Method for welding components with a closed hollow cross-section in such a way that a peripheral gap is produced between the two overlapping components
JPH1142514A (en) Manufacture of bearing
JP3559175B2 (en) Manufacturing method of insert pipe molding
KR910004978B1 (en) A manufacturing method of a bearing device comprising a housing having a flange at one end and a bearing bushing pressed into the housing
EP2447555B1 (en) Oil-impregnated sintered bearing and method of manufacturing the same
US20060039638A1 (en) Sintered oil-impregnated bearing and manufacturing method thereof
US6832857B2 (en) Plastic optical fiber ferrule
EP0392555A2 (en) Device for retaining wire-like optical wave-guide
US3884406A (en) Fractured bearing race
US20040258363A1 (en) Optical fixed attenuator and manufactuing process thereof
JP6290006B2 (en) Resin molded product, insert, resin molded product manufacturing apparatus, and resin molded product manufacturing method
JP4315325B2 (en) Gear unit manufacturing method
JP2007302502A (en) Method for producing optical lens, lens material used for the same, and method for producing the lens material
JPH11104781A (en) Method and device for processing bearing with groove
JP2008030352A (en) Assembly of resin molding and column, and manufacturing method and apparatus for the same
JP2002257150A (en) Fitting method of end member to hollow shaft member for oa apparatus
US20070039186A1 (en) Dynamic bearing manufacturing method
JP2001051157A (en) Optical fiber fixture, its manufacture, and optical fiber connector using it
JP2825269B2 (en) Ferrule for optical connector and method of manufacturing the same
JPS6017537Y2 (en) Split type hydrodynamic bearing sleeve
JPH07144247A (en) Die for forging part with steps and method thereof
JP4768811B2 (en) Method for the correction of the internal dimensions of plastic, in particular ring-shaped members
JP4324289B2 (en) Cutting tool and method of manufacturing cutting tool
JP2941666B2 (en) Swaging method of pipe

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040310

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees