JP3701107B2 - Manufacturing method of bearing - Google Patents

Manufacturing method of bearing Download PDF

Info

Publication number
JP3701107B2
JP3701107B2 JP21913097A JP21913097A JP3701107B2 JP 3701107 B2 JP3701107 B2 JP 3701107B2 JP 21913097 A JP21913097 A JP 21913097A JP 21913097 A JP21913097 A JP 21913097A JP 3701107 B2 JP3701107 B2 JP 3701107B2
Authority
JP
Japan
Prior art keywords
bearing
housing
press
bearing body
fitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21913097A
Other languages
Japanese (ja)
Other versions
JPH1142514A (en
Inventor
剛 柳瀬
近藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP21913097A priority Critical patent/JP3701107B2/en
Publication of JPH1142514A publication Critical patent/JPH1142514A/en
Application granted granted Critical
Publication of JP3701107B2 publication Critical patent/JP3701107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/26Systems consisting of a plurality of sliding-contact bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • B29C66/612Making circumferential joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis

Description

【0001】
【発明の属する技術分野】
本発明は、筒状のハウジングの内部に複数の軸受本体が圧入により組み込まれてなる軸受の製造方法に関する。
【0002】
【従来の技術】
各種モータ用の軸受として、スリーブ状のハウジングの内部に、2つあるいはそれ以上の数の軸受本体が、圧入により組み込まれたものが用いられている。例えば、ハウジングの内部の両端に、軸受本体が互いに離れた状態で1つずつ組み込まれた構造のものなどがある。このような軸受は、複数の軸受本体が実質的に回転軸を支持することから、それら軸受本体における軸受孔の同軸度に高い精度が要求されてくる。その理由としては、同軸度が低いと、片当たりによる偏摩耗や、それに伴う摩擦抵抗の増大を招き、特にモータ用としての軸受性能が劣ってしまうからである。その同軸度を高めるために、従来では、リーマ加工等による補正加工を施していた。ところが、例えば軸受本体が焼結金属である場合、リーマ加工を行うと内周面の気孔分布状態が悪化し、焼結金属の特性を損失させる可能性があった。また、補正加工を施すこと自体が工程および装置の増大を招くので、好ましいものではなかった。したがって、軸受本体をハウジングの内部に圧入した時点で高精度な同軸度が得られれば最も望ましく、そのために次のような製造方法が採用されている。
【0003】
すなわち、軸受本体の軸受孔に対して摺動可能に挿入され得るガイドピンをハウジングの内部に挿入し、ハウジングの両側において軸受本体の軸受孔にガイドピンを挿入し、次いで、各軸受本体をガイドピンに沿ってハウジング内に圧入する。この後、ガイドピンを抜き取る。この方法によれば、予め各軸受本体の軸受孔がガイドピンによって同軸的に定められ、ガイドピンを抜き取った後にもその状態が保持されることにより、上記のような補正加工を必要としない。
【0004】
【発明が解決しようとする課題】
ところで、ハウジングの材質としては、金属および樹脂があげられる。樹脂製のハウジングは、通常射出成形で製造されるので、加工を要する金属製のものより低価格で得られるものの、寸法精度が金属製のハウジングよりも劣るといった不利な面があった。このため、軸受本体が圧入されることにより減じられる内側の肉部すなわち圧入代が不均一になることがある。このようなハウジングに対して上記方法を適用した場合、ガイドピンを抜き取った後に、樹脂が弾性復帰して軸受本体が径方向に偏って移動してしまい、その結果として高精度な同軸度が損なわれるといった問題が生じていた。この問題に対しては、圧入代を、不均一の度合いを無視できる程度に大きく設定するといった打開策が考えられるが、その場合には、強度的に金属より劣る樹脂製のハウジングに割れが生じるおそれがあり、実現が困難である。
したがって、本発明は、複数の軸受本体の同軸度が、ハウジングの寸法精度に影響されることなく高精度で得ることのできる軸受の製造方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明は、筒状のハウジングの内部に、複数の軸受本体が、それぞれの軸受孔が互いに同軸的となる状態で圧入されてなる軸受の製造方法であって、ハウジングを、軸受本体よりも融点が低い材質で製造し、このハウジングの内部に、軸受本体の軸受孔に摺動可能に挿入され得るガイドピンを挿入するとともに、各軸受本体の軸受孔にガイドピンを挿入することにより、このガイドピンで各軸受本体を支持し、次いで、各軸受本体の少なくとも一方にパンチに当接させた超音波を発生するホーンにより高周波振動を与えながら、各軸受本体を前記ガイドピンに沿ってハウジングの内部に圧入することにより、ハウジングの内面を溶融してハウジングへの弾性応力の残存を抑制することを特徴としている。
上記製造方法によれば、軸受本体をハウジングに圧入する際、高周波振動により両者の間に摩擦熱が発生する。その摩擦熱により、融点が低い方つまりハウジングの軸受本体に接する内周面が溶融する。すなわち、軸受本体はハウジングの内周面を溶融しながら圧入されていき、圧入後はハウジングに対し溶着されることになる。この後、ガイドピンを抜き取って軸受を得る。
複数の軸受本体は、ガイドピンに沿ってハウジング内に圧入されるので、圧入された時点で同軸度が高い。軸受本体がハウジングに溶着した後、ガイドピンを抜き取っても、軸受本体の周囲のハウジング内周面は溶融した後なので弾性応力の残存度が小さく、その弾性応力による軸受本体の移動が抑えられる。その結果複数の軸受本体の軸受孔においては、ガイドピンが挿入された状態のままの高い同軸度が保持される。
【0006】
例えば、前記軸受本体を青銅系軸受材料等からなる金属製とし、前記ハウジングを樹脂製とすれば、このハウジングを軸受本体よりも融点の低いものとすることができる。また、樹脂でハウジングを製造するとその寸法精度がばらつく傾向にあって軸受本体の圧入代が大きくなる場合があるが、たとえ圧入代が大きくなろうとも、圧入によって溶融するから弾性応力の残存度は小さい。したがって、同軸度は保持されるとともに、軸受本体の圧入に伴うハウジングの割れが防がれる。また、前記軸受本体の外周面に、ローレット、段、溝等の凹凸加工を施しておくと、ハウジング内周面との接触面積増大に伴う摩擦力の増大や機械的固着が図られ、ハウジングとの結合力が高まる。
【0007】
また、高周波の周波数は、軸受本体と接するハウジング内周面が摩擦熱により溶融するのであれば数100KHz程度であってもよい。本発明者等の検討によれば、例えばハウジングが樹脂の場合、高周波の周波数は1KHz以上であると効果的であり、超音波域である1.4KHz以上であればさらに効果的であることが判明している。周波数は20KHzあれば充分であり、20KHzを超えてもそれ以上の効果の向上は望めない。よって、高周波は、周波数が1〜20KHzであることが望ましく、超音波であればさらに好適である。
高周波を周波数が20KHzの超音波により得る場合には、20000回/秒の振動を軸受本体もしくはハウジングに与えることが可能であり、しかも、振幅も0.1mm以下にすることができる。したがって、0.1秒間に2000回もの振動を軸受本体もしくはハウジングに与えることができるので、極めて短時間で軸受本体のハウジング内への圧入およびハウジングへの溶着が完了する。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態について説明する。
図1は、一実施形態に係る軸受の製造方法を実施し得るに好適な金型装置を示しており、この金型装置によって、図2に示す軸受1が製造される。この軸受1は、スリーブ状のハウジング2の中心に形成された圧入孔2aの両端に、内外の周面が平滑なリング状の軸受本体3が圧入されてなるものである。各軸受本体3は、例えば青銅系軸受材料により同一寸法に成形されており、これら軸受本体3の軸受孔3aに挿入される回転軸4を、回転自在に支持する。ハウジング2の圧入孔2aの径は軸受本体3の外径よりも僅かに小さく、その差が軸受本体3の圧入代として設定されている。
【0009】
図1に示した金型装置は、上パンチ10と、この上パンチ10の下方に配設された下パンチ11と、これら上下のパンチ10,11に挿入される丸棒状のガイドピン12と、上下のパンチ10,11に当接させられる上下のホーン13,14とを備えている。ガイドピン12の径は、軸受本体3の軸受孔3aに摺動的に挿入され得る寸法に設定されている。したがって、ガイドピン12を軸受本体3の軸受孔3aに挿入すると、軸受本体3は、径方向にぶれることなく、かつガイドピン12に沿って摺動可能に支持されるようになっている。また、上下のパンチ10,11の中心には、ガイドピン12が挿入されるピン挿入孔10a,11aが、それぞれ互いに同軸的に形成されている。これらピン挿入孔10a,11aの径は、軸受本体3の軸受孔3aと同一の径に設定されている。これにより、ピン挿入孔10a,11aにガイドピン12が挿入された状態では、双方が径方向にぶれることなく軸方向に沿って相対的に摺動するようになっている。上下のホーン13,14は、それぞれ上下のパンチ10,11に所定周波数の超音波振動を与えるものである。
【0010】
次に、上記金型装置により図2に示した軸受1を製造する方法を説明する。
まず、下パンチ11の下方からピン挿入孔11aにガイドピン12を挿入し、ガイドピン12の上端部がピン挿入孔11aから上方に突出したら、その上端部を下側の軸受本体3の軸受孔3aに挿入する。次に、上下のパンチ10,11の間にハウジング2を配置し、ガイドピン12にはめ込んだ軸受本体3をほぼその位置に保持しながら、ガイドピン12を押し上げてハウジング2の圧入孔2aに挿入していく。圧入孔2aからガイドピン12の上端部が突出したら、その上端部を上側の軸受本体3の軸受孔3aに挿入し、さらにガイドピン12を押し上げて上パンチ10のピン挿入孔10aに挿入する。この後、上下のホーン13,14を上下のパンチ10,11にそれぞれ当接させる。また、図示せぬダイス等により、ハウジング2を、その圧入孔2aがガイドピン12と同軸的になるよう配置する。
【0011】
以上のようにして金型装置にハウジング2および2つの軸受本体3をセットしたら、作動させた上下のホーン13,14を上下のパンチ10,11にそれぞれ当接させながら、上下のパンチ10,11をハウジング2方向に移動させて、上下の軸受本体3をハウジング2の圧入孔2aに圧入する。この圧入工程において、各ホーン13,14から発する超音波振動は、上下のパンチ10,11から各軸受本体3に伝わり、さらに、軸受本体3からハウジング2に伝わる。すると、軸受本体3の外周面とハウジング2の内周面との間に摩擦が生じ、その摩擦熱によって軸受本体3よりも融点が低いハウジング2の内周面が溶融する。つまり、軸受本体3はハウジング2の内周面を溶融しながら、かつ自身は溶融することなく圧入孔2aに圧入されていく。上下のパンチ10,11がハウジング2の端面にそれぞれ当接した時点で上下の軸受本体3の圧入が完了し、この後、ホーン13,14の作動を停止する。続いて、溶融したハウジング2の内周面が軸受本体3の外周面に溶着する時間をおいた後、上下のパンチ10,11を開き、ガイドピン12を上下の軸受本体3から抜き取って、図2に示す軸受1を得る。
【0012】
上記製造方法によれば、各軸受本体3は、軸受孔3aに挿入されたガイドピン12に沿ってハウジング2の圧入孔2aに圧入されるので、まず、圧入された時点における軸受孔3aの同軸度が高い。そして、ハウジング2の内周面は、軸受本体3が圧入される際に超音波振動によって溶融し、その後軸受本体3の外周面に溶着する。つまり、軸受本体3はハウジング2に超音波溶着される。このため、ハウジング2の内周面に残存する弾性応力は小さくなっている。したがって、たとえハウジング2の圧入孔2aの寸法精度が劣っていて圧入代が不均一であったとしても、ガイドピン12を上下の軸受本体3から抜き取った後にハウジング2の弾性復帰により軸受本体3が径方向に偏って移動することがない。その結果、各軸受本体3の軸受孔3aは、ガイドピン12が挿入された状態のままの高い同軸度が保持される。
【0013】
なお、上記一実施形態では、各軸受本体3を、上下のホーン13,14により超音波振動を与えながら同時にハウジング2内に圧入しているが、圧入は同時でなく順番に行ってもよい。また、上記のように圧入を同時に行う場合、一方の軸受本体3のみに超音波振動を与えながらでもよい。さらに、一方の軸受本体3を超音波振動を与えず通常のようにハウジング2内に圧入し、この後、他方の軸受本体3を、超音波振動を与えながらハウジング2内に圧入してもよい。いずれの場合も、結果として双方の軸受本体3に超音波振動が伝わり、これら軸受本体3はハウジング2に超音波溶着される。
【0014】
図3および図4は、軸受本体の変形例を示している。上記一実施形態の軸受本体3においては、その外周面が平滑であったが、図3に示す軸受本体3Aの外周面には、軸方向に沿った複数の溝5によってローレット6が形成されている。これによってハウジング2の内周面との溶着面積が広くなり、抜け止め作用が発揮される。また、図4に示す軸受本体3Bの外周面には、軸方向の中央部に周溝7が形成されている。この周溝7には、軸受本体3Bがハウジング2内に圧入される際に溶融した樹脂が流入し、軸受本体3Bはハウジング2に対して機械的にも固着する。周溝7はハウジング2からの抜け方向に直交しているから、周溝7内に流入して固化した樹脂により抜け止め作用が大幅に向上し、ハウジング2に対する結合力が高くなる。
このように、軸受本体のローレットや周溝、あるいは段等の凹凸加工を外周面に施すことにより、軸受本体がハウジング2から抜けにくくなり、結合力の向上が図られる。
【0015】
【実施例】
次に、上記一実施形態に基づいて軸受を製造した具体的な実施例1,2について説明する。
[実施例1]
圧入孔の真円度が50μmの樹脂製ハウジング内に、内径5mmφ、外径10mmφ、軸長6mmの2つの軸受本体を、上下のパンチに超音波振動を与えながら図1に示した方法で圧入し、試料 1を作製した。また、圧入孔の真円度が100μmの樹脂製ハウジングに、同様の軸受本体を、超音波振動を与えながら圧入して試料 2を作製した。ハウジングの材質は、ポリカーボネートにガラス強化繊維を30%混合させた樹脂とした。ハウジングの圧入孔の圧入代は、内径の最小値を基準に20μmに設定した。したがって、試料 1のハウジングの圧入代は20〜70μm、試料 2の圧入代は20〜120μmの範囲にある。また、軸受本体は青銅系軸受材料により製造されたものを使用した。これら軸受本体をハウジング内に圧入する際の上下のパンチに与える超音波振動は、周波数20kHz、振幅20μm、振動方向は軸方向、振動時間を0.1秒とした。
また、ハウジングや軸受本体の寸法および用いた金型装置を同一とし、超音波振動を与えずに軸受本体をハウジング内に圧入して試料 3、試料 4を作製し、これらを比較例とした。
上記試料 1〜試料 4に対し、上下の軸受本体の内径と、上下の軸受本体による貫通寸法を測定し、これらの寸法差を同軸度として評価した結果を、表1に示す。
【0016】
【表1】

Figure 0003701107
【0017】
表1でわかるように、超音波振動を与えながら軸受本体をハウジング内に圧入して得た試料 1と試料 2においては、ともに同軸度が2μmという小さい値を示した。特に試料 2の場合、ハウジングの真円度が100μmで試料 1のハウジングの2倍であり、圧入代もそれだけ大きいにもかかわらず、試料 1と同一の同軸度を示した。
一方、超音波振動を与えない試料 3と試料 4のうち、試料 3の同軸度は4〜5μmと実施例より2倍以上の値を示した。また、試料 4はハウジングに割れが発生したので未測定とした。これは、ハウジングの圧入代が大きく軸受本体の圧入時にハウジングに過大な負荷がかかったものと想定される。
以上により、超音波振動を与えながら、ガイドピンに沿って軸受本体をハウジング内に圧入させることにより、ハウジングの圧入孔に寸法誤差があっても、良好な同軸度を得ることができた。
【0018】
[実施例2]
次に、軸受本体の外周面の形状とハウジングに対する結合力の関係を評価した実施例2について説明する。
外周面の種類は、上記一実施形態のような平滑面の他に、図3に示したローレットが形成されたものと、図4に示した周溝が形成されたものの3種類とした。これら軸受本体を、超音波振動を与えながらと与えない場合の2条件でハウジングに圧入して試料を作製した。そして、これら試料の軸受本体をハウジングから抜去し、そのときに要した抜去力を表2に示す。なお、ハウジングの真円度は50μmである。
【0019】
【表2】
Figure 0003701107
【0020】
表2によると、まず外周面が平滑な場合、超音波振動有りの方が結合力が低いことがわかる。これは、超音波振動によって溶融するハウジングの内周面が軸受本体に接して倣うので、ハウジングから軸受本体に作用する弾性応力が超音波振動無しの場合よりも小さいからと考えられる。結合力の面からのみ評価すれば超音波振動無しで圧入した方がよいが、その場合は上記実施例1で明らかなように同軸度が劣ってしまう。
外周面がローレットで超音波振動有りの場合、溶融した樹脂が溝に流入して接触面積が増大するに伴い摩擦力が増大していると考えられる。このため、凹凸の延びる方向が抜け方向であるものの、弾性応力により結合する超音波振動無しの場合と比べても、結合力があまり低下していない。
外周面が周溝で超音波振動有りの場合、抜け方向に直交する周溝に溶融した樹脂が流入することにより、軸受本体は機械的にもハウジングに固着していると考えられる。このため、超音波振動無しの場合よりも結合力が高くなっている。
【0021】
【発明の効果】
以上説明したように、本発明は、高周波振動を与えながら複数の軸受本体をガイドピンに沿ってハウジング内に圧入するので、軸受本体周囲のハウジング内周面が摩擦熱により溶融されて弾性応力の残存度が小さくなり、その結果、ガイドピンを抜き取った後でも軸受本体の移動が抑えられ、高い同軸度が保持される。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る軸受の製造方法を実施し得るに好適な金型装置を示す断面図である。
【図2】 本発明の一実施形態に係る軸受の一例を示す断面図である。
【図3】 本発明の一実施形態に係る軸受の一変形例を示す斜視図である。
【図4】 軸受の他の変形例を示す斜視図である。
【符号の説明】
1…軸受、2…ハウジング、3…軸受本体、3a…軸受孔、6…ローレット、
7…周溝、12…ガイドピン。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a bearing in which a plurality of bearing bodies are assembled by press-fitting inside a cylindrical housing.
[0002]
[Prior art]
As a bearing for various motors, one in which two or more bearing bodies are incorporated by press-fitting inside a sleeve-shaped housing is used. For example, there is a structure in which bearing bodies are incorporated one by one at both ends inside the housing in a state of being separated from each other. In such a bearing, since a plurality of bearing bodies substantially support the rotating shaft, high accuracy is required for the coaxiality of the bearing holes in these bearing bodies. The reason for this is that if the coaxiality is low, uneven wear due to contact and an increase in the frictional resistance associated therewith are caused, and in particular, the bearing performance for a motor is inferior. In order to increase the coaxiality, correction processing such as reamer processing has been conventionally performed. However, for example, when the bearing body is made of sintered metal, the pore distribution state on the inner peripheral surface is deteriorated when reaming is performed, and the characteristics of the sintered metal may be lost. Further, the correction processing itself is not preferable because it increases the number of processes and apparatuses. Accordingly, it is most desirable if a highly accurate coaxiality can be obtained when the bearing body is press-fitted into the housing, and the following manufacturing method is employed for this purpose.
[0003]
That is, guide pins that can be slidably inserted into the bearing holes of the bearing body are inserted into the housing, the guide pins are inserted into the bearing holes of the bearing body on both sides of the housing, and then each bearing body is guided. Press fit into the housing along the pins. After this, the guide pin is removed. According to this method, since the bearing hole of each bearing body is coaxially defined in advance by the guide pin and the state is maintained even after the guide pin is removed, the above correction process is not required.
[0004]
[Problems to be solved by the invention]
Incidentally, examples of the material of the housing include metals and resins. Resin housings are usually manufactured by injection molding, so that they can be obtained at a lower price than metal products that require processing, but have the disadvantage that the dimensional accuracy is inferior to metal housings. For this reason, the inner flesh portion, that is, the press-fitting allowance, which is reduced by the press-fitting of the bearing body, may become uneven. When the above method is applied to such a housing, after the guide pin is pulled out, the resin is elastically restored and the bearing main body is displaced in the radial direction, and as a result, high-precision coaxiality is impaired. There was a problem such as. To solve this problem, it is conceivable to set the press-fitting allowance so large that the degree of non-uniformity can be ignored. In this case, however, cracks occur in the resin housing which is inferior to metal in strength. There is a fear and it is difficult to realize.
Accordingly, an object of the present invention is to provide a bearing manufacturing method in which the coaxiality of a plurality of bearing bodies can be obtained with high accuracy without being affected by the dimensional accuracy of the housing.
[0005]
[Means for Solving the Problems]
The present invention relates to a method of manufacturing a bearing in which a plurality of bearing bodies are press-fitted into a cylindrical housing in a state in which the respective bearing holes are coaxial with each other, and the housing has a melting point higher than that of the bearing body. This guide is manufactured by inserting a guide pin that can be slidably inserted into the bearing hole of the bearing body, and inserting the guide pin into the bearing hole of each bearing body. Each bearing body is supported by a pin, and then each bearing body is placed along the guide pin with the inside of the housing while applying high frequency vibration by a horn that generates ultrasonic waves in contact with the punch on at least one of the bearing bodies. By press-fitting into the housing, the inner surface of the housing is melted to suppress the remaining elastic stress in the housing.
According to the manufacturing method, when the bearing body is press-fitted into the housing, frictional heat is generated between the two due to high-frequency vibration. The frictional heat melts the lower melting point, that is, the inner peripheral surface in contact with the bearing main body of the housing. That is, the bearing body is press-fitted while melting the inner peripheral surface of the housing, and is welded to the housing after the press-fitting. Thereafter, the guide pin is removed to obtain a bearing.
Since the plurality of bearing bodies are press-fitted into the housing along the guide pins, the degree of coaxiality is high when they are press-fitted. Even if the guide pin is pulled out after the bearing body is welded to the housing, since the housing inner peripheral surface around the bearing body is melted, the residual degree of elastic stress is small, and the movement of the bearing body due to the elastic stress is suppressed. As a result, in the bearing holes of the plurality of bearing bodies, a high degree of coaxiality with the guide pin inserted is maintained.
[0006]
For example, if the bearing body is made of a metal made of a bronze bearing material or the like and the housing is made of resin, the housing can have a lower melting point than the bearing body. In addition, if the housing is made of resin, its dimensional accuracy tends to vary, and the press-fitting allowance of the bearing body may increase, but even if the press-fitting allowance increases, it melts by press-fitting, so the residual degree of elastic stress is small. Therefore, the coaxiality is maintained, and the housing is prevented from cracking due to the press-fitting of the bearing body. Further, if the outer peripheral surface of the bearing body is subjected to uneven processing such as knurls, steps, grooves, etc., an increase in frictional force and mechanical fixation accompanying an increase in the contact area with the inner peripheral surface of the housing is achieved, and the housing and The bond strength of increases.
[0007]
Further, the frequency of the high frequency may be about several hundred KHz as long as the inner peripheral surface of the housing in contact with the bearing body is melted by frictional heat. According to the study by the present inventors, for example, when the housing is resin, it is effective that the frequency of the high frequency is 1 KHz or more, and it is more effective if the frequency is 1.4 KHz or more which is an ultrasonic range. It turns out. A frequency of 20 KHz is sufficient, and even if the frequency exceeds 20 KHz, no further improvement in effect can be expected. Therefore, the high frequency is desirably 1 to 20 KHz, and more preferably ultrasonic.
When high frequency is obtained by ultrasonic waves having a frequency of 20 KHz, vibrations of 20000 times / second can be applied to the bearing body or the housing, and the amplitude can also be reduced to 0.1 mm or less. Therefore, 2000 times of vibration can be applied to the bearing body or the housing for 0.1 second, so that the press-fitting of the bearing body into the housing and the welding to the housing are completed in a very short time.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a mold apparatus suitable for carrying out a bearing manufacturing method according to an embodiment, and the bearing 1 shown in FIG. 2 is manufactured by this mold apparatus. This bearing 1 is formed by press-fitting a ring-shaped bearing body 3 having smooth inner and outer peripheral surfaces at both ends of a press-fitting hole 2 a formed at the center of a sleeve-like housing 2. Each bearing body 3 is formed into the same size by, for example, a bronze bearing material, and rotatably supports the rotating shaft 4 inserted into the bearing hole 3 a of these bearing bodies 3. The diameter of the press-fitting hole 2 a of the housing 2 is slightly smaller than the outer diameter of the bearing body 3, and the difference is set as a press-fitting allowance for the bearing body 3.
[0009]
The mold apparatus shown in FIG. 1 includes an upper punch 10, a lower punch 11 disposed below the upper punch 10, round bar-shaped guide pins 12 inserted into the upper and lower punches 10 and 11, Upper and lower horns 13 and 14 that are brought into contact with the upper and lower punches 10 and 11 are provided. The diameter of the guide pin 12 is set to a dimension that can be slidably inserted into the bearing hole 3 a of the bearing body 3. Therefore, when the guide pin 12 is inserted into the bearing hole 3 a of the bearing body 3, the bearing body 3 is supported so as to be slidable along the guide pin 12 without shaking in the radial direction. In addition, pin insertion holes 10a and 11a into which guide pins 12 are inserted are coaxially formed at the centers of the upper and lower punches 10 and 11, respectively. The diameters of these pin insertion holes 10 a and 11 a are set to the same diameter as the bearing hole 3 a of the bearing body 3. Thereby, in the state in which the guide pin 12 is inserted into the pin insertion holes 10a and 11a, both slide relative to each other along the axial direction without shaking in the radial direction. The upper and lower horns 13 and 14 give ultrasonic vibration of a predetermined frequency to the upper and lower punches 10 and 11, respectively.
[0010]
Next, a method for manufacturing the bearing 1 shown in FIG.
First, when the guide pin 12 is inserted into the pin insertion hole 11a from below the lower punch 11, and the upper end portion of the guide pin 12 protrudes upward from the pin insertion hole 11a, the upper end portion is used as the bearing hole of the lower bearing body 3. Insert in 3a. Next, the housing 2 is disposed between the upper and lower punches 10 and 11, and the guide pin 12 is pushed up and inserted into the press-fitting hole 2a of the housing 2 while the bearing body 3 fitted into the guide pin 12 is substantially held at that position. I will do it. When the upper end portion of the guide pin 12 protrudes from the press-fitting hole 2a, the upper end portion is inserted into the bearing hole 3a of the upper bearing body 3, and the guide pin 12 is further pushed up and inserted into the pin insertion hole 10a of the upper punch 10. Thereafter, the upper and lower horns 13 and 14 are brought into contact with the upper and lower punches 10 and 11, respectively. Further, the housing 2 is arranged by a die (not shown) so that the press-fitting hole 2 a is coaxial with the guide pin 12.
[0011]
When the housing 2 and the two bearing bodies 3 are set in the mold apparatus as described above, the upper and lower punches 10 and 11 are brought into contact with the upper and lower punches 10 and 11 respectively. Is moved in the housing 2 direction, and the upper and lower bearing bodies 3 are press-fitted into the press-fitting holes 2 a of the housing 2. In this press-fitting process, ultrasonic vibrations emitted from the horns 13 and 14 are transmitted from the upper and lower punches 10 and 11 to each bearing body 3 and further from the bearing body 3 to the housing 2. Then, friction is generated between the outer peripheral surface of the bearing body 3 and the inner peripheral surface of the housing 2, and the inner peripheral surface of the housing 2 having a melting point lower than that of the bearing body 3 is melted by the frictional heat. That is, the bearing body 3 is press-fitted into the press-fitting hole 2a while melting the inner peripheral surface of the housing 2 and without melting itself. When the upper and lower punches 10 and 11 come into contact with the end surfaces of the housing 2, the press-fitting of the upper and lower bearing bodies 3 is completed, and thereafter the operation of the horns 13 and 14 is stopped. Subsequently, after allowing time for the inner peripheral surface of the melted housing 2 to be welded to the outer peripheral surface of the bearing body 3, the upper and lower punches 10 and 11 are opened, and the guide pins 12 are removed from the upper and lower bearing bodies 3, The bearing 1 shown in 2 is obtained.
[0012]
According to the above manufacturing method, each bearing body 3 is press-fitted into the press-fitting hole 2a of the housing 2 along the guide pin 12 inserted into the bearing hole 3a. High degree. The inner peripheral surface of the housing 2 is melted by ultrasonic vibration when the bearing main body 3 is press-fitted and then welded to the outer peripheral surface of the bearing main body 3. That is, the bearing body 3 is ultrasonically welded to the housing 2. For this reason, the elastic stress remaining on the inner peripheral surface of the housing 2 is small. Therefore, even if the dimensional accuracy of the press-fitting hole 2a of the housing 2 is inferior and the press-fitting allowance is non-uniform, the bearing body 3 is restored by elastic recovery of the housing 2 after the guide pin 12 is removed from the upper and lower bearing bodies 3. It does not move in the radial direction. As a result, the bearing hole 3a of each bearing body 3 maintains a high degree of coaxiality with the guide pin 12 inserted.
[0013]
In the above-described embodiment, the bearing bodies 3 are press-fitted into the housing 2 at the same time while applying ultrasonic vibration by the upper and lower horns 13 and 14, but the press-fitting may be performed sequentially instead of simultaneously. Further, when the press-fitting is performed simultaneously as described above, ultrasonic vibration may be applied only to one bearing body 3. Furthermore, one bearing body 3 may be press-fitted into the housing 2 as usual without applying ultrasonic vibration, and then the other bearing body 3 may be pressed into the housing 2 while applying ultrasonic vibration. . In either case, as a result, ultrasonic vibrations are transmitted to both bearing bodies 3, and these bearing bodies 3 are ultrasonically welded to the housing 2.
[0014]
3 and 4 show a modification of the bearing body. In the bearing main body 3 of the above-described embodiment, the outer peripheral surface is smooth, but the outer peripheral surface of the bearing main body 3A shown in FIG. 3 is formed with knurls 6 by a plurality of grooves 5 along the axial direction. Yes. As a result, the welding area with the inner peripheral surface of the housing 2 is widened, and a retaining action is exhibited. Moreover, the circumferential groove 7 is formed in the axial center part in the outer peripheral surface of the bearing main body 3B shown in FIG. The resin melted when the bearing body 3B is press-fitted into the housing 2 flows into the circumferential groove 7, and the bearing body 3B is also mechanically fixed to the housing 2. Since the circumferential groove 7 is orthogonal to the direction of removal from the housing 2, the resin that has flowed into the circumferential groove 7 and solidified has a significantly improved anti-detachment action, and the coupling force to the housing 2 is increased.
As described above, the bearing body is less likely to be removed from the housing 2 by performing uneven processing such as knurls, circumferential grooves, or steps of the bearing body on the outer peripheral surface, thereby improving the coupling force.
[0015]
【Example】
Next, specific Examples 1 and 2 in which a bearing is manufactured based on the above-described embodiment will be described.
[Example 1]
The two bearing bodies with an inner diameter of 5 mmφ, an outer diameter of 10 mmφ, and an axial length of 6 mm are press-fitted by the method shown in FIG. Sample 1 was prepared. Further, a sample 2 was prepared by press-fitting a similar bearing body into a resin housing having a roundness of the press-fitting hole of 100 μm while applying ultrasonic vibration. The housing was made of a resin in which 30% glass reinforcing fiber was mixed with polycarbonate. The press-fitting allowance of the press-fitting hole of the housing was set to 20 μm based on the minimum value of the inner diameter. Therefore, the press-fitting allowance of the housing of Sample 1 is in the range of 20 to 70 μm, and the press-fitting allowance of Sample 2 is in the range of 20 to 120 μm. The bearing body was made of a bronze bearing material. The ultrasonic vibration applied to the upper and lower punches when the bearing body is press-fitted into the housing has a frequency of 20 kHz, an amplitude of 20 μm, a vibration direction of an axial direction, and a vibration time of 0.1 second.
Also, the dimensions of the housing and the bearing body and the mold apparatus used were the same, and the bearing body was press-fitted into the housing without applying ultrasonic vibration to produce Sample 3 and Sample 4, which were used as comparative examples.
Table 1 shows the results of measuring the inner diameters of the upper and lower bearing bodies and the penetration dimensions of the upper and lower bearing bodies with respect to Sample 1 to Sample 4, and evaluating these dimensional differences as coaxiality.
[0016]
[Table 1]
Figure 0003701107
[0017]
As can be seen from Table 1, Sample 1 and Sample 2 obtained by press-fitting the bearing main body into the housing while applying ultrasonic vibration both showed a small coaxial value of 2 μm. In particular, in the case of sample 2, the roundness of the housing was 100 μm, which was twice that of the housing of sample 1, and the same coaxiality as that of sample 1 was shown despite the large press-fitting allowance.
On the other hand, the coaxiality of the sample 3 among the sample 3 and the sample 4 which does not give ultrasonic vibration was 4 to 5 μm, which is a value more than twice that of the example. Sample 4 was not measured because a crack occurred in the housing. It is assumed that the housing has a large press-fitting allowance and an excessive load is applied to the housing when the bearing body is press-fitted.
As described above, it is possible to obtain good coaxiality even if there is a dimensional error in the press-fitting hole of the housing by press-fitting the bearing body into the housing along the guide pin while applying ultrasonic vibration.
[0018]
[Example 2]
Next, a second embodiment in which the relationship between the shape of the outer peripheral surface of the bearing body and the coupling force to the housing is evaluated will be described.
In addition to the smooth surface as in the above-described embodiment, there are three types of outer peripheral surfaces: those in which the knurls shown in FIG. 3 are formed and those in which the peripheral grooves shown in FIG. 4 are formed. These bearing bodies were press-fitted into the housing under two conditions, with and without applying ultrasonic vibration, to prepare samples. Then, the bearing bodies of these samples are removed from the housing, and the removal force required at that time is shown in Table 2. The roundness of the housing is 50 μm.
[0019]
[Table 2]
Figure 0003701107
[0020]
According to Table 2, it can be seen that when the outer peripheral surface is smooth, the coupling force is lower when ultrasonic vibration is present. This is presumably because the inner peripheral surface of the housing melted by ultrasonic vibration follows the bearing main body and follows, so that the elastic stress acting on the bearing main body from the housing is smaller than that without ultrasonic vibration. If it is evaluated only from the viewpoint of the bonding force, it is better to press-fit without ultrasonic vibration. In this case, however, the coaxiality is inferior as apparent from the first embodiment.
When the outer peripheral surface is knurled and there is ultrasonic vibration, it is considered that the friction force increases as the molten resin flows into the groove and the contact area increases. For this reason, although the extending direction of the projections and depressions is the pulling direction, the bonding force is not so much reduced as compared with the case without ultrasonic vibration that couples by elastic stress.
When the outer peripheral surface is a circumferential groove and there is ultrasonic vibration, it is considered that the bearing body is mechanically fixed to the housing due to the flow of molten resin into the circumferential groove orthogonal to the pulling direction. For this reason, the binding force is higher than in the case without ultrasonic vibration.
[0021]
【The invention's effect】
As described above, the present invention press-fits a plurality of bearing bodies into the housing along the guide pins while applying high-frequency vibration, so that the inner peripheral surface of the housing around the bearing bodies is melted by frictional heat and elastic stress is applied. As a result, the remaining degree is reduced, and as a result, the movement of the bearing body is suppressed even after the guide pin is pulled out, and high coaxiality is maintained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a mold apparatus suitable for carrying out a bearing manufacturing method according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an example of a bearing according to an embodiment of the present invention.
FIG. 3 is a perspective view showing a modification of the bearing according to the embodiment of the present invention.
FIG. 4 is a perspective view showing another modified example of the bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bearing, 2 ... Housing, 3 ... Bearing main body, 3a ... Bearing hole, 6 ... Knurl,
7 ... circumferential groove, 12 ... guide pin.

Claims (5)

筒状のハウジングの内部に、複数の軸受本体が、それぞれの軸受孔が互いに同軸的となる状態で圧入されてなる軸受の製造方法であって、
前記ハウジングを、前記軸受本体よりも融点が低い材質で製造し、
このハウジングの内部に、前記軸受本体の軸受孔に摺動可能に挿入され得るガイドピンを挿入するとともに、各軸受本体の軸受孔にガイドピンを挿入することにより、このガイドピンで各軸受本体を支持し、
次いで、各軸受本体の少なくとも一方にパンチに当接させた超音波を発生するホーンにより高周波振動を与えながら、各軸受本体を前記ガイドピンに沿ってハウジングの内部に圧入することにより、前記ハウジングの内面を溶融してハウジングへの弾性応力の残存を抑制することを特徴とする軸受の製造方法。
A method of manufacturing a bearing in which a plurality of bearing bodies are press-fitted in a state where respective bearing holes are coaxial with each other inside a cylindrical housing,
The housing is made of a material having a lower melting point than the bearing body,
A guide pin that can be slidably inserted into the bearing hole of the bearing body is inserted into the housing, and the guide pin is inserted into the bearing hole of each bearing body. Support,
Next, each bearing body is press-fitted into the housing along the guide pins while applying high-frequency vibrations to at least one of the bearing bodies with a horn that generates ultrasonic waves in contact with the punch . A method for manufacturing a bearing, characterized in that the inner surface is melted to suppress the remaining elastic stress in the housing.
前記複数の軸受本体を前記ハウジングの内部に同時に圧入し、その際に、一方の前記軸受本体のみに高周波振動を与えることを特徴とする請求項1に記載の軸受の製造方法。  The bearing manufacturing method according to claim 1, wherein the plurality of bearing bodies are simultaneously press-fitted into the housing, and at that time, only one of the bearing bodies is subjected to high-frequency vibration. 前記複数の軸受本体の一方を高周波振動を与えずに前記ハウジングの内部に圧入し、次いで、他方の前記軸受本体に高周波振動を与えながら前記ハウジングの内部に圧入することを特徴とする請求項1に記載の軸受の製造方法。  2. One of the plurality of bearing main bodies is press-fitted into the housing without applying high-frequency vibration, and then press-fitted into the housing while applying high-frequency vibration to the other bearing main body. The manufacturing method of the bearing as described in 2 .. 前記複数の軸受本体を前記ハウジングの内部にパンチの一端面によりそれぞれ圧入し、前記パンチの他端面に超音波振動を発生するホーンをそれぞれ当接させて前記軸受本体を振動させることを特徴とする請求項1〜3のいずれかに記載の軸受の製造方法。And wherein the press-fitted respectively with one end surface of the punch a plurality of bearing body in the housing, wherein each brought into contact with the horn for generating ultrasonic vibration to the other end face of each punch to vibrate the bearing body The manufacturing method of the bearing in any one of Claims 1-3 to do. 前記軸受本体の外周に、軸線方向と直交する周溝を形成したことを特徴とする請求項1〜4のいずれかに記載の軸受の製造方法。  The bearing manufacturing method according to claim 1, wherein a circumferential groove perpendicular to the axial direction is formed on an outer periphery of the bearing body.
JP21913097A 1997-07-30 1997-07-30 Manufacturing method of bearing Expired - Fee Related JP3701107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21913097A JP3701107B2 (en) 1997-07-30 1997-07-30 Manufacturing method of bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21913097A JP3701107B2 (en) 1997-07-30 1997-07-30 Manufacturing method of bearing

Publications (2)

Publication Number Publication Date
JPH1142514A JPH1142514A (en) 1999-02-16
JP3701107B2 true JP3701107B2 (en) 2005-09-28

Family

ID=16730717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21913097A Expired - Fee Related JP3701107B2 (en) 1997-07-30 1997-07-30 Manufacturing method of bearing

Country Status (1)

Country Link
JP (1) JP3701107B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10033305C2 (en) * 2000-07-04 2003-05-28 Schmittersysco Gmbh Method of manufacturing rack and pinion steering housings
WO2003027521A1 (en) * 2001-09-21 2003-04-03 Sony Corporation Bearing unit and motor using the bearing unit
JP3462874B1 (en) * 2002-11-12 2003-11-05 株式会社椿本チエイン Tensioner
JP2004169896A (en) * 2002-11-22 2004-06-17 Ntn Corp Winding unit and method of manufacturing the same
JP2005042838A (en) 2003-07-23 2005-02-17 Ntn Corp Fluid bearing device
JP2005090653A (en) * 2003-09-18 2005-04-07 Ntn Corp Fluid bearing device
JP4790586B2 (en) * 2006-01-10 2011-10-12 Ntn株式会社 Hydrodynamic bearing device and manufacturing method thereof
US8120220B2 (en) 2006-01-10 2012-02-21 Ntn Corporation Fluid dynamic bearing device and manufacturing method therefor

Also Published As

Publication number Publication date
JPH1142514A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
JP3701107B2 (en) Manufacturing method of bearing
US20070226984A1 (en) Manufacturing method of caulking-assembled part
US20060039638A1 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JPH0643607U (en) Ferrule for optical fiber connection
JP4315325B2 (en) Gear unit manufacturing method
KR100996696B1 (en) burring device
JPH0857959A (en) Ultrasonic welding machine
JP4811175B2 (en) Assembly of resin molded body and columnar body, manufacturing method thereof, and manufacturing apparatus
JPH0956090A (en) Field device for rotating electric machine
JP3835941B2 (en) Manufacturing method of coarse gear
US5735038A (en) Magnet assembling device
JP2004308865A (en) Vibration control device and manufacturing method thereof
JP5021333B2 (en) Shaft manufacturing method and manufacturing apparatus thereof
KR101685293B1 (en) Rack bar and manufacturing method thereof
JP6653974B2 (en) Machine parts and manufacturing method thereof
US20070039186A1 (en) Dynamic bearing manufacturing method
JP3841766B2 (en) VCM yoke manufacturing method
JP2941666B2 (en) Swaging method of pipe
JP2867850B2 (en) Manufacturing method of cylindrical member for cylindrical rubber vibration insulator and window member with window
JP3173301B2 (en) Split bearing manufacturing method
KR820001925B1 (en) Method for connecting tow members
JP3418159B2 (en) Gear manufacturing method
JP2992386B2 (en) Rollet forming device for shaft material for armature shaft
JP3006321U (en) Vibration generator of paging motor
JP2004508999A (en) Method of fixing at least one guide insert between two coaxial tubes in an automotive anti-roll device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040310

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees