JP3835941B2 - Manufacturing method of coarse gear - Google Patents

Manufacturing method of coarse gear Download PDF

Info

Publication number
JP3835941B2
JP3835941B2 JP32199298A JP32199298A JP3835941B2 JP 3835941 B2 JP3835941 B2 JP 3835941B2 JP 32199298 A JP32199298 A JP 32199298A JP 32199298 A JP32199298 A JP 32199298A JP 3835941 B2 JP3835941 B2 JP 3835941B2
Authority
JP
Japan
Prior art keywords
peripheral surface
intermediate product
convex portion
outer peripheral
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32199298A
Other languages
Japanese (ja)
Other versions
JP2000140976A (en
Inventor
智也 長谷川
弘之 加地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Kiko Co Ltd
Original Assignee
Aisin Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Kiko Co Ltd filed Critical Aisin Kiko Co Ltd
Priority to JP32199298A priority Critical patent/JP3835941B2/en
Publication of JP2000140976A publication Critical patent/JP2000140976A/en
Application granted granted Critical
Publication of JP3835941B2 publication Critical patent/JP3835941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は歯車粗材の製造方法に係り、特に、鍛造加工を主体として製造する技術に関するものである。
【0002】
【従来の技術】
ヘリカル歯車を鍛造加工を主体とする加工で製造することが、例えば特開平8−206772号公報に記載されているが、ヘリカル歯車の歯筋に沿ってパンチを強制的に回転させる必要があることから、可動部分が多くて構造が複雑になる。また、ヘリカル歯車の歯部を鍛造加工で強制的に成形するため、材料流動が十分に行われず、ダレや欠損等を生じる可能性があった。他にも、密閉鍛造による歯車成形が行われているが、歯の形状によっては十分な材料の充填を行うために高圧力を加えなければならず、型の耐久性や寿命に問題を抱えていた。
【0003】
これに対し、鍛造加工のメリットである材料歩留りの良さと、切削加工のメリットである加工精度の良さとから、鍛造加工により予備成形した円筒状の材料に切削加工を施して歯を形成することが考えられる。その場合に、円筒状の材料を鍛造加工によって製造する方法としては、例えば図11に示すように、先ず(a) において円柱形状の丸棒材から所定長さの粗材200を切り出し、(b) で目的とする円筒状部品202((d) 参照)の外径と略等しい外径寸法となるように軸方向からすえ込み鍛造を行う。また、(c) で、形成すべき貫通穴204と略等しい径寸法の有底穴206を押出し鍛造によって形成し、(d) で有底穴206の底部208を抜きパンチによって打ち抜くことにより、目的とする円筒状部品202が得られる。図11の各図の一点鎖線は中心線で、左側半分は断面図である。
【0004】
【発明が解決しようとする課題】
しかしながら、このような円筒状部品202の製造方法においては、軸方向の端面210の面精度(中心線に対する直角度や平面度など)が十分に得られず、その後に端面210を基準面として歯切り加工などを行う場合に加工精度が損なわれるという問題があった。すなわち、(c) の押出し鍛造では、有底穴206内にポンチが押し込まれることにより、その部分の材料が軸方向へ流れるが、中心線まわりにおいて必ずしも均等ではないなど、十分な面精度が得られないのである。(d) の打抜き加工の後に、外周面および内周面を拘束しつつ軸方向に圧縮することにより端面210の精度出しを行うことも考えられるが、型破損等を防止する上で型と材料との間に隙間を設ける必要があるため、高い面精度を得ることは困難である。
【0006】
本発明は以上の事情を背景として為されたもので、その目的とするところは、軸方向の端面の直角度や平面度が高い歯車粗材を鍛造加工を主体として製造できるようにすることにある。
【0007】
【課題を解決するための手段】
かかる目的を達成するために、第1発明は、(a) 外周面および内周面と、軸方向の両端部においてそれ等の外周面および内周面を径方向に連絡する一対の端面とを備えた円筒状を成しているとともに、 (b) 後工程でその外周面または内周面に外歯または内歯の歯車の歯が切削加工により形成されるもので、 (c) 前記一対の端面の少なくとも一方がその切削加工の基準面として使用される金属製の歯車粗材の製造方法であって、(d) 前記端面またはその端面となる部分に前記軸方向へ突き出す凸部を鍛造加工により形成し、その後、前記外周面および内周面の変形を防止しつつ、その凸部以外の端面部分と成形型との間に隙間が残るように軸方向から圧縮することにより、その凸部の先端面を前記基準面として使用できるように精度出しすることを特徴とする。
【0008】
第2発明は、(a) 中心部に断面円形の貫通穴を有し、外周面および内周面と、軸方向の両端部においてそれ等の外周面および内周面を径方向に連絡する一対の端面とを備えた円筒状を成しているとともに、 (b) 後工程でその外周面または内周面に外歯または内歯の歯車の歯が切削加工により形成されるもので、 (c) 前記一対の端面の少なくとも一方がその切削加工の基準面として使用される金属製の歯車粗材を製造する方法であって、(d) 所定の粗材に鍛造加工を施すことにより、外径寸法が前記歯車粗材の外径と略等しく且つ軸方向長さがその歯車粗材の軸方向長さより短い円柱形状を成しているとともに、軸方向の少なくとも一方の端面であって前記貫通穴より外側になる部分の一部に、軸方向へ突き出す円環形状の凸部がその円柱形状の中心線と略同心に設けられている第1中間品を製造する第1中間品製造工程と、(e) その第1中間品の外周面を拘束しつつその第1中間品の中心部に前記貫通穴と略等しい径寸法の有底穴を鍛造加工によって形成することにより、軸方向長さが前記歯車粗材の軸方向長さと略等しい第2中間品を製造する第2中間品製造工程と、(f) その第2中間品の前記有底穴の底部を打ち抜いて前記貫通穴を形成し、円筒状の第3中間品を製造する第3中間品製造工程と、(g) その第3中間品の外周面および内周面の変形を防止しつつ、前記円環形状の凸部以外の端面部分と成形型との間に隙間が残るようにその第3中間品を軸方向から圧縮することにより、その凸部の先端面を前記基準面として使用できるように精度出しする面仕上げ工程とを有することを特徴とする。
【0011】
【発明の効果】
第1発明の歯車粗材の製造方法においては、軸方向の少なくとも一方の端面が、後工程で内歯または外歯の歯車の歯を切削加工する際の基準面として使用される場合に、その端面またはその端面となる部分に軸方向へ突き出す凸部を鍛造加工により形成し、その後、外周面および内周面の変形を防止しつつ、その凸部以外の端面部分と成形型との間に隙間が残るように軸方向から圧縮することにより、その凸部の先端面を基準面として使用できるように精度出しするようになっている。すなわち、端面のうち凸部の先端面以外の部分は必ずしも精度が要求されないため、圧縮に伴う金属流動の受け皿として成形型との間に隙間を設けることが可能で、端面以外の面の拘束等に拘らず凸部の先端面を圧縮により確実に塑性変形させて、高い面精度(軸心に対する直角度や平面度など)を得ることができるようになるのである。これにより、その凸部の先端面を基準面として後工程の歯切り加工などを高い精度で行うことができるようになる。
【0012】
第2発明は、実質的に第1発明の一実施態様に相当するもので、凸部の先端面が高い面精度で形成される。凸部は円柱形状の段階で形成されるため、貫通穴を空けた後で凸部を形成する場合に比較して、型構造が簡単に構成される。第2中間品製造工程では、有底穴部分の金属が軸方向へ流動させられるため、凸部が設けられた端面側から有底穴が形成される場合には凸部を含む端面形状が変形するが、第1中間品の外径寸法が維持されるため、有底穴より外周側の端面は単に軸方向へ押し動かされるだけであり、凸部が分からなくなる程大きく変形させられることはなく、面仕上げ工程で凸部の先端面が全周に亘って確実に塑性変形させられて精度出しされる。
【0015】
【発明の実施の形態】
本発明は、例えばヘリカル歯車等の歯車粗材の製造に好適に適用される。
【0016】
端面に設けられる凸部の先端面は、一般的には中心線に対して直角な平坦面である場合が多いが、中心線に対して直角な平面から所定角度だけ傾斜していても良いなど、適宜設定される。
【0017】
第2発明では、貫通穴を形成する前に凸部を設け、貫通穴を形成した後に凸部の先端面の精度出しを行うようになっているが、第1発明の実施に際しては、貫通穴を形成した後に鍛造加工(圧印加工など)によって凸部を設けるとともに、その後で凸部を圧縮して先端面の精度出しを行うようにしても良い。第1発明では、必ずしも円環形状の凸部を設ける必要はない。
【0018】
凸部は何れか一方の端面だけでも良いが、その後の取扱いの容易性から両端面に設けることが望ましい。また、凸部は製品状態(円筒状の歯車粗材)において端面の一部、すなわち円環形状の端面の内周側、外周側、或いはその中間位置に設けられるが、例えば外歯の歯車粗材として用いる場合には、歯と関係のない内周側部分に設けることが望ましく、内歯の歯車粗材として用いる場合には、歯と関係のない外周側部分に設けることが望ましい。
【0019】
第1中間品製造工程は、例えば(a) 外径寸法が前記歯車粗材の外径より小さい円柱状粗材を丸棒材から切り出す切出し工程と、(b) 外径寸法が歯車粗材の外径と略等しく且つ軸方向長さが歯車粗材の軸方向長さより短くなるように、前記円柱状粗材を軸方向にすえ込み鍛造するすえ込み鍛造工程と、(c) その後に圧印加工などで端面に凸部を形成する圧印鍛造工程とを有することが望ましい。すなわち、外径寸法が前記歯車粗材の外径と略等しく且つ軸方向長さがその歯車粗材の軸方向長さより短い円柱形状を成している円柱状粗材を丸棒材などから切り出して用意し、その円柱状粗材の端面に鍛造加工(圧印加工など)によって凸部を形成することも可能であるが、切断面に歪が存在するとともに、金属組織(メタルフロー)が切断された切断面に凸部が設けられるため好ましくないのである。丸棒材は一般にメタルフローが軸方向に揃っているため、鍛造加工を行う上で好適に用いられる。
【0020】
第2中間品製造工程で第1中間品に設けられる有底穴は、第1中間品の両端面から設けることが望ましいが、何れか一方の端面(凸部が設けられた端面とは限らない)のみから有底穴を形成するようにしても良い。
【0021】
凸部の先端を圧縮鍛造などで圧縮して精度出しする際には、歯車粗材の外周面や内周面の変形を防止するために拘束ダイスなどで拘束しておくことが望ましいが、凸部の圧縮変形量が少ない場合や、凸部の形成位置が端面の内外周の中間位置である場合など、凸部の圧縮による塑性変形で外周面や内周面が変形する恐れがない場合は、必ずしもそれ等の面を拘束する必要はない。第1発明、第2発明の「変形を防止しつつ」とは、圧縮鍛造に伴って変形する場合は拘束ダイスなどで拘束して変形を防止するが、圧縮鍛造時に変形する恐れがない場合は、必ずしも特別な拘束手段を設ける必要はなく、変形しないように必要に応じて拘束手段が設けられれば良いという趣旨である。
【0023】
以下、本発明の一実施例を図面を参照しつつ詳細に説明する。
図1は、本発明方法に従って円筒状部品10を製造する際の手順を説明する図である。円筒状部品10は、中心部に断面円形の貫通穴12を有する金属製の円筒状の部品で、円環形状を成す両端面14、16には、それぞれ内周側に軸方向へ突き出す円環形状の凸部14a、16aが設けられているとともに、その凸部14a、16aの先端面が中心線に対して直角な平坦面とされている。この円筒状部品10は、ヘリカル歯車等の外歯歯車の粗材で、後工程において凸部14a、16aよりも外周側の部分に切削加工により歯が形成されるが、この切削加工は凸部14aまたは16aの先端面を基準面として行われる。図1の各図(a) 〜(f) の一点鎖線は、何れも中心線を表しており、中心線よりも左側半分は断面図である。
【0024】
図1の(a) は切出し工程で、目的とする円筒状部品10の外径寸法より小さい外径寸法の丸棒材を所定の長さ寸法で切断して円柱状粗材20を用意する。丸棒材は引抜き加工などによって得られたもので、メタルフローが軸方向に揃っており、円柱状粗材20も同様であるが、両端面22、24には切断時の歪が残っている。本実施例では、プレスのせん断加工によって切断するようになっており、せん断による歪が存在する。
【0025】
図1の(b) はすえ込み鍛造工程で、前記円柱状粗材20を軸方向にすえ込み鍛造することにより、外径寸法が円筒状部品10の外径と略等しく且つ軸方向長さが円筒状部品10の軸方向長さより短い略円柱形状の中間品30を製造する。図2および図3の鍛造装置32は、図1(b) のすえ込み鍛造を行う鍛造装置の一例で、図2は、円柱状粗材20が図示しない搬送装置により下部ダイス34上に略垂直に載置され、押えパンチ36で位置決めされた状態である。押えパンチ36は、スプリング38によって下方へ付勢されており、このスプリング38の付勢力に従って円柱状粗材20を下部ダイス34上に位置決め保持する一方、上型40が下降させられるのに伴って収容穴42内に相対的に押し込まれ、摺動部材44が上側移動端に達することにより、押えパンチ36の下端面は成形パンチ46の成形面(下端面)と略一致させられる。そして、その状態で更に上型40が下降させられると、図3に示すように円柱状粗材20は上記押えパンチ36、成形パンチ46、下部ダイス34、および下部ダイス34上に配設されたリングダイス48によって囲まれた略密閉した空間内において軸方向に圧縮され、中間品30とされる。リングダイス48の内径寸法は円筒状部品10の外径寸法と略等しい。なお、下死点において成形パンチ46とリングダイス48との間には僅かな隙間が存在するとともに、下部ダイス34の中心部にはノックアウトピン50が配設されている。
【0026】
このようにすえ込み鍛造が行われることにより、切断時に生じた歪が是正され、軸心まわりの重量バランスが改善される。また、リングダイス48の内壁面の下部は、径寸法が漸減するように傾斜面(テーパ面)が設けられており、中間品30の一方の端部52側の外周面54は、その傾斜面に対応して端部52に近づくに従って僅かに小径となるテーパ面とされている。
【0027】
図1の(c) は圧印鍛造工程で、中間品30の両端面に圧印加工が施されることにより、前記貫通穴12よりも外側になる部分の一部、具体的には前記凸部14a、16aに対応するように貫通穴12に連続する内周側の部分に、軸方向へ突き出す円環形状の凸部56、58が中心線と略同心に設けられた中間品60が製造される。凸部56、58は、幅寸法および突出寸法がそれぞれ等しい略同一形状で、突出寸法は約0.55mmである。図4および図5の鍛造装置62は、図1(c) の圧印鍛造を行う鍛造装置の一例で、図4は、中間品30が図示しない搬送装置によりダイス64内に配置されるとともに、押えパンチ66で位置決めされた状態であり、図5はダイス64およびパンチ68により圧印鍛造が行われ、凸部56、58を有する中間品60に成形された状態である。中間品30は、前記端部52側、すなわちテーパ形状の外周面54が形成された側が上になるように上下反転した姿勢で配置され、図5に示すようにパンチ68によって押圧される際に、ダイス64の開口部とパンチ68との間から粗材が溢れ出すことが防止される。
【0028】
押えパンチ66は、スプリング70によって下方へ付勢されており、このスプリング70の付勢力に従って中間品30を位置決め固定する一方、上型72が下降させられるのに伴って収容穴74内に相対的に押し込まれ、摺動部材76が上側移動端に達することにより、押えパンチ66の下端面は第1リングパンチ78の下端面と略一致させられる。押えパンチ66は、前記貫通穴12の内径すなわち凸部56の内径と略等しい外径寸法で、第1リングパンチ78の内径寸法は凸部56の外径寸法と略等しく、それ等の間には、下端面が凸部56の突出寸法だけ凹むように第2リングパンチ80が配設されている。これ等の押えパンチ66、第1リングパンチ78、第2リングパンチ80によってパンチ68が構成されている。
【0029】
前記ダイス64は、ノックアウトピン82、第1リングダイス84、第2リングダイス86、および外周面拘束ダイス88から構成されている。ノックアウトピン82は、前記貫通穴12の内径すなわち凸部58の内径と略等しい外径寸法で、第1リングダイス84の内径寸法は凸部58の外径寸法と略等しく、それ等の間の第2リングダイス86は、上端面が凸部58の突出寸法だけ凹むように配設されている。また、外周面拘束ダイス88は、第1リングダイス84上に配設されているとともに、その内径寸法は円筒状部品10の外径寸法、すなわち中間品30の外径寸法と略等しく、中間品30を同心に位置決めするとともに外周面を拘束した状態で圧印鍛造が行われる。
【0030】
本実施例では、上記図1(a) の切出し工程、図1(b) のすえ込み鍛造工程、および図1(c) の圧印鍛造工程が、第2発明の第1中間品製造工程に相当し、中間品60は第1中間品に相当する。
【0031】
図1の(d) は押出し鍛造工程で、中間品60の外周面60fを拘束しつつ両端面の中心部、すなわち前記凸部56、58の内側部分に貫通穴12と等しい径寸法の有底穴90、92を形成することにより、軸方向長さが前記円筒状部品10の軸方向長さと略等しい中間品94が製造される。図6の鍛造装置96は、図1(d) の押出し鍛造を行う鍛造装置の一例で、パンチ98およびダイス100により中間品60に押出し鍛造が行われ、有底穴90、92を有する中間品94に成形された状態である。図1(d) の押出し鍛造工程は、第2発明の第2中間品製造工程に相当し、中間品94は第2中間品に相当する。
【0032】
上記パンチ98は、貫通穴12と略等しい外径の中心パンチ102と、その外周側に配設されたリングパンチ104とから成り、リングパンチ104の内周側には凸部56に対応する凹みが設けられて、中間品60の凸部56が略そのままの形状で維持されるようになっている。中心パンチ102は、中間品60における凸部56の突出寸法より大きく突き出しており、これにより有底穴90が形成される。ダイス100は、貫通穴12と等しい外径のノックアウトピン106、その外周側に配設された幅寸法が凸部58の幅寸法と等しいリングダイス108、および内径寸法が円筒状部品10の外径寸法すなわち中間品60の外径寸法と等しい外周面拘束ダイス110から構成されている。ノックアウトピン106は、リングダイス108の上端面から凸部58の突出寸法よもり十分に大きく上方へ突き出しており、パンチ98が下降させられて中間品60がノックアウトピン106に押圧されることにより、ノックアウトピン106が中間品60に食い込み、その部分の粗材がノックアウトピン106と外周面拘束ダイス110との間の環状空間へ流動させられることにより、有底穴90より深い有底穴92が形成されるとともに、軸方向長さが円筒状部品10の軸方向長さと略等しい中間品94が得られる。有底穴90部分の粗材が軸方向の下方へ流動させられるが、外周面拘束ダイス110によって中間品60の外径寸法が維持されるため、凸部58およびそれより外側の端面は単に軸方向の下方へ押し動かされるだけで、凸部58は中間品60の時の形状が略そのまま維持される。また、中間品60は外周面拘束ダイス110内に挿入されることにより同心に位置決め保持される。成形された中間品94の下端部、厳密には凸部58と、リングダイス108の上端面との間には僅かな隙間が残るようになっている。
【0033】
図1の(e) は打抜き工程で、中間品94の一方の有底穴92内に抜きパンチを挿入することにより、有底穴90、92の間に存在する底部112を打ち抜いて前記貫通穴12を形成し、円筒状の中間品114を製造する。図7のプレス機械116は、図1(e) の打抜き加工(ピアス加工)を行うプレス機械の一例で、円筒状の押えパンチ118および円柱状の抜きパンチ120により中間品94の底部112を打ち抜いて貫通穴12を有する中間品114とする。この図1(e) の打抜き工程は、第2発明の第3中間品製造工程に相当し、中間品114は第3中間品に相当する。
【0034】
上記押えパンチ118の下端面は、外径寸法が中間品94の外径と同じか僅かに小さいとともに、内径寸法が凸部56の内径寸法と同じか僅かに大きく、且つ凸部56に対応する凹部が設けられており、凸部56の形状を維持するようになっている。抜きパンチ120の上端面は、外径寸法が有底穴92の内径より僅かに小さいとともに、その外周縁部にせん断刃が設けられており、押えパンチ118によって中間品94が下方へ押圧されることにより、抜きパンチ120が相対的に有底穴92内に挿入され、せん断刃によって底部112を上方へ打ち抜く。抜きパンチ120の周囲には、中間品94の外径と略等しい内径寸法の位置決めダイス122が同心に配設されており、中間品94を同心に位置決めするようになっている。また、打ち抜かれた底部112は、打抜き加工が繰り返されるのに伴って新たな底部112が上方へ打ち抜かれることにより、押えパンチ118の円筒内を順次上方へ押し上げられ、排出穴124から外部へ排出される。
【0035】
ここで、中間品114の貫通穴12の内周面には、底部112が存在した部分に微小な段差126が残っている。図9の(a) は、中間品114の断面のメタルフローFを簡略して示す図で、メタルフローFは底部112部分で圧縮され、上記打抜き加工で底部112が打ち抜かれることにより破断されるとともに、そのメタルフローFの破断部がバリとして貫通穴12内に残って段差126になる。図9の(b) は、その段差(バリ)126付近を拡大した図で、底部112が抜きパンチ120によって上方へ打ち抜かれる際にメタルフローFが引き千切られ、上方へ傾斜した状態で残存する。
【0036】
図1の(f) は面仕上げ工程で、前記抜きパンチ120の挿入側と反対側からバニシ工具を前記貫通穴12内に押し込んで、その貫通穴12の内周面をバニシ仕上げするとともに、中間品114の外周面および内周面を拘束しつつその中間品114を軸方向から圧縮して前記凸部56、58の先端面を所定形状に精度出しする。図8の鍛造装置130は、図1(f) の面仕上げを行う鍛造装置の一例で、ダイス132内に凸部56側が下向きになるように上下反転して配設された中間品114が、円筒状の押えパンチ134によって下方へ押圧されることにより、円柱状のバニシ工具136が凸部56側から貫通穴12内に押し込まれ、その貫通穴12の内周面がバニシ仕上げされるとともに、そのバニシ工具136で内周面を拘束しつつ外周面拘束ダイス138で外周面を拘束した状態で軸方向から圧縮することにより、両端面の凸部56、58の先端面の精度出しが1回のプレス工程で行われ、目的とする円筒状部品10が得られる。この図1(f) の面仕上げ工程は、第2発明の面仕上げ工程である。
【0037】
上記押えパンチ134の下端面は、外径寸法が中間品114の外径と略同じで、内径寸法が有底穴12の内径と略同じで、且つ凸部58の突出寸法より僅かに小さい深さの凹部が凸部58に対応して内周側に設けられており、中間品114を下方へ押圧して圧縮することにより凸部58の先端が塑性変形させられ、押えパンチ134の下端面に対応する形状の凸部14aが鍛造成形される。凸部14aの突出寸法は約0.50mmで、凸部58に比較して0.05mm程度圧縮される。バニシ工具136は、外径寸法が貫通穴12の内径と略等しく、貫通穴12内に押し込まれることにより内周面をバニシ仕上げするとともに、その貫通穴12内に押し込まれた状態で軸方向から圧縮鍛造が行われる際には、中間品114の内周面を拘束する。バニシ工具136の周囲には、内径寸法が凸部56の外径寸法と略等しい第1リングダイス140が配設されているとともに、それ等の間には、上端面が凸部56の突出寸法より小さい所定寸法だけ第1リングダイス140より低くなるように第2リングダイス142が配設されており、押えパンチ134によって中間品114が下方へ押圧されると、凸部56の先端が第2リングダイス142に当接させられて塑性変形させられ、第2リングダイス142の先端面形状に対応する先端面を有する凸部16aが鍛造成形される。また、外周面拘束ダイス138は、第1リングダイス140上に配設されているとともに、その内径寸法は円筒状部品10の外径寸法、すなわち中間品114の外径寸法と等しく、中間品114を同心に位置決めするとともに外周面を拘束した状態で圧縮鍛造が行われる。
【0038】
ここで、バニシ工具136は前記抜きパンチ120の挿入側と反対側、すなわち凸部56を有する端部側で、前記図9の(b) では上方側から下方へ向かって貫通穴12内に押し込まれるため、バリが押し戻されるように内周面の破断部位、すなわち抜きパンチ120で破断された底部112の切断部位に押圧され、段差126が良好に解消して高い面精度(面粗さ)が得られる。すなわち、抜きパンチ120と同じ方向(図9(b) の下側)からバニシ工具136を押し込むと、バリが更に上方へ引き延ばされ、貫通穴12(厳密には有底穴90部分)の内周面に押し着けられるだけで、その部分が肉盛りされた状態になり、必ずしも高い面精度が得られないのである。バリは、メタルフローFが抜きパンチ120によって引き千切られたものであるため、その引張方向すなわち抜きパンチ120の挿入方向と同じ方向へバニシ工具136を移動させても、バリが完全に取り除かれることはなく、内周面に圧着されてしまうのである。
【0039】
一方、押えパンチ134と第2リングダイス142との間で中間品114が圧縮鍛造された状態、すなわち円筒状部品10に成形された状態において、その円筒状粗材10と第1リングダイス140の上端面との間には図10に示すように僅かな隙間が残るようになっており、外周面および内周面の拘束に拘らず凸部56の先端部が全周に亘って確実に塑性変形させられ、第2リングダイス142の上端面に対応する面形状に高い精度で成形される。従って、円筒状部品10の両端面14、16の凸部14a、16aの先端面は、何れも図1(f) の面仕上げ工程の圧縮鍛造で高い面精度に精度出しされ、本実施例では中心線に対して直角な平坦面に高い精度で成形される。第2リングダイス142の上端面および押えパンチ134の下端面の凹部は、何れも中心線に対して直角な平坦面にて構成されている。また、このように隙間が存在することから、鍛造加圧力が低くて済むとともに優れた型寿命が得られる。なお、凸部16aの突出寸法も約0.50mmで、凸部56に比較して0.05mm程度圧縮されるが、この圧縮寸法は凸部56、58の全周における突出寸法のばらつきなどを考慮して、全周に亘って圧縮鍛造が行われるように適宜定められる。また、押えパンチ134の下端面の外周側部分(凹部以外の部分)と円筒状部品10との間に隙間が形成されても良い。
【0040】
このように本実施例の円筒状部品10は鍛造加工(図1の(b) 、(c) 、(d) 、(f) )を主体とする加工で製造されるため、材料歩留りが優れているとともに、両端部から外周部にかけてメタルフローFが繋がっているため、特に外周部側において優れた機械的特性が得られる。
【0041】
また、中間品60の段階で圧印鍛造(図1(c) )により両端面に軸方向へ突き出す凸部56、58を形成し、貫通穴12を形成した後に面仕上げ工程(図1(f) )で軸方向から圧縮して、その凸部56、58の先端部を塑性変形させて精度出しするようになっているため、凸部14a、16aの先端面の面精度(軸心に対する直角度や平面度)が高く、その凸部14a、16aの先端面を基準面として後工程の歯切り加工などを高い精度で行うことができる。特に、上記凸部56、58は円柱形状の段階で形成されるため、貫通穴12を空けた後で凸部56、58を形成する場合に比較して、型構造が簡単に構成される。
【0042】
また、押出し鍛造工程(図1(d) )で有底穴90、92を形成した後、その有底穴90、92の底部112を抜きパンチ120で打ち抜いて貫通穴12を形成し(図1(e) )、その後、抜きパンチ120の挿入側と反対側からバニシ工具136を押し込んで貫通穴12の内周面をバニシ仕上げする(図1(f) )ようになっているため、抜きパンチ120で打ち抜く際に形成されたバリがバニシ仕上げによって押し潰され、高い面精度(面粗さ)が得られる。このため、特に切削加工などの仕上げ加工を必要とすることなく、円筒状部品10を歯車粗材としてそのまま用いることが可能である。
【0043】
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。
【図面の簡単な説明】
【図1】本発明方法に従って円筒状部品を製造する際の製造工程の一例を説明する図である。
【図2】図1の(b) のすえ込み鍛造工程で使用される鍛造装置の一例を示す断面図で、ワークが位置決めされた状態である。
【図3】図2の鍛造装置によってワークにすえ込み鍛造が行われた状態である。
【図4】図1の(c) の圧印鍛造工程で使用される鍛造装置の一例を示す断面図で、ワークが位置決めされた状態である。
【図5】図4の鍛造装置によってワークに圧印鍛造が行われた状態である。
【図6】図1の(d) の押出し鍛造工程で使用される鍛造装置の一例を示す断面図で、ワークに押出し鍛造が行われた状態である。
【図7】図1の(e) の打抜き工程で使用されるプレス機械の一例を示す断面図で、ワークに打抜き加工が行われた状態である。
【図8】図1の(f) の面仕上げ工程で使用される鍛造装置の一例を示す断面図で、ワークにバニシ仕上げおよび圧縮鍛造が行われた状態である。
【図9】図1の(e) の打抜き工程で得られた中間品のメタルフローFおよび打抜きに伴って生じるバリを説明する図である。
【図10】図8の鍛造装置の成形時(下死点)に生じる隙間を説明する断面図である。
【図11】鍛造加工を主体とする加工で円筒状部品を製造する際の製造工程の比較例を説明する図である。
【符号の説明】
10:円筒状部品(歯車粗材)
12:貫通穴
14a、16a:凸部
56、58:凸部
60:中間品(第1中間品)
90、92:有底穴
94:中間品(第2中間品)
112:底部
114:中間品(第3中間品)
120:抜きパンチ
[0001]
BACKGROUND OF THE INVENTION
  The present inventionCoarse gearIn particular, the present invention relates to a technique for manufacturing mainly forging.
[0002]
[Prior art]
Manufacturing a helical gear by a process mainly composed of forging is described in, for example, Japanese Patent Application Laid-Open No. 8-206772, but it is necessary to forcibly rotate the punch along the tooth trace of the helical gear. Therefore, there are many movable parts and the structure becomes complicated. Further, since the tooth portion of the helical gear is forcibly formed by forging, the material flow is not sufficiently performed, and there is a possibility that sagging or chipping occurs. In addition, gear forming by hermetic forging is performed, but depending on the tooth shape, high pressure must be applied to fill the material sufficiently, and there is a problem with the durability and life of the mold It was.
[0003]
On the other hand, because of the good material yield that is the merit of forging and the good machining accuracy that is the merit of cutting, the cylindrical material pre-formed by forging is cut to form teeth. Can be considered. In this case, as a method of manufacturing a cylindrical material by forging, for example, as shown in FIG. 11, first, in (a), a rough material 200 having a predetermined length is cut out from a cylindrical round bar, and (b ) Is forged from the axial direction so as to have an outer diameter that is substantially equal to the outer diameter of the target cylindrical part 202 (see (d)). Further, in (c), a bottomed hole 206 having a diameter substantially equal to the through-hole 204 to be formed is formed by extrusion forging, and in (d), the bottom portion 208 of the bottomed hole 206 is punched by a punching punch. A cylindrical part 202 is obtained. 11 is a center line, and the left half is a cross-sectional view.
[0004]
[Problems to be solved by the invention]
However, in such a manufacturing method of the cylindrical part 202, the surface accuracy of the end surface 210 in the axial direction (perpendicularity, flatness, etc. with respect to the center line) cannot be sufficiently obtained, and then the tooth surface is used with the end surface 210 as a reference surface. There has been a problem that processing accuracy is impaired when cutting or the like is performed. That is, in the extrusion forging of (c), when the punch is pushed into the bottomed hole 206, the material of the portion flows in the axial direction, but sufficient surface accuracy is obtained such that it is not necessarily uniform around the center line. It is not possible. After punching of (d), it is conceivable to increase the accuracy of the end surface 210 by compressing in the axial direction while restraining the outer peripheral surface and the inner peripheral surface. Therefore, it is difficult to obtain high surface accuracy.
[0006]
  The present invention has been made against the background of the above circumstances, and the object of the present invention is high squareness and flatness of the axial end surface.Coarse gearIs to be able to manufacture mainly forging.
[0007]
[Means for Solving the Problems]
  In order to achieve this object, the first invention provides:(a) A cylindrical shape having an outer peripheral surface and an inner peripheral surface, and a pair of end surfaces connecting the outer peripheral surface and the inner peripheral surface in the radial direction at both ends in the axial direction, and (b) The tooth of the external tooth or the internal gear is formed by cutting on the outer peripheral surface or the inner peripheral surface in the subsequent process, (c) Of the pair of end facesAt least oneOf the cutting processMade of metal used as reference planeCoarse gearA manufacturing method of(d)A convex portion protruding in the axial direction on the end surface or a portion to be the end surfaceBy forgingForm and thenOf the outer peripheral surface and the inner peripheral surfaceWhile preventing deformation, by compressing from the axial direction so that a gap remains between the end surface portion other than the convex portion and the mold, the accuracy is improved so that the tip surface of the convex portion can be used as the reference surface. It is characterized by doing.
[0008]
  The second invention is(a)A through hole with a circular cross section in the centerAnd having a cylindrical shape including an outer peripheral surface and an inner peripheral surface, and a pair of end surfaces connecting the outer peripheral surface and the inner peripheral surface in the radial direction at both ends in the axial direction, (b) The tooth of the external tooth or the internal gear is formed by cutting on the outer peripheral surface or the inner peripheral surface in the subsequent process, (c) At least one of the pair of end surfaces is used as a reference surface for the cutting process.MetalCoarse gearA method of manufacturing(d)By forging a predetermined rough material, the outer diameter isCoarse gearIs approximately equal to the outer diameter and the axial length isCoarse gearA cylindrical convex portion projecting in the axial direction is formed on a portion of at least one end surface in the axial direction and outside the through hole. A first intermediate product manufacturing step for manufacturing a first intermediate product provided substantially concentrically with the cylindrical center line;(e)By constraining the outer peripheral surface of the first intermediate product and forming a bottomed hole having a diameter substantially equal to the through hole at the center of the first intermediate product by forging, the axial length isCoarse gearA second intermediate product manufacturing step of manufacturing a second intermediate product approximately equal to the axial length of(f)Punching out the bottom of the bottomed hole of the second intermediate product to form the through hole, and a third intermediate product manufacturing step for manufacturing a cylindrical third intermediate product;(g)The third intermediate product is axially arranged so that a gap remains between the end surface portion other than the annular convex portion and the mold while preventing deformation of the outer peripheral surface and the inner peripheral surface of the third intermediate product. The tip of the convex partTo be used as the reference planeAnd a surface finishing step for obtaining accuracy.
[0011]
【The invention's effect】
  Of the first inventionCoarse gearIn the manufacturing method, at least one end face in the axial direction is, When cutting the teeth of internal gear or external gear in the later processWhen used as a reference surface, a convex part protruding in the axial direction on the end surface or the portion that becomes the end surfaceBy forgingForm and thenOf the outer peripheral surface and inner peripheral surfaceWhile preventing deformation, by compressing from the axial direction so that a gap remains between the end surface portion other than the convex portion and the mold, the tip end surface of the convex portion is made accurate so that it can be used as a reference surface. It is like that. That is, since the portion other than the tip surface of the convex portion of the end surface does not necessarily require accuracy, it is possible to provide a gap between the mold and the metal flow receiving tray accompanying compression, and restrain the surface other than the end surface. Regardless of this, the tip surface of the projection can be reliably plastically deformed by compression, and high surface accuracy (such as perpendicularity to the axis and flatness) can be obtained. As a result, it is possible to perform post-processing gear cutting and the like with high accuracy using the tip surface of the convex portion as a reference surface.
[0012]
  The second invention is, RealQualitatively corresponding to one embodiment of the first invention, the tip surface of the convex portion is formed with high surface accuracy. Since the convex portion is formed in a cylindrical shape, the mold structure is easily configured as compared with the case where the convex portion is formed after the through hole is formed. In the second intermediate product manufacturing process, the metal in the bottomed hole portion is caused to flow in the axial direction. Therefore, when the bottomed hole is formed from the end surface side where the convex portion is provided, the end surface shape including the convex portion is deformed. However, since the outer diameter of the first intermediate product is maintained, the end face on the outer peripheral side from the bottomed hole is merely pushed in the axial direction and is not greatly deformed so that the convex portion is not understood. In the surface finishing step, the tip surface of the convex portion is reliably plastically deformed over the entire circumference, and the accuracy is obtained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention relates to a coarse gear such as a helical gear.MaterialSuitable for manufacturingThe
[0016]
  The tip surface of the convex portion provided on the end surface is generally a flat surface perpendicular to the center line, but may be inclined by a predetermined angle from a plane perpendicular to the center line.SuitableIt is set appropriately.
[0017]
  In the second invention, the convex portion is provided before the through hole is formed, and the accuracy of the tip end surface of the convex portion is determined after the through hole is formed. Forging after forming (such as coining))Therefore, while providing a convex part, after that, a convex part may be compressed and the precision of a front end surface may be made | formed. In the first invention, it is not always necessary to provide an annular convex portion.Absent.
[0018]
  Although only one of the end surfaces may be provided as the convex portion, it is desirable to provide the both end surfaces for ease of subsequent handling. The convex part is in the product state (cylindricalCoarse gear), A part of the end face, that is, the inner peripheral side of the annular end face, the outer peripheral side, or an intermediate position thereof. It is desirable to provide it on the side part.Yes.
[0019]
  In the first intermediate product manufacturing process, for example, (a) the outer diameter dimension isCoarse gearA cutting step of cutting a cylindrical coarse material smaller than the outer diameter of the round bar material, and (b) the outer diameter dimension isCoarse gearIs approximately equal to the outer diameter and the axial length isCoarse gearAn upsetting forging step of upsetting and forging the columnar rough material in the axial direction so as to be shorter than the axial length of, and (c) an indentation forging step of forming a convex portion on the end face by an indentation process or the like thereafter. It is desirable to have. That is, the outer diameter dimension isCoarse gearIs approximately equal to the outer diameter and the axial length isCoarse gearA cylindrical rough material having a columnar shape shorter than the axial length of the material is cut out from a round bar material, and a convex portion is formed on the end surface of the cylindrical rough material by forging (such as coining). However, it is not preferable because there is distortion on the cut surface and a convex portion is provided on the cut surface from which the metal structure (metal flow) is cut. A round bar is generally used for forging because the metal flow is generally aligned in the axial direction.
[0020]
  The bottomed hole provided in the first intermediate product in the second intermediate product manufacturing process is preferably provided from both end surfaces of the first intermediate product, but it is not necessarily one of the end surfaces (the end surface provided with the convex portion). It is also possible to form a bottomed hole only fromYes.
[0021]
  When compressing the tip of the convex part by compression forging etc. to obtain accuracy,Coarse gearIn order to prevent deformation of the outer peripheral surface and inner peripheral surface, it is desirable to constrain with a restraining die or the like. However, when the amount of compressive deformation of the convex portion is small, the convex formation position is intermediate between the inner and outer peripheral surfaces of the end surface. If the outer peripheral surface or the inner peripheral surface is not likely to be deformed by plastic deformation due to compression of the convex portion, such as in the case of a position, it is not always necessary to constrain those surfaces. In the first invention and the second invention, “while preventing deformation” means that when deformation is caused by compression forging, the deformation is restrained by a restraining die or the like, but when there is no fear of deformation during compression forging. This means that it is not always necessary to provide special restraining means, and it is only necessary to provide restraining means as necessary so as not to deform.
[0023]
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating a procedure for manufacturing a cylindrical part 10 according to the method of the present invention. The cylindrical part 10 is a metal cylindrical part having a through-hole 12 having a circular cross section at the center, and annular ends projecting in the axial direction toward the inner peripheral side on both end faces 14 and 16 respectively. Shaped convex portions 14a and 16a are provided, and tip surfaces of the convex portions 14a and 16a are flat surfaces perpendicular to the center line. This cylindrical part 10 is a coarse material of an external gear such as a helical gear, and teeth are formed by cutting on the outer peripheral side of the convex portions 14a and 16a in the subsequent process. 14a or 16a is used as a reference plane. All the dashed-dotted lines in each of the drawings (a) to (f) in FIG. 1 represent the center line, and the left half of the center line is a cross-sectional view.
[0024]
FIG. 1A shows a cutting step, in which a round bar having an outer diameter smaller than the outer diameter of the target cylindrical part 10 is cut to a predetermined length to prepare a cylindrical coarse member 20. The round bar material is obtained by drawing or the like, and the metal flow is aligned in the axial direction, and the columnar coarse material 20 is the same, but strain at the time of cutting remains on both end faces 22 and 24. . In the present embodiment, cutting is performed by press shearing, and there is distortion due to shear.
[0025]
FIG. 1B shows a swaging forging step, in which the columnar coarse material 20 is swept in the axial direction, so that the outer diameter is substantially equal to the outer diameter of the cylindrical component 10 and the axial length is the same. A substantially cylindrical intermediate product 30 shorter than the axial length of the cylindrical part 10 is manufactured. The forging device 32 shown in FIGS. 2 and 3 is an example of a forging device that performs upset forging shown in FIG. 1B. FIG. 2 shows that the columnar coarse material 20 is substantially vertical on the lower die 34 by a conveying device (not shown). Is positioned with the presser punch 36. The presser punch 36 is urged downward by a spring 38. The cylindrical coarse member 20 is positioned and held on the lower die 34 according to the urging force of the spring 38, while the upper die 40 is lowered. When the sliding member 44 reaches the upper moving end by being relatively pushed into the accommodation hole 42, the lower end surface of the presser punch 36 is substantially matched with the forming surface (lower end surface) of the forming punch 46. Then, when the upper die 40 is further lowered in this state, the cylindrical coarse material 20 is disposed on the presser punch 36, the forming punch 46, the lower die 34, and the lower die 34 as shown in FIG. In the substantially sealed space surrounded by the ring die 48, the intermediate product 30 is compressed in the axial direction. The inner diameter of the ring die 48 is substantially equal to the outer diameter of the cylindrical part 10. A slight gap exists between the molding punch 46 and the ring die 48 at the bottom dead center, and a knockout pin 50 is disposed at the center of the lower die 34.
[0026]
By performing upset forging in this manner, distortion generated during cutting is corrected, and the weight balance around the axis is improved. In addition, the lower surface of the inner wall surface of the ring die 48 is provided with an inclined surface (tapered surface) so that the diameter dimension gradually decreases, and the outer peripheral surface 54 on the one end 52 side of the intermediate product 30 is an inclined surface. The taper surface has a slightly smaller diameter as the end portion 52 is approached.
[0027]
FIG. 1C shows a coining forging step, in which both end surfaces of the intermediate product 30 are subjected to coining, so that a part of the portion outside the through hole 12, specifically the convex portion 14 a. 16a, an intermediate product 60 is produced in which annular-shaped convex portions 56, 58 projecting in the axial direction are provided substantially concentrically with the center line on the inner peripheral side portion that continues to the through hole 12 so as to correspond to 16a. . The convex portions 56 and 58 have substantially the same shape with the same width dimension and protruding dimension, and the protruding dimension is about 0.55 mm. The forging device 62 shown in FIGS. 4 and 5 is an example of a forging device that performs the coining forging shown in FIG. 1 (c). FIG. 4 shows that the intermediate product 30 is disposed in the die 64 by a conveying device (not shown), FIG. 5 shows a state in which the forging is performed by the die 64 and the punch 68 and the intermediate product 60 having the convex portions 56 and 58 is formed. The intermediate product 30 is arranged in an upside down posture so that the end 52 side, that is, the side on which the tapered outer peripheral surface 54 is formed, is upward, and when the intermediate product 30 is pressed by the punch 68 as shown in FIG. The coarse material is prevented from overflowing from between the opening of the die 64 and the punch 68.
[0028]
The presser punch 66 is urged downward by a spring 70, and positions and fixes the intermediate product 30 according to the urging force of the spring 70, while the upper die 72 is lowered and is relatively moved into the accommodation hole 74. When the sliding member 76 reaches the upper moving end, the lower end surface of the presser punch 66 is made substantially coincident with the lower end surface of the first ring punch 78. The presser punch 66 has an outer diameter dimension substantially equal to the inner diameter of the through-hole 12, that is, the inner diameter of the convex part 56, and the inner diameter dimension of the first ring punch 78 is substantially equal to the outer diameter dimension of the convex part 56. The second ring punch 80 is disposed so that the lower end surface is recessed by the protruding dimension of the convex portion 56. The presser punch 66, the first ring punch 78, and the second ring punch 80 constitute a punch 68.
[0029]
The die 64 includes a knockout pin 82, a first ring die 84, a second ring die 86, and an outer peripheral surface constraining die 88. The knockout pin 82 has an outer diameter dimension substantially equal to the inner diameter of the through hole 12, that is, the inner diameter of the convex portion 58, and the inner diameter dimension of the first ring die 84 is substantially equal to the outer diameter dimension of the convex portion 58. The second ring die 86 is disposed such that the upper end surface is recessed by the protruding dimension of the convex portion 58. The outer peripheral surface constraining die 88 is disposed on the first ring die 84, and the inner diameter thereof is substantially equal to the outer diameter of the cylindrical component 10, that is, the outer diameter of the intermediate product 30, and the intermediate product. Indentation forging is performed in a state in which 30 is positioned concentrically and the outer peripheral surface is constrained.
[0030]
  In this example, the cutting process shown in FIG. 1 (a), the upset forging process shown in FIG. 1 (b), and the coining forging process shown in FIG.MysteriousThe intermediate product 60 corresponds to a first intermediate product manufacturing process, and the intermediate product 60 corresponds to a first intermediate product.
[0031]
  FIG. 1 (d) shows an extrusion forging process, in which the outer peripheral surface 60f of the intermediate product 60 is constrained, and the center of both end surfaces, that is, the inner portions of the convex portions 56 and 58 have a bottomed diameter of the same diameter as the through hole 12. By forming the holes 90 and 92, an intermediate product 94 having an axial length substantially equal to the axial length of the cylindrical part 10 is manufactured. A forging device 96 in FIG. 6 is an example of a forging device that performs the extrusion forging in FIG. 1 (d), and an intermediate product 60 that has bottomed holes 90, 92 that is subjected to extrusion forging by the punch 98 and the die 100 to the intermediate product 60. 94. The extrusion forging process in Fig. 1 (d)MysteriousSecond intermediate product manufacturerAboutThe intermediate product 94 corresponds to a second intermediate product.
[0032]
The punch 98 includes a center punch 102 having an outer diameter substantially equal to that of the through hole 12 and a ring punch 104 disposed on the outer peripheral side thereof. A recess corresponding to the convex portion 56 is formed on the inner peripheral side of the ring punch 104. Is provided so that the convex portion 56 of the intermediate product 60 is maintained in a substantially unchanged shape. The center punch 102 protrudes larger than the protruding dimension of the convex portion 56 in the intermediate product 60, thereby forming a bottomed hole 90. The die 100 includes a knockout pin 106 having an outer diameter equal to that of the through hole 12, a ring die 108 having a width dimension equal to the width dimension of the convex portion 58, and an outer diameter of the cylindrical part 10. The outer peripheral surface constraining die 110 is equal in size to the outer diameter of the intermediate product 60. The knockout pin 106 protrudes upward from the upper end surface of the ring die 108 sufficiently larger than the protruding dimension of the convex portion 58, and the punch 98 is lowered and the intermediate product 60 is pressed against the knockout pin 106. The knockout pin 106 bites into the intermediate product 60 and the portion of the coarse material is caused to flow into the annular space between the knockout pin 106 and the outer peripheral surface restraining die 110, thereby forming a bottomed hole 92 deeper than the bottomed hole 90. In addition, an intermediate product 94 having an axial length substantially equal to the axial length of the cylindrical part 10 is obtained. Although the rough material of the bottomed hole 90 portion is caused to flow downward in the axial direction, the outer diameter size of the intermediate product 60 is maintained by the outer peripheral surface constraining die 110, and therefore the convex portion 58 and the end surface outside it are simply shafts. Only by being pushed downward in the direction, the shape of the convex portion 58 when it is the intermediate product 60 is maintained as it is. Further, the intermediate product 60 is positioned and held concentrically by being inserted into the outer peripheral surface restraining die 110. A slight gap remains between the lower end portion of the molded intermediate product 94, strictly speaking, the convex portion 58 and the upper end surface of the ring die 108.
[0033]
  FIG. 1 (e) shows a punching process, in which a punching punch is inserted into one bottomed hole 92 of the intermediate product 94, thereby punching out the bottom 112 existing between the bottomed holes 90 and 92, and the through hole. 12 is formed, and a cylindrical intermediate product 114 is manufactured. The press machine 116 in FIG. 7 is an example of a press machine that performs the punching process (piercing process) in FIG. 1 (e), and the bottom 112 of the intermediate product 94 is punched out by a cylindrical presser punch 118 and a cylindrical punching punch 120. The intermediate product 114 having the through hole 12 is formed. The punching process in Fig. 1 (e)MysteriousThird intermediate product manufacturerAboutThe intermediate product 114 corresponds to a third intermediate product.
[0034]
The lower end surface of the presser punch 118 has an outer diameter that is the same as or slightly smaller than the outer diameter of the intermediate product 94, and an inner diameter that is the same as or slightly larger than the inner diameter of the convex portion 56, and corresponds to the convex portion 56. A concave portion is provided to maintain the shape of the convex portion 56. The upper end surface of the punching punch 120 is slightly smaller in outer diameter than the inner diameter of the bottomed hole 92, and a shearing blade is provided on the outer peripheral edge thereof, and the intermediate product 94 is pressed downward by the presser punch 118. Accordingly, the punching punch 120 is relatively inserted into the bottomed hole 92, and the bottom 112 is punched upward by a shearing blade. A positioning die 122 having an inner diameter approximately equal to the outer diameter of the intermediate product 94 is disposed concentrically around the punching punch 120 so that the intermediate product 94 is positioned concentrically. In addition, the punched bottom portion 112 is pushed upward in the cylinder of the presser punch 118 as the new bottom portion 112 is punched upward as the punching process is repeated, and discharged from the discharge hole 124 to the outside. Is done.
[0035]
Here, on the inner peripheral surface of the through hole 12 of the intermediate product 114, a minute step 126 remains in the portion where the bottom 112 is present. FIG. 9A is a diagram showing the metal flow F in a cross section of the intermediate product 114 in a simplified manner. The metal flow F is compressed at the bottom 112 portion and is broken by punching the bottom 112 by the punching process. At the same time, the broken portion of the metal flow F remains in the through hole 12 as a burr and forms a step 126. FIG. 9B is an enlarged view of the vicinity of the step (burr) 126. When the bottom 112 is punched upward by the punching punch 120, the metal flow F is shredded and remains in an upwardly inclined state. .
[0036]
  FIG. 1 (f) is a surface finishing step, in which a burnishing tool is pushed into the through hole 12 from the side opposite to the insertion side of the punching punch 120, and the inner peripheral surface of the through hole 12 is burnished. The intermediate product 114 is compressed from the axial direction while restraining the outer peripheral surface and the inner peripheral surface of the product 114, and the tip surfaces of the convex portions 56 and 58 are brought into a predetermined shape. The forging device 130 of FIG. 8 is an example of a forging device that performs the surface finishing of FIG. 1 (f), and an intermediate product 114 that is disposed upside down in the die 132 so that the convex portion 56 side is directed downward, By being pressed downward by the cylindrical presser punch 134, the columnar burnishing tool 136 is pushed into the through hole 12 from the convex portion 56 side, and the inner peripheral surface of the through hole 12 is burnished. By compressing from the axial direction while restraining the outer peripheral surface with the outer peripheral surface restraining die 138 while constraining the inner peripheral surface with the burnishing tool 136, the accuracy of the tip surfaces of the convex portions 56 and 58 on both end surfaces is increased once. The target cylindrical part 10 is obtained in the pressing process. The surface finishing process in Fig. 1 (f)MysteriousIt is a surface finishing process.
[0037]
The lower end surface of the press punch 134 has a depth that is substantially the same as the outer diameter of the intermediate product 114, the inner diameter is substantially the same as the inner diameter of the bottomed hole 12, and is slightly smaller than the protruding dimension of the convex portion 58. The concave portion is provided on the inner peripheral side corresponding to the convex portion 58, and the tip of the convex portion 58 is plastically deformed by pressing the intermediate product 114 downward and compressing, and the lower end surface of the presser punch 134. The convex portion 14a having a shape corresponding to is forged. The projecting dimension of the convex portion 14 a is about 0.50 mm, and is compressed by about 0.05 mm compared to the convex portion 58. The burnishing tool 136 has an outer diameter dimension substantially equal to the inner diameter of the through hole 12 and burnishes the inner peripheral surface by being pushed into the through hole 12, and from the axial direction while being pushed into the through hole 12. When compression forging is performed, the inner peripheral surface of the intermediate product 114 is restrained. Around the burnishing tool 136, a first ring die 140 having an inner diameter dimension substantially equal to the outer diameter dimension of the convex portion 56 is disposed, and the upper end surface of the first ring die 140 is a projection dimension of the convex portion 56 therebetween. The second ring die 142 is disposed so as to be lower than the first ring die 140 by a smaller predetermined dimension. When the intermediate product 114 is pressed downward by the presser punch 134, the tip of the convex portion 56 is second. The convex portion 16 a having a tip surface corresponding to the tip surface shape of the second ring die 142 is forged by being brought into contact with the ring die 142 and plastically deformed. The outer peripheral surface restraining die 138 is disposed on the first ring die 140, and the inner diameter thereof is equal to the outer diameter of the cylindrical part 10, that is, the outer diameter of the intermediate article 114. And forging are performed in a state where the outer peripheral surface is constrained.
[0038]
Here, the burnishing tool 136 is pushed into the through-hole 12 from the upper side to the lower side in FIG. 9B on the side opposite to the insertion side of the punching punch 120, that is, the end side having the convex portion 56. Therefore, the burrs are pressed back against the fracture portion of the inner peripheral surface, that is, the cut portion of the bottom portion 112 broken by the punching punch 120, and the step 126 is satisfactorily eliminated and high surface accuracy (surface roughness) is obtained. can get. That is, when the burnishing tool 136 is pushed in from the same direction as the punching punch 120 (the lower side in FIG. 9B), the burr is further extended upward, and the through hole 12 (strictly, the bottomed hole 90 portion) Just by being pressed against the inner peripheral surface, the portion is built up, and high surface accuracy is not necessarily obtained. Since the burr is formed by cutting the metal flow F by the punching punch 120, the burr is completely removed even if the burnishing tool 136 is moved in the same direction as the pulling direction, that is, the insertion direction of the punching punch 120. No, it is crimped to the inner peripheral surface.
[0039]
On the other hand, in a state where the intermediate product 114 is compression-forged between the press punch 134 and the second ring die 142, that is, in a state where it is formed into the cylindrical part 10, the cylindrical coarse material 10 and the first ring die 140 As shown in FIG. 10, a slight gap remains between the upper end surface and the tip of the convex portion 56 is reliably plastic over the entire circumference regardless of the restraint of the outer peripheral surface and the inner peripheral surface. The second ring die 142 is deformed and formed into a surface shape corresponding to the upper end surface of the second ring die 142 with high accuracy. Accordingly, the tip surfaces of the convex portions 14a and 16a of the both end faces 14 and 16 of the cylindrical part 10 are both made high with high surface accuracy by compression forging in the surface finishing process of FIG. 1 (f). Molded with high accuracy on a flat surface perpendicular to the center line. The recesses on the upper end surface of the second ring die 142 and the lower end surface of the presser punch 134 are both flat surfaces perpendicular to the center line. In addition, since the gap exists in this way, the forging pressure can be reduced and an excellent die life can be obtained. The projecting dimension of the convex part 16a is also about 0.50 mm, which is compressed by about 0.05 mm as compared with the convex part 56. This compressed dimension is caused by variations in the projecting dimension of the entire circumference of the convex parts 56 and 58, etc. Considering this, it is determined as appropriate so that compression forging is performed over the entire circumference. In addition, a gap may be formed between the outer peripheral side portion (the portion other than the concave portion) of the lower end surface of the presser punch 134 and the cylindrical component 10.
[0040]
As described above, the cylindrical part 10 of this embodiment is manufactured by a process mainly composed of forging processes ((b), (c), (d), (f) in FIG. 1), and therefore, the material yield is excellent. In addition, since the metal flow F is connected from both ends to the outer peripheral portion, excellent mechanical characteristics can be obtained particularly on the outer peripheral portion side.
[0041]
Further, at the stage of the intermediate product 60, convex portions 56 and 58 protruding in the axial direction are formed on both end faces by coining forging (FIG. 1 (c)), and the surface finishing step (FIG. 1 (f)) is performed after the through holes 12 are formed. ) In the axial direction and the tip portions of the convex portions 56 and 58 are plastically deformed to increase the accuracy, so that the surface accuracy of the tip surfaces of the convex portions 14a and 16a (the perpendicularity to the axis) The flatness of the projections 14a and 16a can be used as a reference surface, and subsequent gear cutting or the like can be performed with high accuracy. In particular, since the convex portions 56 and 58 are formed in a cylindrical shape, the mold structure is easily configured as compared with the case where the convex portions 56 and 58 are formed after the through hole 12 is formed.
[0042]
Further, after forming the bottomed holes 90 and 92 in the extrusion forging process (FIG. 1 (d)), the bottoms 112 of the bottomed holes 90 and 92 are punched out by the punch 120 to form the through holes 12 (FIG. 1). (e)) After that, the burnishing tool 136 is pushed in from the side opposite to the insertion side of the punching punch 120 to burnish the inner peripheral surface of the through hole 12 (FIG. 1 (f)). The burrs formed when punching at 120 are crushed by burnishing, and high surface accuracy (surface roughness) is obtained. For this reason, it is possible to use the cylindrical part 10 as it is as a gear coarse material without requiring a finishing process such as a cutting process.
[0043]
As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention implements in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a manufacturing process when manufacturing a cylindrical part according to the method of the present invention.
FIG. 2 is a cross-sectional view showing an example of a forging device used in the upset forging step of FIG. 1 (b), in which a workpiece is positioned.
FIG. 3 is a state in which upsetting forging has been performed on a workpiece by the forging device of FIG. 2;
FIG. 4 is a cross-sectional view showing an example of a forging device used in the coining forging step of FIG. 1 (c), in which a workpiece is positioned.
FIG. 5 is a state in which coin forging has been performed on a workpiece by the forging device of FIG. 4;
6 is a cross-sectional view showing an example of a forging device used in the extrusion forging step of FIG. 1 (d), and shows a state in which extrusion forging has been performed on a workpiece.
7 is a cross-sectional view showing an example of a press machine used in the punching process of FIG. 1 (e), in which a workpiece has been punched.
FIG. 8 is a cross-sectional view showing an example of a forging device used in the surface finishing process of FIG. 1 (f), in which a workpiece is burnished and compression forged.
FIG. 9 is a view for explaining a metal flow F of an intermediate product obtained in the punching process of FIG. 1 (e) and burrs generated by the punching.
FIG. 10 is a cross-sectional view for explaining a gap generated during molding (bottom dead center) of the forging device of FIG.
FIG. 11 is a diagram for explaining a comparative example of a manufacturing process when manufacturing a cylindrical part by processing mainly including forging.
[Explanation of symbols]
  10: Cylindrical parts(Coarse gear)
  12: Through hole
  14a, 16a: convex part
  56, 58: convex portion
  60: Intermediate product (first intermediate product)
  90, 92: Bottomed hole
  94: Intermediate product (second intermediate product)
  112: bottom
  114: Intermediate product (third intermediate product)
  120: punching punch

Claims (2)

外周面および内周面と、軸方向の両端部においてそれ等の外周面および内周面を径方向に連絡する一対の端面とを備えた円筒状を成しているとともに、後工程で該外周面または内周面に外歯または内歯の歯車の歯が切削加工により形成されるもので、前記一対の端面の少なくとも一方が該切削加工の基準面として使用される金属製の歯車粗材の製造方法であって、
前記端面または該端面となる部分に前記軸方向へ突き出す凸部を鍛造加工により形成し、その後、前記外周面および内周面の変形を防止しつつ、該凸部以外の端面部分と成形型との間に隙間が残るように該軸方向から圧縮することにより、該凸部の先端面を前記基準面として使用できるように精度出しする
ことを特徴とする歯車粗材の製造方法。
The outer peripheral surface and the inner peripheral surface have a cylindrical shape with a pair of end surfaces that connect the outer peripheral surface and the inner peripheral surface in the radial direction at both ends in the axial direction. The tooth of the external gear or the internal gear is formed by cutting on the surface or the inner peripheral surface, and at least one of the pair of end surfaces is a metal gear coarse material used as a reference surface for the cutting A manufacturing method comprising:
A convex portion protruding in the axial direction is formed on the end surface or a portion to be the end surface by forging , and thereafter, an end surface portion other than the convex portion and a molding die are prevented while preventing deformation of the outer peripheral surface and the inner peripheral surface. A method for producing a coarse gear material , comprising: compressing from the axial direction so as to leave a gap between the two, so that the tip end surface of the convex portion can be used as the reference surface.
中心部に断面円形の貫通穴を有し、外周面および内周面と、軸方向の両端部においてそれ等の外周面および内周面を径方向に連絡する一対の端面とを備えた円筒状を成しているとともに、後工程で該外周面または内周面に外歯または内歯の歯車の歯が切削加工により形成されるもので、前記一対の端面の少なくとも一方が該切削加工の基準面として使用される金属製の歯車粗材を製造する方法であって、
所定の粗材に鍛造加工を施すことにより、外径寸法が前記歯車粗材の外径と略等しく且つ軸方向長さが該歯車粗材の軸方向長さより短い円柱形状を成しているとともに、軸方向の少なくとも一方の端面であって前記貫通穴より外側になる部分の一部に、軸方向へ突き出す円環形状の凸部が該円柱形状の中心線と略同心に設けられている第1中間品を製造する第1中間品製造工程と、
該第1中間品の外周面を拘束しつつ該第1中間品の中心部に前記貫通穴と略等しい径寸法の有底穴を鍛造加工によって形成することにより、軸方向長さが前記歯車粗材の軸方向長さと略等しい第2中間品を製造する第2中間品製造工程と、
該第2中間品の前記有底穴の底部を打ち抜いて前記貫通穴を形成し、円筒状の第3中間品を製造する第3中間品製造工程と、
該第3中間品の外周面および内周面の変形を防止しつつ、前記円環形状の凸部以外の端面部分と成形型との間に隙間が残るように該第3中間品を軸方向から圧縮することにより、該凸部の先端面を前記基準面として使用できるように精度出しする面仕上げ工程と
を有することを特徴とする歯車粗材の製造方法。
Cylindrical shape having a through-hole with a circular cross-section in the center, and an outer peripheral surface and an inner peripheral surface, and a pair of end surfaces that connect the outer peripheral surface and the inner peripheral surface in the radial direction at both ends in the axial direction And at least one of the pair of end faces is a reference for the cutting process, in which a tooth of an external tooth or an internal gear is formed by cutting on the outer peripheral surface or the inner peripheral surface in a later step. A method for producing a metal gear coarse used as a surface ,
By performing forging to a predetermined coarse material, with substantially equal and the axial length outer diameter to the outer diameter of the gear coarse material forms a short cylindrical shape than the axial length of the gear coarse material A ring-shaped convex portion projecting in the axial direction is provided substantially concentrically with the cylindrical center line on a part of at least one end face in the axial direction that is outside the through hole. A first intermediate product manufacturing process for manufacturing one intermediate product;
By constraining the outer peripheral surface of the first intermediate product, a bottomed hole having a diameter substantially equal to the through hole is formed by forging at the center of the first intermediate product, so that the axial length is reduced by the gear coarseness. A second intermediate product manufacturing step for manufacturing a second intermediate product approximately equal to the axial length of the material ;
A third intermediate product manufacturing step of manufacturing the cylindrical third intermediate product by punching out the bottom of the bottomed hole of the second intermediate product to form the through hole;
The third intermediate product is axially arranged so that a gap remains between the end surface portion other than the annular convex portion and the mold while preventing deformation of the outer peripheral surface and the inner peripheral surface of the third intermediate product. by compressing the method for manufacturing a gear coarse material characterized by having a surface finishing step of issuing accuracy to use the distal end surface of the convex portion as the reference plane.
JP32199298A 1998-11-12 1998-11-12 Manufacturing method of coarse gear Expired - Fee Related JP3835941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32199298A JP3835941B2 (en) 1998-11-12 1998-11-12 Manufacturing method of coarse gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32199298A JP3835941B2 (en) 1998-11-12 1998-11-12 Manufacturing method of coarse gear

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005112233A Division JP4217691B2 (en) 2005-04-08 2005-04-08 Manufacturing method for cylindrical parts

Publications (2)

Publication Number Publication Date
JP2000140976A JP2000140976A (en) 2000-05-23
JP3835941B2 true JP3835941B2 (en) 2006-10-18

Family

ID=18138725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32199298A Expired - Fee Related JP3835941B2 (en) 1998-11-12 1998-11-12 Manufacturing method of coarse gear

Country Status (1)

Country Link
JP (1) JP3835941B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877244B1 (en) * 2004-10-29 2008-05-30 Snecma Moteurs Sa METHOD OF REFOULING FOR CORROSION OF A METAL LOPIN PROCESS FOR PREPARING A LOPIN FOR A FORGING OPERATION ACCORDING TO THE METHOD AND DEVICE FOR IMPLEMENTING THE METHOD
CN102069423B (en) * 2010-12-12 2012-09-26 湖北虎牌链条制造有限责任公司 Large-sized nonstandard sprocket dentiform part machining process
US9120143B2 (en) * 2013-01-15 2015-09-01 National Machinery Llc Cut-off end surface improvement
JP7158681B2 (en) * 2018-10-19 2022-10-24 新光電気工業株式会社 Eyelet manufacturing method
WO2020218377A1 (en) * 2019-04-23 2020-10-29 国立大学法人東海国立大学機構 Precision forging method, precision forging device, and precision forging product
CN114932185B (en) * 2022-05-06 2023-03-10 丽水市荣威纳轴承有限公司 Hollow ball cold heading process

Also Published As

Publication number Publication date
JP2000140976A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
KR101533518B1 (en) Method for producing tooth profile component, and device for producing tooth profile component
CN108687281B (en) Method for manufacturing cup-shaped structure
JPWO2007077880A1 (en) Manufacturing method of shaft member to which sintered parts are joined, and camshaft for internal combustion engine
KR20060116099A (en) Universal joint for vehicle and manufacturing method thereof
JP4869968B2 (en) Closed forging die and forging method
JP2004058148A (en) Method for manufacturing bushing
JP3835941B2 (en) Manufacturing method of coarse gear
JP4217691B2 (en) Manufacturing method for cylindrical parts
JP2920132B1 (en) Method for manufacturing stepped annular member and inner and outer ring members
JP2009285688A (en) Method for manufacturing hollow toothed part
JP2003117631A (en) Method of manufacturing forging with gear part, device used therefor, and forging with gear part obtained therewith
EP1716940A1 (en) Gear structure and method of preparing such a gear structure
JPH05104191A (en) Cold forging method for shaft body with flange
JP3666381B2 (en) Manufacturing method of tooth profile forging member
JP3128208B2 (en) Manufacturing method of ring-shaped parts
JP3550492B2 (en) Pressing punch for forging
JP2006136915A (en) Method for working bolt base-stock, bolt base-stock and die for working bolt base-stock
JP3642509B2 (en) Tooth profile sizing mold
JP3422941B2 (en) Manufacturing method of ring-shaped parts
JP4764951B1 (en) Method for manufacturing hose fittings
EP3960328A1 (en) Precision forging method, precision forging device, and precision forging product
JP3513818B2 (en) Manufacturing method of nut with washer
JP2825798B2 (en) Gear forging / forging method and die set
JP2775684B2 (en) Press forming method
JP2001121238A (en) Method for producing outer diameter side spherical shaped ring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees