JPH1140861A - Manufacture of cobalt antimonide thermoelectric material - Google Patents

Manufacture of cobalt antimonide thermoelectric material

Info

Publication number
JPH1140861A
JPH1140861A JP9195853A JP19585397A JPH1140861A JP H1140861 A JPH1140861 A JP H1140861A JP 9195853 A JP9195853 A JP 9195853A JP 19585397 A JP19585397 A JP 19585397A JP H1140861 A JPH1140861 A JP H1140861A
Authority
JP
Japan
Prior art keywords
cosb
temperature
thermoelectric
solidified
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9195853A
Other languages
Japanese (ja)
Inventor
Hamazou Nakagawa
浜三 中川
Akio Kasama
昭夫 笠間
Hisao Tanaka
久男 田中
Motomu Taniguchi
求 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGUCHI PREF GOV SANGYO GIJU
YAMAGUCHI PREF GOV SANGYO GIJUTSU KAIHATSU KIKO
Original Assignee
YAMAGUCHI PREF GOV SANGYO GIJU
YAMAGUCHI PREF GOV SANGYO GIJUTSU KAIHATSU KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGUCHI PREF GOV SANGYO GIJU, YAMAGUCHI PREF GOV SANGYO GIJUTSU KAIHATSU KIKO filed Critical YAMAGUCHI PREF GOV SANGYO GIJU
Priority to JP9195853A priority Critical patent/JPH1140861A/en
Publication of JPH1140861A publication Critical patent/JPH1140861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a grinding process, where impurities are liable to be mixed and to realize a manufacturing method where processes are simple and suitable for mass production by a method, wherein a material is melted into a solution of prescribed composition, the solution is solidified in a mold, and the solidified body is subjected to a thermal treatment where it is kept to stand for a prescribed time at a specific temperature. SOLUTION: A mixture of cobalt(Co) of purity 99.9985% and antimony(Sb) of purity 99.999% compounded at a mol ratio 1:3 is introduced into an alumina crucible, heated through high-frequency heating, and raised up to a temperature of 1100 deg.C into an alloy melt. The alloy melt is kept at a temperature of 1100 deg.C for five minutes, then poured into a copper mold kept at a room temperature in an argon atmosphere, and solidified into about a 150×200×10 mm<3> alloy cast piece. Furthermore, the alloy cast piece is subjected to a thermal treatment which is carried out in an argon atmosphere of atmospheric pressure at temperatures of 400 to 850 deg.C, especially at a temperature of 650 deg.C for fifty hours, whereby all the cast piece is turned into a CoSb3 body of single phase. Through this setup, manufacturing cost can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電発電や熱電冷
却に用いることができる熱電材料の製造方法に関し、と
くにコバルトアンチモナイド(CoSb3)系化合物か
らなる熱電材料の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoelectric material which can be used for thermoelectric power generation and thermoelectric cooling, and more particularly to a method for producing a thermoelectric material comprising a cobalt antimonide (CoSb 3 ) -based compound. .

【0002】[0002]

【従来の技術】熱電材料は、ゼーベック効果により熱を
直接電気に変換する熱電発電、及びペルチェ効果による
熱電冷却に用いることができる材料であって、広汎な利
用が期待されることから、近年その研究が活溌に行われ
ている。
2. Description of the Related Art Thermoelectric materials are materials that can be used for thermoelectric generation in which heat is directly converted into electricity by the Seebeck effect and thermoelectric cooling by the Peltier effect. Research is being actively conducted.

【0003】従来から熱電材料として、ビスマス・テル
ル系、鉛テルル系、ゲルマニウム・シリコン系、鉄シリ
コン系等の材料が用いられてきたが、熱電変換効率の点
でさらなる改善が望まれている。そのため、新しい熱電
材料として、近年コバルトアンチモナイド(以下、Co
Sb3と記す)系化合物が注目されている。
Conventionally, materials such as bismuth / tellurium, lead tellurium, germanium / silicon, and iron / silicon have been used as thermoelectric materials, but further improvement is desired in terms of thermoelectric conversion efficiency. Therefore, as a new thermoelectric material, cobalt antimonide (hereinafter referred to as Co
Sb 3 ) -based compounds are attracting attention.

【0004】これは、スクッテルダイト型結晶構造を有
するCoSb3、又はその構成元素Co又は/及びSb
の一部を他の元素で置換したもので、例えば特開平8−
186294号公報には、Coの一部(組成比Xで0.
001〜0.2)をPd、Rh、Ruの一種以上で置換
した置換型化合物Co1-xxSb3からなる熱電材料が
開示されている。また、Coの一部をPd及びPtで置
換した熱電材料に関する報告もある(第44回応用物理
学関係連合講演会講演予稿集No.1,p.82,19
97)。
This is because CoSb 3 having a skutterudite type crystal structure, or its constituent element Co and / or Sb
Is partially replaced by another element.
No. 186,294 discloses that a part of Co (composition ratio X is 0.1%).
(001-0.2) is substituted by one or more of Pd, Rh, and Ru, and a thermoelectric material comprising a substituted compound Co 1-x M x Sb 3 is disclosed. There is also a report on a thermoelectric material in which a part of Co is replaced with Pd and Pt (Preprints of the 44th Federation of Applied Physics-related lectures No. 1, p. 82, 19).
97).

【0005】このような熱電材料を製造する方法とし
て、従来は所定の組成に配合した元素粉末を混合・粉砕
した後、加圧焼結して焼結体を製造するいわゆる粉末冶
金法が一般的に用いられてきた。粉末冶金法には、プリ
メルトして得た所定の組成のインゴットを粉砕して粉末
とし、これを加圧焼結する場合もある。また、チョクラ
ルスキー法に代表されるような、所定組成の原料融液か
ら一方向凝固法によって単結晶を育成する、単結晶育成
法も採用されている。
Conventionally, as a method for producing such a thermoelectric material, a so-called powder metallurgy method in which element powders having a predetermined composition are mixed and pulverized, and then sintered under pressure to produce a sintered body is generally used. Has been used for In the powder metallurgy method, there is a case where an ingot of a predetermined composition obtained by pre-melting is pulverized into a powder, and the powder is sintered under pressure. Further, a single crystal growing method of growing a single crystal from a raw material melt having a predetermined composition by a unidirectional solidification method, such as the Czochralski method, is also employed.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の粉末冶
金法では、粉砕・混合工程で混入する不純物が多く、こ
れが熱電特性を低下させることが少くない。とくにCo
Sb3系熱電材料においては、熱電性能に及ぼす微量不
純物の影響が大きいため好ましくない。また、粉末を取
り扱うため、プロセスが複雑になるという問題がある。
However, in the powder metallurgy method described above, there are many impurities mixed in the pulverizing and mixing steps, and these impurities rarely lower the thermoelectric properties. Especially Co
Sb 3 -based thermoelectric materials are not preferred because the effect of trace impurities on thermoelectric performance is large. In addition, there is a problem that the process is complicated because powder is handled.

【0007】一方、単結晶育成法では、単結晶の成長速
度に限界があり生産性が上げられないという問題があ
る。とくにCoSb3系熱電材料においては、Sbが過
剰なCo−Sb融液からしか単結晶を育成できないた
め、製品の収率が低いという問題がある。さらに、固液
界面の移動速度を大きくするとSb相が混入するため、
結晶の成長速度すなわち生産性を上げられないことも問
題である。
On the other hand, the single crystal growing method has a problem that the growth rate of the single crystal is limited and the productivity cannot be increased. In particular, the CoSb 3 -based thermoelectric material has a problem that the product yield is low because Sb can grow a single crystal only from an excess of Co—Sb melt. Furthermore, if the moving speed of the solid-liquid interface is increased, the Sb phase is mixed,
Another problem is that the crystal growth rate, that is, the productivity cannot be increased.

【0008】本発明は、上記のような従来技術の問題点
に鑑み、CoSb3系熱電材料を製造するに際して、酸
素や容器材料等の不純物が混入し易い粉砕工程がなく、
かつ工程が簡単で大量生産向きの新たな製造方法を提供
することを目的とする。また、これによりCoSb3
熱電材料製造時の生産性と収率を高め、製造コストの低
減に寄与することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention does not include a pulverizing step in which impurities such as oxygen and container material are easily mixed when producing a CoSb 3 -based thermoelectric material.
It is another object of the present invention to provide a new manufacturing method which is simple in process and suitable for mass production. It is another object of the present invention to increase the productivity and yield during the production of a CoSb 3 -based thermoelectric material and contribute to the reduction of the production cost.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために、CoSb3系熱電材料を溶解・凝
固法によって製造することに着目して種々の検討を行っ
た。その結果、所定の組成に配合した原料を、単に溶解
し鋳型内で凝固させただけでは、良好な熱電特性を有す
る材料が得られないことが判明した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made various studies focusing on producing CoSb 3 -based thermoelectric materials by a melting / solidification method. As a result, it was found that a material having good thermoelectric properties could not be obtained simply by dissolving and solidifying a raw material mixed in a predetermined composition in a mold.

【0010】その理由はCoSb3の組成の融液が凝固
する過程で、CoSb3相の他にCoSb2、CoSb、
Sb相が生成することによる。しかし、この混合相から
なる凝固片を所定の条件で熱処理すると、全体がCoS
3相になり良好な熱電特性を示すようになることを知
見した。
[0010] In the process because the solidification melt composition of CoSb 3, CoSb 2, CoSb other CoSb 3 phase,
This is due to the formation of the Sb phase. However, when the coagulated piece composed of this mixed phase is heat-treated under a predetermined condition, the whole becomes CoS
b It has been found that the phase becomes a three- phase and shows good thermoelectric properties.

【0011】また、上記の熱処理の際に、凝固片内部に
空孔が生じ気孔率が大きくなるが、熱間で加圧処理して
この気孔率を小さくすることにより、熱電特性が改善さ
れることを知見した。
Also, during the above heat treatment, voids are formed inside the coagulated pieces and the porosity increases. By reducing the porosity by hot pressing, the thermoelectric properties are improved. I found that.

【0012】本発明は上記の知見に基いてなされたもの
で、その要旨は、CoSb3系化合物からなる熱電材料
の製造方法であって、原料を溶解して所定組成の融液に
する工程と、この融液を鋳型内で凝固させる工程と、こ
の凝固片を所定時間400〜850℃に保持する熱処理
工程とを具備することを特徴とするCoSb3系熱電材
料の製造方法である。
The present invention has been made on the basis of the above findings, and its gist is a method for producing a thermoelectric material comprising a CoSb 3 -based compound, comprising a step of dissolving a raw material to form a melt having a predetermined composition. a step of solidifying the melt in the mold, a method for producing a CoSb 3 based thermoelectric material characterized by comprising a heat treatment step of holding the solidified strip to a predetermined time 400 to 850 ° C..

【0013】ここで、CoSb3系化合物とは、一般式
Co1-xx(Sb1-yy)3(ここで、MはCoとの置換
元素でPd,Rh,Ru,Pt,Ir,Ni,Feのう
ちの一種以上を含みx=0〜0.3、NはSbとの置換
元素でSe,Te,Sn,Ge,Pb,P,As,Bi
のうちの一種以上を含みy=0〜0.3)で表わされる
化合物をいう。
Here, the CoSb 3 -based compound is represented by the general formula Co 1-x M x (Sb 1-y N y ) 3 (where M is a substitution element with Co for Pd, Rh, Ru, Pt, X = 0 to 0.3 including at least one of Ir, Ni, Fe, and N is a substitution element for Sb, Se, Te, Sn, Ge, Pb, P, As, Bi.
And y = 0 to 0.3).

【0014】また、上記の方法によって製造された材料
を300〜850℃において5MPa以上の圧力で加圧
処理して、該材料中の気孔率を10%以下にすることを
特徴とするCoSb3系熱電材料の製造方法である。
The CoSb 3 -based material is characterized in that the material produced by the above method is subjected to a pressure treatment at 300 to 850 ° C. at a pressure of 5 MPa or more to reduce the porosity in the material to 10% or less. This is a method for producing a thermoelectric material.

【0015】[0015]

【発明の実施の形態】本発明におけるCoSb3系熱電
材料は、一般的にはスクッテルダイト型結晶構造を有す
る前記のCoSb3系化合物からなり、不可避的不純物
と必要に応じて微量の添加不純物を含むものである。
BEST MODE FOR CARRYING OUT THE INVENTION The CoSb 3 -based thermoelectric material according to the present invention generally comprises the above-mentioned CoSb 3 -based compound having a skutterudite-type crystal structure. Is included.

【0016】本発明は、上記のCoSb3系熱電材料の
製造方法であって、原料を溶解して所定組成の融液にす
る工程と、この融液を鋳型内で凝固させる工程と、得ら
れた凝固片を所定時間400〜850℃に保持する熱処
理工程とを具備することを特徴とする。
The present invention is a method for producing a CoSb 3 -based thermoelectric material as described above, comprising the steps of: dissolving a raw material to obtain a melt having a predetermined composition; and solidifying the melt in a mold. A heat treatment step of maintaining the solidified pieces at 400 to 850 ° C. for a predetermined time.

【0017】溶解する原料は粉末であっても、インゴッ
トであってもよく、また各元素を所定の組成に配合して
も、或いはプリメルトした合金状態のものを用いてもよ
い。Co−Sb系の相図からわかるように、原料を完全
に溶解し、均一化するためにCoSb3の融点より少し
高い1050℃以上(好ましくは1100℃以上)に原
料を加熱し、溶解後好ましくは5分間以上保持するとよ
い。
The raw material to be dissolved may be a powder or an ingot. Each element may be blended into a predetermined composition, or a pre-melted alloy may be used. As can be seen from the Co-Sb phase diagram, the raw material is heated to 1050 ° C or higher (preferably 1100 ° C or higher) slightly higher than the melting point of CoSb 3 in order to completely dissolve and homogenize the raw material. Should be kept for 5 minutes or more.

【0018】この融液を鋳型内で凝固させる理由は、凝
固時の冷却速度を調節するため及び熱処理に適した形状
に成形するためである。鋳型の材質にはとくに制約はな
いが、凝固時の冷却速度により凝固片(以下、合金鋳片
という)の組織が変化するから、所望の冷却速度が得ら
れるように、鋳型の材質を選択する。また、冷却速度を
調節するために、鋳型を冷却又は加熱することも有効で
ある。
The reason for solidifying the melt in the mold is to adjust the cooling rate during solidification and to form the melt into a shape suitable for heat treatment. There is no particular limitation on the material of the mold, but since the structure of the solidified piece (hereinafter, referred to as an alloy slab) changes depending on the cooling rate during solidification, the material of the mold is selected so that a desired cooling rate is obtained. . It is also effective to cool or heat the mold to adjust the cooling rate.

【0019】鋳型の内部形状もとくに制約はないが、後
の熱処理工程での均熱時間を短縮するために、通常は板
状又は棒状の合金鋳片を作成する。
Although there is no particular limitation on the internal shape of the mold, a plate-shaped or rod-shaped alloy slab is usually prepared in order to shorten the soaking time in the subsequent heat treatment step.

【0020】従来から、溶解・凝固させた所定組成のイ
ンゴットを粉砕し、粉末冶金法により熱電材料を製造す
る方法は一般に行われている。これに対して本発明の方
法は、得られた合金鋳片を粉砕して粉末にすることな
く、熱処理のみによって所望の特性を有する熱電材料を
製造するものであって、そのためには、熱処理条件の選
択が重要である。
Conventionally, a method of pulverizing a melted and solidified ingot of a predetermined composition to produce a thermoelectric material by a powder metallurgy method is generally performed. On the other hand, the method of the present invention is to produce a thermoelectric material having desired properties only by heat treatment without pulverizing the obtained alloy slab into powder, and for that purpose, heat treatment conditions The choice is important.

【0021】すでに述べたように、CoSb3を主体と
する組成物を溶解凝固させた合金鋳片は、CoSb3
の他にCoSb2、CoSb、Sb相を含み、良好な熱
電特性を示さない。しかし、本発明者らの知見によれ
ば、この混合相からなる合金鋳片を所定時間400〜8
50℃に保持する熱処理を行うと、SbがCoSb2
CoSb相内に熱拡散して、比較的容易にCoSb3
均一相に変化させることができる。このCoSb3相は
X線回折により、スクッテルダイト型結晶構造を有する
ことが確かめられており、熱処理後の合金鋳片は良好な
熱電特性を示すようになる。
[0021] As already mentioned, the alloy cast piece obtained by melting and solidifying a composition composed mainly of CoSb 3 comprises CoSb 2, CoSb, Sb phase in addition to the CoSb 3 phase, do not show good thermoelectric properties . However, according to the knowledge of the present inventors, an alloy slab composed of this mixed phase is kept for 400 to 8 hours for a predetermined time.
By performing a heat treatment at 50 ° C., Sb becomes CoSb 2 ,
By thermally diffusing into the CoSb phase, it can be relatively easily changed to a uniform phase of CoSb 3 . It has been confirmed by X-ray diffraction that this CoSb 3 phase has a skutterudite-type crystal structure, and the alloy slab after the heat treatment exhibits good thermoelectric properties.

【0022】熱処理温度の下限を400℃とするのは、
これ未満では熱処理時間が過大になって実用的でないか
らであり、上限を850℃とするのはこれを超えるとC
oSb3相が分解するおそれがあり、また高温ほどSb
が蒸発し易く組成変動を起こし易いためである。
The lower limit of the heat treatment temperature is set to 400 ° C.
If the heat treatment time is less than this, the heat treatment time becomes too long to be practical, and the upper limit is set to 850 ° C.
oSb 3 phase may be decomposed.
Is easy to evaporate and the composition tends to fluctuate.

【0023】さらに好適な熱処理温度の範囲は550〜
700℃であり、この範囲では比較的短時間の熱処理
で、確実にCoSb3のみの相(以下、単一相というこ
とがある)を形成させることができる。
A more preferable range of the heat treatment temperature is 550 to 550.
The temperature is 700 ° C., and within this range, a phase of only CoSb 3 (hereinafter, sometimes referred to as a single phase) can be reliably formed by a relatively short heat treatment.

【0024】なお、前記のCoSb3系化合物におい
て、元素MはCoの一部と置換し、元素NはSbの一部
と置換してスクッテルダイト型結晶構造を形成するもの
で、Mの組成比xおよびNの組成比yが0〜0.3の範
囲では、凝固した合金鋳片が混合相からなり、これを熱
処理することにより、Co1-xx(Sb1-yy)3型の単
一相が形成されることは上記と同じである。
In the above-mentioned CoSb 3 -based compound, the element M replaces a part of Co and the element N replaces a part of Sb to form a skutterudite crystal structure. When the composition ratio y of the ratio x and N is in the range of 0 to 0.3, the solidified alloy slab is composed of a mixed phase, which is heat-treated to obtain Co 1-x M x (Sb 1-y N y ). The formation of type 3 single phase is the same as above.

【0025】単一相を形成するに必要な熱処理時間は、
熱処理温度が高いほど、また凝固組織が細かいほど短く
なるが、例えば銅鋳型内で凝固させた合金鋳片では、5
50℃で25時間程度、あるいは700℃で10時間程
度の熱処理で、均質なCoSb3又はその置換型化合物
にすることができる。
The heat treatment time required to form a single phase is:
The higher the heat treatment temperature and the finer the solidification structure, the shorter it becomes. For example, in the case of an alloy slab solidified in a copper mold,
A heat treatment at 50 ° C. for about 25 hours or 700 ° C. for about 10 hours can provide homogeneous CoSb 3 or a substituted compound thereof.

【0026】なお、上記の熱処理は得られた合金鋳片を
そのまま(未加工)で行なってもよく、或いはその一部を
切り出したり、切削加工したものを用いてもよい。ま
た、上記の熱処理は、酸化を防止するため不活性雰囲
気、例えばAr雰囲気や真空下で行うことが望ましい。
ただし、本発明の方法は鋳片を粉砕せず熱処理するか
ら、粉末冶金法の場合よりも雰囲気中の酸素濃度の制約
が緩和されることが特徴の一つである。
The above heat treatment may be performed on the obtained alloy slab as it is (unprocessed), or a part thereof may be cut out or cut. The heat treatment is desirably performed in an inert atmosphere, for example, an Ar atmosphere or under vacuum to prevent oxidation.
However, since the method of the present invention heat-treats the slab without pulverizing it, it is one of the features that the restriction on the oxygen concentration in the atmosphere is relaxed as compared with the case of the powder metallurgy method.

【0027】上記の熱処理によって、CoSb3又はそ
の置換型化合物の単一相にした鋳片は、その内部にミク
ロな空孔が生じることが見出された。空孔が生じる理由
は、SbとCo又は置換元素Mとの拡散速度の差による
ものと推測される。この空孔の体積率(気孔率)は、熱
処理条件にもよるが20〜35%にも及び、材料の機械
的強度や電気伝導度を低下させて好ましくない。
[0027] By the above heat treatment, the slab was a single phase of CoSb 3 or a substituted compound thereof was found to micro voids therein occurs. It is assumed that the vacancies are generated due to the difference in the diffusion rate between Sb and Co or the substitution element M. The volume ratio (porosity) of the holes depends on the heat treatment conditions, but ranges from 20 to 35%, which is undesirable because it lowers the mechanical strength and electrical conductivity of the material.

【0028】しかし、熱処理後の鋳片を熱間で加圧処理
することにより、気孔率が大幅に減少すること、及び気
孔率が10%以下であれば、上述した機械的強度や電気
伝導度の低下は実用上問題にならないことが知見され
た。
However, if the slab after the heat treatment is hot-pressed, the porosity is greatly reduced, and if the porosity is 10% or less, the above-mentioned mechanical strength and electric conductivity are obtained. It has been found that the decrease in the amount does not pose a practical problem.

【0029】請求項2記載の本発明は上記の知見に基く
もので、請求項1記載の方法によって製造された材料を
300〜850℃において5MPa以上の圧力で加圧処
理して、該材料中の気孔率を10%以下にすることを特
徴とする。
The present invention according to claim 2 is based on the above findings, and the material produced by the method according to claim 1 is subjected to pressure treatment at 300 to 850 ° C. at a pressure of 5 MPa or more, and Has a porosity of 10% or less.

【0030】加圧処理の方法にとくに制限はないが、例
えば熱間等方加圧(HIP)処理によるのが好適であ
る。加圧処理する材料は、熱処理後の鋳片そのままでも
よく、これを切削加工したものや、ある程度のサイズに
破砕したものを用いてもよい。
Although there is no particular limitation on the method of the pressure treatment, it is preferable to use, for example, hot isostatic pressure (HIP) treatment. The material to be subjected to the pressure treatment may be a slab as it is after the heat treatment, or may be a cut slab or a crushed slab to a certain size.

【0031】これらの材料を例えば厚さ約0.1mmの
ステンレス箔に真空封入したものをHIP装置内に置
き、HIP処理を行なう。ただし、この際ステンレスと
被処理材との反応を避けるため、被処理材との反応性の
低いタングステン箔を間に挟むことが好ましい。
These materials are vacuum sealed in, for example, a stainless steel foil having a thickness of about 0.1 mm and placed in a HIP device to perform HIP processing. However, at this time, in order to avoid a reaction between the stainless steel and the material to be treated, it is preferable to sandwich a tungsten foil having low reactivity with the material to be treated.

【0032】加圧処理時の温度の下限を300℃、圧力
の下限を5MPaとするのは、両者のいずれかがこれ未
満では、気孔率の減少速度が著しく小さくなって実用的
でないためであり、温度の上限を850℃とするのは、
これを超えるとCoSb3又はCo1-xx(Sb1-yy)3
相が分解するおそれがあるためである。
The reason why the lower limit of the temperature during the pressure treatment is 300 ° C. and the lower limit of the pressure is 5 MPa is that if either of them is less than this, the rate of decrease in the porosity becomes extremely small and it is not practical. , The upper limit of the temperature is 850 ° C.
Beyond this, CoSb 3 or Co 1-x M x (Sb 1-y N y ) 3
This is because the phase may be decomposed.

【0033】さらに好適な加圧処理の条件は、温度55
0〜700℃、圧力100MPa以上の範囲で、この範
囲では2時間程度以下の加圧処理時間で確実に材料の気
孔率を10%以下にすることができる。
A more preferable pressure treatment condition is a temperature of 55
Within a range of 0 to 700 ° C. and a pressure of 100 MPa or more, the porosity of the material can be reliably reduced to 10% or less within a pressure treatment time of about 2 hours or less in this range.

【0034】なお、本発明において、混合相の合金鋳片
をCoSb3又はその置換型化合物の単一相にするため
の熱処理は、その一部又は全部を加圧下で行なってもよ
く、これにより別途に加圧処理することなく、材料中の
気孔率を10%以下にすることも可能である。
In the present invention, the heat treatment for converting the alloy slab of the mixed phase into a single phase of CoSb 3 or its substitutional compound may be performed partially or entirely under pressure. The porosity in the material can be reduced to 10% or less without separately performing a pressure treatment.

【0035】[0035]

【実施例】【Example】

(実施例1)原料として、純度99.9985%のコバ
ルト(Co)および純度99.999%のアンチモン
(Sb)をモル比で1:3に配合したものをアルミナ製
るつぼに入れ、この原料を高周波加熱することによって
1100℃まで昇温溶解し、合金融液とした。この合金
融液を1100℃で5分間保持した後、アルゴンガス雰
囲気中で、室温の銅製の鋳型に注入することによって冷
却凝固させ約150×200×10mmの合金鋳片を得
た。
(Example 1) As a raw material, a mixture of cobalt (Co) having a purity of 99.9985% and antimony (Sb) having a purity of 99.999% in a molar ratio of 1: 3 was put into an alumina crucible. The mixture was heated to 1100 ° C. by high frequency heating and dissolved to obtain a combined liquid. After holding this combined liquid at 1100 ° C. for 5 minutes, it was cooled and solidified by pouring it into a copper mold at room temperature in an argon gas atmosphere to obtain an alloy slab of about 150 × 200 × 10 mm.

【0036】さらに、得られた合金鋳片を大気圧のアル
ゴンガス雰囲気中で、650℃に50時間保持する熱処
理を行うことによって、鋳片全体にCoSb3の単一相
を形成させた。
Further, the obtained alloy slab was heat-treated at 650 ° C. for 50 hours in an argon gas atmosphere at atmospheric pressure to form a single phase of CoSb 3 on the entire slab.

【0037】得られたCoSb3熱電材料は化学量論比
組成であり、その中の金属不純物含有量はFe:10p
pm、Ni:3ppm、Cu:2ppm、Cr:2pp
m以下、Al:10ppm以下であった。また、酸素含
有量は300ppmであった。原料コバルト中に600
0ppm、原料Sb中に100ppmの酸素が含まれる
ことを考慮すると、上記の一連の工程において酸素含有
量を低減できたことがわかる。
The obtained CoSb 3 thermoelectric material has a stoichiometric composition, in which the content of metallic impurities is Fe: 10p
pm, Ni: 3 ppm, Cu: 2 ppm, Cr: 2 pp
m, Al: 10 ppm or less. Further, the oxygen content was 300 ppm. 600 in raw material cobalt
Considering that 0 ppm and 100 ppm of oxygen are contained in the raw material Sb, it can be seen that the oxygen content could be reduced in the above series of steps.

【0038】また、このCoSb3の熱電材料の熱起電
力(ゼーベック係数S)を測定した結果、Sの値は30
℃で300μV/K、150℃で340μV/K、30
0℃で230μV/Kとなり、p型半導体の性質を示し
た。なお、ゼーベック係数Sは、2×2×15mmに切
り出した試料片の両端部にPt−PtRh熱電対線を付
け、昇温炉中でこの試料片に5〜6℃の温度差をつけて
発生する熱起電力を測定し、これを試験片の温度差で除
することによって求めた。
As a result of measuring the thermoelectromotive force (Seebeck coefficient S) of this CoSb 3 thermoelectric material, the value of S was 30
300 ° V / K at 150 ° C., 340 μV / K at 150 ° C., 30
It was 230 μV / K at 0 ° C., indicating the properties of a p-type semiconductor. The Seebeck coefficient S was generated by attaching a Pt-PtRh thermocouple wire to both ends of a sample piece cut into 2 × 2 × 15 mm and giving a temperature difference of 5 to 6 ° C. to the sample piece in a heating furnace. The measured thermoelectromotive force was measured and divided by the temperature difference between the test pieces.

【0039】本発明の方法によれば、従来の粉末冶金法
によるよりも、不純物の混入が少ないため、良好な熱電
特性を有する材料を安定して得ることができる。
According to the method of the present invention, a material having good thermoelectric properties can be stably obtained because impurities are less mixed than in the conventional powder metallurgy method.

【0040】(実施例2)実施例1と同様の原料をゾー
ンリファイニングすることによって精製したものを、ア
ルミナ製るつぼに入れ、実施例1と同様に溶解後、冷却
・凝固させた。さらに、得られた合金鋳片を、実施例1
と同様の条件で熱処理することによって、CoSb3
熱電材料を得た。
(Example 2) The same raw material as in Example 1 was purified by zone refining, placed in an alumina crucible, melted in the same manner as in Example 1, and then cooled and solidified. Further, the obtained alloy slab was used in Example 1
By performing a heat treatment under the same conditions as described above, a thermoelectric material of CoSb 3 was obtained.

【0041】得られたCoSb3材料は化学量論比組成
であり、その中の金属不純物含有量はFe:2ppm以
下、Ni:1ppm以下、Cu:1ppm以下、Cr:
2ppm以下、Al:10ppm以下であり、酸素含有
量は50ppmであった。このように、本発明の方法で
は不純物の混入が少ないため、きわめて純度の高い熱電
材料を容易に製造しうることが確かめられた。
The obtained CoSb 3 material has a stoichiometric composition, in which the metal impurity content is Fe: 2 ppm or less, Ni: 1 ppm or less, Cu: 1 ppm or less, Cr:
The content was 2 ppm or less, Al: 10 ppm or less, and the oxygen content was 50 ppm. As described above, it was confirmed that the method of the present invention can easily produce a thermoelectric material having extremely high purity because impurities are little mixed.

【0042】また、得られたCoSb3材料は実施例1
と同様の熱起電力とp型半導体の性質を有し、高純化し
たために、電気伝導率が実施例1に比較して改善され
た。
The obtained CoSb 3 material was obtained in Example 1.
It has the same properties of thermoelectromotive force and p-type semiconductor as described above, and is highly purified, so that the electrical conductivity is improved as compared with Example 1.

【0043】(実施例3)実施例2によって得られたC
oSb3材料から切り出した5×20×50mmの試験
片を金属製箔に真空封入し、アルゴンガス雰囲気下、6
00℃、100MPaの条件で1時間、熱間等方加圧
(HIP)処理を行った。得られた材料中の気孔率は2
5%から5%に低下し、機械的強度および電気伝導率が
約2倍に向上した。
(Example 3) C obtained by Example 2
A 5 × 20 × 50 mm test piece cut out of oSb 3 material was vacuum-sealed in a metal foil,
A hot isostatic pressing (HIP) treatment was performed at 00 ° C. and 100 MPa for 1 hour. The porosity of the obtained material is 2
From 5% to 5%, the mechanical strength and electrical conductivity improved about twice.

【0044】(実施例4)原料として、純度99.99
85%のCo、純度99.999%のSb、純度99.
99%のパラジウム(Pd)をCo0.97Pd0.03Sb3
成に配合した原料を実施例1と同条件で溶解後、冷却・
凝固させた。さらに、得られた合金鋳片を、実施例1と
同様の条件で熱処理することによって、Co0.97Pd
0.03Sb3の熱電材料を得た。
Example 4 As a raw material, the purity was 99.99.
85% Co, 99.999% Sb purity, 99.99% purity.
A raw material in which 99% of palladium (Pd) was blended in a composition of Co 0.97 Pd 0.03 Sb 3 was dissolved under the same conditions as in Example 1 and then cooled.
Coagulated. Further, the obtained alloy slab was heat-treated under the same conditions as in Example 1 to obtain Co 0.97 Pd
A thermoelectric material of 0.03 Sb 3 was obtained.

【0045】得られたCo0.97Pd0.03Sb3材料は、
n型半導体の性質を示し、熱起電力(ゼーベック係数)
の値は30℃で−180μV/K、150℃で−220
μV/K、300℃で−280μV/Kとなり、同一の
原料から従来の粉末冶金法や単結晶育成法によって製造
した材料と、同等若しくはそれ以上の熱電特性を有する
ことが確かめられた。
The obtained Co 0.97 Pd 0.03 Sb 3 material is:
Shows the properties of n-type semiconductors, and thermoelectromotive force (Seebeck coefficient)
Are −180 μV / K at 30 ° C. and −220 at 150 ° C.
μV / K, which was −280 μV / K at 300 ° C., was confirmed to have a thermoelectric property equal to or better than that of a material manufactured from the same raw material by a conventional powder metallurgy method or a single crystal growing method.

【0046】(実施例5)原料として、純度99.99
85%のコバルト、純度99.999%のアンチモン、
純度99.99%のパラジウムおよび純度99.99%
の白金をCo0.90Pd0.05Pt0.05Sb3組成に配合し
た原料を実施例1と同条件で溶解度、冷却・凝固させ
た。さらに、得られた合金鋳片を実施例1と同様の条件
で熱処理することによって、Co0.90Pd0.05Pt0.05
Sb3の熱電材料を得た。
Example 5 As a raw material, the purity was 99.99.
85% cobalt, 99.999% purity antimony,
99.99% pure palladium and 99.99% pure
Was mixed with Co 0.90 Pd 0.05 Pt 0.05 Sb 3 composition under the same conditions as in Example 1, and was cooled and solidified. Further, the obtained alloy slab was heat-treated under the same conditions as in Example 1 to obtain Co 0.90 Pd 0.05 Pt 0.05
A thermoelectric material of Sb 3 was obtained.

【0047】得られたCo0.90Pd0.05Pt0.05Sb3
材料は、30℃で−200μV/K、150℃で−23
0μV/K、300℃で−280μV/Kの熱起電力
(ゼーベック係数)と、n型半導体の性質を示し、従来
法で製造した材料と同等若しくはそれ以上の熱電特性を
有することが確かめられた。
The obtained Co 0.90 Pd 0.05 Pt 0.05 Sb 3
The material is −200 μV / K at 30 ° C. and −23 at 150 ° C.
It exhibited a thermoelectromotive force (Seebeck coefficient) of -280 μV / K at 0 μV / K and 300 ° C., and exhibited the properties of an n-type semiconductor, and was confirmed to have thermoelectric properties equivalent to or better than materials manufactured by a conventional method. .

【0048】[0048]

【発明の効果】本発明のCoSb3系熱電材料の製造方
法により、従来よりも製造工程の簡略化や生産性、収率
の向上が可能となり、製造コストの低減が図れると共
に、不純物の混入を少なくして熱電特性の良好な材料を
製造することが可能となった。
According to the method for producing a CoSb 3 -based thermoelectric material of the present invention, the production process can be simplified, the productivity and the yield can be improved, the production cost can be reduced, and impurities can be mixed. It has become possible to manufacture a material having good thermoelectric properties with a small amount.

【0049】すなわち、従来の粉末冶金法のように原料
の微粉砕及び焼結工程を必要としないため、工程が簡略
化されると共に、粉砕工程における酸素や容器材料の混
入を防止することができる。また、従来の単結晶育成法
よりも生産性や製品収率を大幅に高め得ると共に、るつ
ぼに合金融液を保持する時間が短いため、るつぼからの
不純物の混入を少なくすることができ、熱電特性の良好
なCoSb3系熱電材料を低コストで製造することが可
能になった。
That is, unlike the conventional powder metallurgy method, the steps of pulverizing and sintering the raw materials are not required, so that the steps can be simplified and the mixing of oxygen and container material in the pulverizing step can be prevented. . In addition, the productivity and product yield can be significantly improved compared to the conventional single crystal growth method, and the time for holding the synthetic liquid in the crucible is short, so that the contamination of impurities from the crucible can be reduced, and the thermoelectric power can be reduced. It has become possible to produce a CoSb 3 -based thermoelectric material having good characteristics at low cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 35/34 H01L 35/34 // C22F 1/00 660 C22F 1/00 660Z 661 661Z 683 683 691 691B 694 694B 694A (72)発明者 谷口 求 山口県宇部市大字沖宇部573番地の3 株 式会社超高温材料研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 35/34 H01L 35/34 // C22F 1/00 660 C22F 1/00 660Z 661 661Z 683 683 693 691B 694 694B 694A (72) Inventor Nozomu Taniguchi Inside the Ultra High Temperature Materials Research Laboratories, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式Co1-xx(Sb1-yy)3(ここ
で、MはCoとの置換元素でPd,Rh,Ru,Pt,
Ir,Ni,Feのうちの一種以上を含みx=0〜0.
3、NはSbとの置換元素でSe,Te,Sn,Ge,
Pb,P,As,Biのうちの一種以上を含みy=0〜
0.3)で表わされる化合物からなる熱電材料の製造方
法であって、原料を溶解して所定組成の融液にする工程
と、この融液を鋳型内で凝固させる工程と、この凝固片
を所定時間400〜850℃に保持する熱処理工程とを
具備することを特徴とするコバルトアンチモナイド系熱
電材料の製造方法。
1. The general formula Co 1-x M x (Sb 1-y N y ) 3 (where M is a substitution element for Co and is Pd, Rh, Ru, Pt,
It contains at least one of Ir, Ni, and Fe, and x = 0 to 0.
3, N is a substitution element for Sb, Se, Te, Sn, Ge,
Including at least one of Pb, P, As, and Bi, y = 0
0.3) a method for producing a thermoelectric material comprising a compound represented by the formula (3), wherein a step of dissolving a raw material to form a melt having a predetermined composition, a step of solidifying the melt in a mold, A heat treatment step of maintaining the temperature at 400 to 850 ° C. for a predetermined time.
【請求項2】 請求項1記載の方法によって製造された
材料を300〜850℃において5MPa以上の圧力で
加圧処理して、該材料中の気孔率を10%以下にするこ
とを特徴とするコバルトアンチモナイド系熱電材料の製
造方法。
2. A material produced by the method according to claim 1, wherein the material is subjected to a pressure treatment at 300 to 850 ° C. at a pressure of 5 MPa or more to reduce the porosity in the material to 10% or less. A method for producing a cobalt antimonide-based thermoelectric material.
JP9195853A 1997-07-22 1997-07-22 Manufacture of cobalt antimonide thermoelectric material Pending JPH1140861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9195853A JPH1140861A (en) 1997-07-22 1997-07-22 Manufacture of cobalt antimonide thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9195853A JPH1140861A (en) 1997-07-22 1997-07-22 Manufacture of cobalt antimonide thermoelectric material

Publications (1)

Publication Number Publication Date
JPH1140861A true JPH1140861A (en) 1999-02-12

Family

ID=16348101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9195853A Pending JPH1140861A (en) 1997-07-22 1997-07-22 Manufacture of cobalt antimonide thermoelectric material

Country Status (1)

Country Link
JP (1) JPH1140861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239160A (en) * 2013-06-07 2014-12-18 パナソニック株式会社 Thermoelectric element and thermoelectric module
US10790428B2 (en) 2015-11-11 2020-09-29 Lg Chem, Ltd. P-type skutterudite thermoelectric material, method for preparing the same, and thermoelectric device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239160A (en) * 2013-06-07 2014-12-18 パナソニック株式会社 Thermoelectric element and thermoelectric module
US10790428B2 (en) 2015-11-11 2020-09-29 Lg Chem, Ltd. P-type skutterudite thermoelectric material, method for preparing the same, and thermoelectric device including the same

Similar Documents

Publication Publication Date Title
US8519256B2 (en) Thermoelectric material, thermoelectric element, thermoelectric module and method for manufacturing the same
CN111477736B (en) Bismuth telluride-based thermoelectric material and preparation method thereof
JP4211318B2 (en) Filled skutterudite-based alloy, method for producing the same, and thermoelectric conversion element
JP2000252526A (en) Skutterudite thermoelectric material, thermocouple and manufacture thereof
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP5352860B2 (en) Thermoelectric material and manufacturing method thereof
US7705233B2 (en) Filled skutterudite-based alloy, production method thereof and thermoelectric conversion device fabricated using the alloy
JP2005019713A (en) M1-xAx/Ni1-yBy/Snz-1Cz-BASED HALF-HEUSLER TYPE THERMOELECTRIC MATERIAL FOR HIGH TEMPERATURE AND ITS MANUFACTURING METHOD
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
JP2006086512A (en) Thermoelectric conversion system using filled skutterudite alloy
JPH1140861A (en) Manufacture of cobalt antimonide thermoelectric material
JPH06144825A (en) Production of thermoelectric element
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP3929880B2 (en) Thermoelectric material
JP6082617B2 (en) Thermoelectric conversion material and method for producing the same
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
Akasaka et al. Effects of post-annealing on thermoelectric properties of p-type CoSb3 grown by the vertical Bridgman method
JP4666841B2 (en) Method for manufacturing thermoelectric material
JP4296272B2 (en) Method for manufacturing thermoelectric material
JP2000261043A (en) Thermoelectric conversion material and its manufacture
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JPH1140862A (en) Manufacture of cobalt antomonide thermoelectric material
WO2021193481A1 (en) Method for producing thermoelectric conversion element
JP6858044B2 (en) Thermoelectric conversion materials and their manufacturing methods, as well as thermoelectric conversion elements, thermoelectric conversion modules, mobile objects