JPH1140511A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH1140511A
JPH1140511A JP19444997A JP19444997A JPH1140511A JP H1140511 A JPH1140511 A JP H1140511A JP 19444997 A JP19444997 A JP 19444997A JP 19444997 A JP19444997 A JP 19444997A JP H1140511 A JPH1140511 A JP H1140511A
Authority
JP
Japan
Prior art keywords
impurity concentration
triangle
concentration distribution
mask
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19444997A
Other languages
Japanese (ja)
Other versions
JP3271558B2 (en
Inventor
Yoshifumi Shirai
良史 白井
Masahiko Suzumura
正彦 鈴村
Yoshiki Hayazaki
嘉城 早崎
Yuji Suzuki
裕二 鈴木
Takashi Kishida
貴司 岸田
Masamichi Takano
仁路 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19444997A priority Critical patent/JP3271558B2/en
Publication of JPH1140511A publication Critical patent/JPH1140511A/en
Application granted granted Critical
Publication of JP3271558B2 publication Critical patent/JP3271558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a semiconductor device wherein desired impurity concentration distribution can be obtained readily. SOLUTION: A distance axis is divided equally into five and the same triangle 3 is arranged in all the five sections. A bottom side of the triangle is the equally divided distance axis and a vertex thereof is equal to maximum concentration of impurity concentration distribution 1. Then, an intersection point 4 between the impurity concentration distribution 1 and the five triangles 3 is obtained, and a space between two points generated from the same triangle 3 among points projected from each intersection point 4 to a distance axis is made a region 5a which is masked when impurities are introduced. A space between two points generated from adjacent triangles 3 is made a region 5b which is not masked and is subjected to ion implantation. Here, a dose of ion implantation is calculated from a product (Nmax.Tsoi) of maximum concentration (Nmax) of the impurity concentration distribution 1 and a film thickness (Tsoi) of an active silicon layer 2c. A heat process after ion implantation is set so that a characteristic diffusion length is 4 μm which is a bottom side of the triangle 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関するものである。
[0001] The present invention relates to a method for manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】図6は、従来例に係る半導体基板10の
面方向に単調に変化する不純物濃度分布1を得るための
マスクを示す略断面図であり、図7は、上図に係るマス
クの設計を示すフローチャートである。従来、面方向に
単調に変化する不純物濃度分布1を得る方法としては、
図6に示すように、単調に変化する不純物濃度分布1に
対して、レジスト11の開口寸法を調節することにより
得ている。つまり、レジスト11の開口寸法は、不純物
濃度が低濃度側では狭く、高濃度側では広く設定されて
いる。
2. Description of the Related Art FIG. 6 is a schematic sectional view showing a mask for obtaining an impurity concentration distribution 1 which monotonically changes in a plane direction of a semiconductor substrate 10 according to a conventional example, and FIG. 6 is a flowchart showing the design of the present invention. Conventionally, as a method of obtaining an impurity concentration distribution 1 that monotonously changes in the plane direction,
As shown in FIG. 6, the impurity concentration distribution 1 is obtained by adjusting the opening size of the resist 11 with respect to the monotonously changing impurity concentration distribution 1. That is, the opening size of the resist 11 is set to be narrow on the low concentration side and wide on the high concentration side.

【0003】実際の開口寸法は、経験的に得られている
ものから出発してシミュレーションを試行錯誤的に繰り
返すことで目標の不純物濃度分布1に近づくように修正
している。
[0005] The actual opening size is corrected so as to approach the target impurity concentration distribution 1 by repeating a simulation by trial and error starting from an empirically obtained one.

【0004】[0004]

【発明が解決しようとする課題】上述のシミュレーショ
ンを用いて半導体基板10の面方向に単調に変化する不
純物濃度分布1を得る方法は、従来の多水準の開口寸法
を有するマスクを実際に製作し、実験的試作によりその
不純物濃度分布を調べてから所望の不純物濃度分布を得
る方法に比べて、手間を省き、かつ、短時間で比較的正
確に設計できるという利点がある。
The method of obtaining the impurity concentration distribution 1 which changes monotonically in the plane direction of the semiconductor substrate 10 by using the above-mentioned simulation is based on the fact that a conventional mask having a multilevel opening size is actually manufactured. In comparison with a method of obtaining a desired impurity concentration distribution after examining the impurity concentration distribution by experimental trial production, there is an advantage that the design can be made relatively accurately in a short time and in a short time.

【0005】しかし、シミュレーションを用いる方法
は、不純物濃度分布1の区間距離やそのプロファイルが
異なる場合には、開口寸法を変えたときの不純物濃度分
布をはじめから調べ直さなければならないという問題が
あった。
However, the method using simulation has a problem that if the section distance of the impurity concentration distribution 1 and its profile are different, the impurity concentration distribution when the opening size is changed must be checked from the beginning. .

【0006】また、そのとき、不純物の導入量と拡散プ
ロセスも重要なパラメータとして存在するため、両者を
含めたシミュレーションは膨大な作業量となるという問
題もあった。
At that time, since the amount of impurity introduced and the diffusion process also exist as important parameters, there is a problem that the simulation including both of them requires a huge amount of work.

【0007】本発明は、上記の点に鑑みて成されたもの
であり、その目的とするところは、所望の不純物濃度分
布を容易に得ることのできる半導体装置の製造方法を提
供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method of manufacturing a semiconductor device which can easily obtain a desired impurity concentration distribution. .

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
半導体基板上に複数の異なる開口寸法の開口部を有する
マスクを形成し、該マスクを介して不純物イオンをイオ
ン注入し、熱拡散を行うことにより面方向に不純物濃度
が単調に変化するように不純物濃度分布領域を形成する
半導体装置の製造方法において、前記マスクの開口寸法
を決めるに際し、前記半導体基板の前記不純物濃度分布
を形成する領域を、面方向に等間隔の複数の領域に分割
し、該領域を底辺とする合同な三角形が前記領域に存在
すると想定し、前記三角形の高さを、前記不純物濃度分
布を示す不純物濃度分布線の最高の不純物濃度以上に設
定し、前記不純物濃度分布線と、前記三角形の斜辺との
交点の内、同一の前記三角形の斜辺との交点を前記半導
体基板上に投影させてできた投影点間にのみマスクを形
成するようにして前記開口寸法を決め、前記開口部が形
成された箇所の前記半導体基板の不純物濃度が、前記三
角形の高さに相当する不純物濃度となる不純物イオンの
ドーズ量で、前記マスクを介して前記半導体基板にイオ
ン注入を行い、該イオン注入により導入された不純物イ
オンの熱拡散時の拡散距離が、前記三角形の底辺の長さ
に略同じになるようにしたことを特徴とするものであ
る。
According to the first aspect of the present invention,
A mask having a plurality of openings having different opening dimensions is formed on a semiconductor substrate, impurity ions are implanted through the mask, and thermal diffusion is performed so that the impurity concentration monotonously changes in a plane direction. In the method of manufacturing a semiconductor device for forming a concentration distribution region, when determining the opening size of the mask, the region for forming the impurity concentration distribution of the semiconductor substrate is divided into a plurality of regions at equal intervals in a plane direction. Assuming that a congruent triangle having a region as a base is present in the region, the height of the triangle is set to be equal to or higher than the highest impurity concentration of the impurity concentration distribution line indicating the impurity concentration distribution, and the impurity concentration distribution line Of the intersections with the hypotenuse of the triangle, a mask is formed only between projection points formed by projecting the intersection with the hypotenuse of the same triangle on the semiconductor substrate. The size of the opening is determined, and the impurity concentration of the semiconductor substrate at the location where the opening is formed is a dose amount of impurity ions having an impurity concentration corresponding to the height of the triangle. And ion implantation is performed such that the diffusion distance of the impurity ions introduced by the ion implantation during thermal diffusion is substantially equal to the length of the base of the triangle.

【0009】請求項2記載の発明は、請求項1記載の半
導体装置の製造方法において、前記不純物濃度分布領域
の少なくとも低濃度側に隣接する箇所の前記半導体基板
上に、マスクを形成したことを特徴とするものである。
According to a second aspect of the present invention, in the method of manufacturing a semiconductor device according to the first aspect, a mask is formed on the semiconductor substrate at least at a position adjacent to the low concentration side of the impurity concentration distribution region. It is a feature.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面に基づき説明する。図1は、本発明の一実施形態
に係るマスクの形成方法を示す模式図である。1は、任
意のウェハ面方向を距離軸(横軸)にとり、縦軸に濃度
軸をとった場合に表される濃度が距離に比例する不純物
濃度分布である。なお、縦軸及び横軸はともに線形軸で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view illustrating a method for forming a mask according to an embodiment of the present invention. Reference numeral 1 denotes an impurity concentration distribution in which an arbitrary wafer surface direction is taken on a distance axis (horizontal axis) and a concentration axis is taken on a vertical axis, and the concentration expressed is proportional to the distance. Note that both the vertical axis and the horizontal axis are linear axes.

【0011】支持体シリコン基板2aと、支持体シリコ
ン基板2a上に埋込酸化膜2bを介して形成された活性
シリコン層2cとから成るSOI(Silicon On Insul
ator)基板における活性シリコン層2cの膜厚が1μm
以下のSOI基板に形成された横型ダイオード構造を部
分的に含む素子の耐圧は、例えば素子がダイオードとす
れば、そのドリフト領域の不純物濃度分布1が図1に示
すようなリニアの分布をもつときに他の不純物濃度分布
に比べて最も高い耐圧を確保できるという利点がある。
An SOI (Silicon On Insul) comprising a support silicon substrate 2a and an active silicon layer 2c formed on the support silicon substrate 2a via a buried oxide film 2b.
ator) The thickness of the active silicon layer 2c on the substrate is 1 μm.
The breakdown voltage of an element partially including a lateral diode structure formed on the following SOI substrate is, for example, when the element is a diode, when the impurity concentration distribution 1 of the drift region has a linear distribution as shown in FIG. Another advantage is that the highest breakdown voltage can be secured as compared with other impurity concentration distributions.

【0012】ここで、ドリフト領域の不純物濃度は、ダ
イオードのアノード側が低濃度で、カソード側が高濃度
に設定される。そして、アノード側の最高濃度は目標耐
圧,活性シリコン層2cの膜厚及び埋込酸化膜2bの膜
厚から算出される。
Here, the impurity concentration of the drift region is set to be low on the anode side of the diode and high on the cathode side of the diode. The maximum concentration on the anode side is calculated from the target breakdown voltage, the thickness of the active silicon layer 2c, and the thickness of the buried oxide film 2b.

【0013】以下、本実施形態に係るマスクの形成方法
について説明する。本実施形態においては、原点の位置
(最も低濃度の位置)をゼロとしたときのドリフト距離
は20μmであり、原点の濃度は10の14乗オーダー
であり、最大距離での濃度、即ち、原点からの距離が2
0μmでの濃度(最高濃度)は10の17乗オーダーで
ある。
Hereinafter, a method for forming a mask according to this embodiment will be described. In the present embodiment, the drift distance when the position of the origin (the position of the lowest density) is set to zero is 20 μm, the density of the origin is on the order of 10 14, and the density at the maximum distance, that is, the origin Distance from is 2
The concentration at 0 μm (the highest concentration) is on the order of 10 17.

【0014】なお、本実施形態に用いたドリフト距離,
原点の濃度及び最大距離での濃度は一例であって、これ
に限定されるものではない。
The drift distance used in the present embodiment,
The density at the origin and the density at the maximum distance are examples, and are not limited thereto.

【0015】先ず、距離軸を5等分して4μm間隔に区
切り、この5つの区間全てに、5等分した距離軸を底辺
とし、頂点が最高濃度に等しい同一の三角形3を配置す
る。
First, the distance axis is divided into 5 equal parts and divided into 4 μm intervals. In all of these five sections, the same triangle 3 whose base is the distance axis divided into five equal parts and whose vertices are equal to the highest density is arranged.

【0016】続いて、不純物濃度分布1と5つの三角形
3との交点4を求め、各交点4から距離軸に投影された
ポイントの内、同一の三角形3より生じた2点間を不純
物導入時にマスクされる領域5aとし、隣接する三角形
3より生じる2点間をマスクしない領域5bとする。
Subsequently, intersection points 4 between the impurity concentration distribution 1 and the five triangles 3 are determined, and, of the points projected from each intersection point 4 on the distance axis, a point between two points generated from the same triangle 3 is used when introducing impurities. A region 5a to be masked is defined, and a region between two points generated by the adjacent triangle 3 is defined as a region 5b not masked.

【0017】次に、SOI基板の活性シリコン層2c上
にフォトレジスト6を塗布し、露光,現像を行うことに
より、上述の方法により求められたマスクする領域5a
にフォトレジスト6が残り、マスクしない領域5bのフ
ォトレジスト6が除去されるようにパターニングを行
い、パターニングされたフォトレジスト6をマスクとし
てリン(P)のイオン注入を行う。
Next, a photoresist 6 is coated on the active silicon layer 2c of the SOI substrate, and is exposed and developed, thereby forming a masked region 5a obtained by the above-described method.
Then, patterning is performed so that the photoresist 6 remains and the photoresist 6 in the unmasked region 5b is removed, and phosphorus (P) ions are implanted using the patterned photoresist 6 as a mask.

【0018】なお、本実施形態においては、注入イオン
源としてリン(P)を用いたが、これに限定される必要
はなく、他のn型不純物やボロン(B)等のp型不純物
を用いても良い。
In this embodiment, phosphorus (P) is used as the ion source for implantation. However, the present invention is not limited to this. Other n-type impurities or p-type impurities such as boron (B) may be used. May be.

【0019】ここで、イオン注入のドーズ(Dose)量
は、図1に示す最高濃度(Nmax)と活性シリコン層2
cの膜厚(Tsoi)との積(Nmax・Tsoi)から算出さ
れる。
Here, the dose amount of the ion implantation depends on the maximum concentration (Nmax) shown in FIG.
It is calculated from the product (Nmax · Tsoi) of c with the film thickness (Tsoi).

【0020】イオン注入後の熱工程は、特性的な拡散長
が三角形3の底辺である4μmになるように設定する。
例えば、リン(P)の場合、1150℃で25時間であ
る。ここで、特性的な拡散長は、2√(D・t)で定義
された量であり、Dは拡散係数,tは拡散時間で定義さ
れる。
The heat step after the ion implantation is set so that the characteristic diffusion length is 4 μm, which is the base of the triangle 3.
For example, in the case of phosphorus (P), the temperature is 1150 ° C. for 25 hours. Here, the characteristic diffusion length is an amount defined by 2√ (D · t), where D is a diffusion coefficient and t is a diffusion time.

【0021】図2は、本実施形態に係るマスクの形成方
法により形成された半導体装置の面方向の距離と不純物
濃度との関係のシミュレーション結果7を示す特性図で
ある。図2より、目標分布となる不純物濃度分布1にシ
ミュレーション結果が非常に近似しており、理想的耐圧
を確保できることが検証できた。
FIG. 2 is a characteristic diagram showing a simulation result 7 of a relationship between a distance in a plane direction and an impurity concentration of a semiconductor device formed by the method for forming a mask according to the present embodiment. From FIG. 2, the simulation result is very close to the impurity concentration distribution 1, which is the target distribution, and it has been verified that the ideal breakdown voltage can be ensured.

【0022】本実施形態では、三角形3aと三角形3b
とは相似関係にあるので、高さ同士の比は底辺同士の比
と等しい。高さは目標の不純物濃度分布に相当し、底辺
はマスクに相当するので、目標の不純物濃度分布の大き
さに比例してマスクサイズが設定されることになる。そ
れ故に、三角形の底辺の長さ当たりに導入されるイオン
注入のドーズ量は目標の不純物濃度分布の大きさに比例
する。
In this embodiment, the triangles 3a and 3b
Are similar to each other, the ratio between the heights is equal to the ratio between the bases. Since the height corresponds to the target impurity concentration distribution and the bottom corresponds to the mask, the mask size is set in proportion to the size of the target impurity concentration distribution. Therefore, the dose of the ion implantation introduced per length of the base of the triangle is proportional to the size of the target impurity concentration distribution.

【0023】しかし、イオン注入直後の濃度プロファイ
ルはマスク開口部のみ一定の値、即ち目標の不純物濃度
分布の最高濃度を有する矩形関数が並んだ分布であるか
ら、不純物を熱工程で拡散させなければならない。
However, the concentration profile immediately after the ion implantation has a constant value only in the mask opening, that is, a distribution in which rectangular functions having the highest concentration of the target impurity concentration distribution are arranged. No.

【0024】導入された不純物量が、目標の不純物濃度
分布の大きさに比例するのは三角形の底辺の長さ当たり
に限ってであるから、導入された不純物の大半がその距
離だけ拡散すれば良いことになる。もし、それより短い
拡散であれば矩形関数が残った分布形状となり、長けれ
ば全体的に均一化してしまうことになる。
Since the amount of the introduced impurity is proportional to the size of the target impurity concentration distribution only around the length of the base of the triangle, if most of the introduced impurity is diffused by that distance. It will be good. If the diffusion is shorter than this, the distribution shape will remain with the rectangular function, and if the diffusion is longer, the distribution will be uniform overall.

【0025】以上より、本実施形態においては、幾何学
的に作図作業のみで簡単に所望の不純物濃度分布を得る
ためのマスク及びプロセスを設計することができ、更
に、フォトリソグラフィ工程上にマスク寸法の制約(例
えば最小加工寸法が1μmである)が存在したとして
も、三角形の底辺の長さの調節によって簡単に対応する
ことができる。
As described above, in this embodiment, a mask and a process for easily obtaining a desired impurity concentration distribution can be easily designed only by a drawing operation geometrically, and further, a mask size is required in a photolithography process. (For example, the minimum processing dimension is 1 μm), it can be easily handled by adjusting the length of the base of the triangle.

【0026】ここで、本実施形態において不純物濃度分
布が定義されているのはドリフト領域の20μmであ
り、この領域外の不純物導入は定義されていない。図3
(a)に示すように、アノード領域8aとカソード領域
8bとの間のドリフト領域9外に不純物を導入するとす
れば、不純物濃度分布は図3(b)に示すように、ドリ
フト領域9外で10の17乗オーダーの濃度になる。上
述の方法により製造される素子のドリフト領域9外の濃
度が、10の17乗以上の高濃度に設計されている、例
えば、図3(c)に示すアノード領域8aとカソード領
域8bのように、10の19乗以上のオーダーの濃度で
あれば、10の17乗オーダーは隠れてしまい問題がな
い。この際、ドリフト領域9の形成後に、活性シリコン
層2cに不純物の導入を行ってアノード領域8a及びカ
ソード領域8bを形成する。実際に、素子が図3(c)
に示すような単純な横型ダイオードであれば、理想的耐
圧を確保できることが検証できた。
Here, in this embodiment, the impurity concentration distribution is defined in the drift region of 20 μm, and the impurity introduction outside this region is not defined. FIG.
As shown in FIG. 3A, if impurities are introduced outside the drift region 9 between the anode region 8a and the cathode region 8b, the impurity concentration distribution becomes outside the drift region 9 as shown in FIG. The density is on the order of 10 17. The concentration outside the drift region 9 of the element manufactured by the above-described method is designed to be a high concentration of 10 17 or more. For example, as shown in an anode region 8a and a cathode region 8b shown in FIG. If the density is on the order of 10.sup.19 or higher, the 10.sup.17th order is hidden and there is no problem. At this time, after forming the drift region 9, an impurity is introduced into the active silicon layer 2c to form the anode region 8a and the cathode region 8b. Actually, the device is shown in FIG.
It has been verified that a simple horizontal diode as shown in FIG.

【0027】上述のドリフト領域9外のマスク設定によ
り、低濃度側の濃度設計の自由度が拡がり、多様な素子
の高耐圧化に寄与することができる。
By setting the mask outside the drift region 9 described above, the degree of freedom of the concentration design on the low concentration side is expanded, and it is possible to contribute to the high breakdown voltage of various elements.

【0028】なお、ドリフト領域9の低濃度側に10の
17乗オーダー以下の低濃度領域を形成する場合や、L
DMOSFETのように10の17乗オーダーのp型ウ
ェル領域をドリフト領域9の低濃度側に隣接して必要な
場合には、前記低濃度領域やp型ウェル領域を形成する
箇所上にフォトレジストを塗布してマスクを設けるよう
にすればよい。この際、ドリフト領域9の高濃度側の外
側は、いずれの素子においても10の19乗以上のオー
ダーに設計されているため、マスクを設けなくても問題
にならない。
In the case where a low-concentration region of the order of 10 17 or less is formed on the low-concentration side of the drift region 9,
When a p-type well region of the order of 10 17 is required adjacent to the low-concentration side of the drift region 9 such as a DMOSFET, a photoresist is formed on the low-concentration region and the portion where the p-type well region is formed. What is necessary is just to apply and to provide a mask. At this time, since the outside of the drift region 9 on the high-concentration side is designed to be on the order of 10.sup.19 or more in any element, there is no problem even if a mask is not provided.

【0029】また、本実施形態においては、三角形3の
頂点高さ(Peak)を不純物濃度分布1の最高濃度(Nma
x)にするようにしたが、これに限定される必要はな
く、最高濃度(Nmax)よりも高く設定するようにしても
よく、例えば図4に示すように、Peak=2・Nmaxのよう
に2倍するようにしてもよい。但し、この場合イオン注
入のドーズ量は、三角形3の頂点高さ(Peak)に相当す
るだけ必要となる。つまり、Dose量=Peak・Tsoiとな
る。図5は、このときのシミュレーション結果を示した
ものであり、理想的耐圧を確保できることが検証でき
た。
In this embodiment, the peak height (Peak) of the triangle 3 is set to the highest concentration (Nma) of the impurity concentration distribution 1.
x), but need not be limited to this, and may be set higher than the maximum density (Nmax). For example, as shown in FIG. 4, Peak = 2 · Nmax You may make it double. However, in this case, the dose amount of the ion implantation is required to correspond to the vertex height (Peak) of the triangle 3. That is, Dose amount = Peak · Tsoi. FIG. 5 shows a simulation result at this time, and it was verified that an ideal withstand voltage can be ensured.

【0030】上述の三角形の高さ設定が最高濃度に等し
いという限界を外したことにより、イオン注入のドーズ
量も同時に高く設定できるようになり、最高濃度(Nma
x)にドーズ量を合わせてしまうと注入電流が装置限界
以下となって注入が装置能力上不可能となる場合でも、
三角形の高さを高くすることで装置上の問題を回避する
とともに、所望の不純物濃度分布を得ることができる。
By removing the limit that the height setting of the triangle is equal to the maximum concentration, the dose amount of the ion implantation can be set high at the same time.
If the dose is adjusted to x) and the injection current becomes lower than the device limit and the injection becomes impossible due to the device capability,
By increasing the height of the triangles, problems in the device can be avoided, and a desired impurity concentration distribution can be obtained.

【0031】また、上述の全ての実施形態においては、
不純物濃度分布1として直線のものを形成するようにし
たが、これに限定される必要はなく、曲線のものにも適
用できる。
In all of the above embodiments,
Although a straight line is formed as the impurity concentration distribution 1, the present invention is not limited to this and can be applied to a curved line.

【0032】[0032]

【発明の効果】請求項1記載の発明は、半導体基板上に
複数の異なる開口寸法の開口部を有するマスクを形成
し、マスクを介して不純物イオンをイオン注入し、熱拡
散を行うことにより面方向に不純物濃度が単調に変化す
るように不純物濃度分布領域を形成する半導体装置の製
造方法において、マスクの開口寸法を決めるに際し、半
導体基板の不純物濃度分布を形成する領域を、面方向に
等間隔の複数の領域に分割し、領域を底辺とする合同な
三角形が領域に存在すると想定し、三角形の高さを、不
純物濃度分布を示す不純物濃度分布線の最高の不純物濃
度以上に設定し、不純物濃度分布線と、三角形の斜辺と
の交点の内、同一の前記三角形の斜辺との交点を半導体
基板上に投影させてできた投影点間にのみマスクを形成
するようにして開口寸法を決め、開口部が形成された箇
所の半導体基板の不純物濃度が、三角形の高さに相当す
る不純物濃度となる不純物イオンのドーズ量で、マスク
を介して半導体基板にイオン注入を行い、イオン注入に
より導入された不純物イオンの熱拡散時の拡散距離が、
三角形の底辺の長さに略同じになるようにしたので、所
望の不純物濃度分布を容易に得ることのできる半導体装
置の製造方法を提供することができた。
According to the first aspect of the present invention, a mask having a plurality of openings having different opening dimensions is formed on a semiconductor substrate, impurity ions are implanted through the mask, and thermal diffusion is performed. In a method of manufacturing a semiconductor device in which an impurity concentration distribution region is formed such that an impurity concentration changes monotonically in a direction, when determining an opening size of a mask, regions where an impurity concentration distribution is formed in a semiconductor substrate are equally spaced in a plane direction. It is assumed that a congruent triangle having the region as the base is present in the region, and the height of the triangle is set to be equal to or higher than the highest impurity concentration of the impurity concentration distribution line indicating the impurity concentration distribution. An opening is formed such that a mask is formed only between the projection points formed by projecting the intersection of the concentration distribution line and the hypotenuse of the same triangle on the semiconductor substrate among the intersections of the hypotenuse of the triangle. The method is determined, and the impurity concentration of the semiconductor substrate at the location where the opening is formed is the dose of impurity ions at which the impurity concentration is equivalent to the height of the triangle, and ion implantation is performed on the semiconductor substrate through the mask. The diffusion distance during thermal diffusion of impurity ions introduced by implantation is
Since the length of the base is made substantially the same as the length of the base of the triangle, a method of manufacturing a semiconductor device capable of easily obtaining a desired impurity concentration distribution can be provided.

【0033】請求項2記載の発明は、請求項1記載の半
導体装置の製造方法において、不純物濃度分布領域の少
なくとも低濃度側に隣接する箇所の半導体基板上に、マ
スクを形成したので、低濃度側の濃度設計の自由度が拡
がり、多様な素子の高耐圧化に寄与することができる。
According to a second aspect of the present invention, in the method of manufacturing a semiconductor device according to the first aspect, a mask is formed on the semiconductor substrate at least at a position adjacent to the low concentration side of the impurity concentration distribution region. The degree of freedom in the concentration design on the side is expanded, and it is possible to contribute to increasing the breakdown voltage of various elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るマスクの形成方法を
示す模式図である。
FIG. 1 is a schematic view illustrating a method for forming a mask according to an embodiment of the present invention.

【図2】本実施形態に係るマスクの形成方法により形成
された半導体装置の面方向の距離と不純物濃度との関係
のシミュレーション結果を示す特性図である。
FIG. 2 is a characteristic diagram showing a simulation result of a relationship between a distance in a surface direction and an impurity concentration of a semiconductor device formed by a mask forming method according to the embodiment;

【図3】本発明の他の実施形態に係るマスクの形成方法
を示す模式図であり、(a)は活性シリコン層上に形成
されたフォトレジストがパターニングされた状態を示す
略断面図であり、(b)は半導体装置の面方向の距離と
不純物濃度との関係のシミュレーション結果を示す特性
図であり、(c)は半導体装置を示す略断面図である。
FIG. 3 is a schematic view illustrating a method for forming a mask according to another embodiment of the present invention, and FIG. 3A is a schematic cross-sectional view illustrating a state where a photoresist formed on an active silicon layer is patterned. FIGS. 7B and 7B are characteristic diagrams showing simulation results of the relationship between the distance in the surface direction of the semiconductor device and the impurity concentration, and FIG. 8C is a schematic cross-sectional view showing the semiconductor device.

【図4】本発明の他の実施形態に係るマスクの形成方法
を示す模式図である。
FIG. 4 is a schematic view illustrating a method for forming a mask according to another embodiment of the present invention.

【図5】本実施形態に係るマスクの形成方法により形成
された半導体装置の面方向の距離と不純物濃度との関係
のシミュレーション結果を示す特性図である。
FIG. 5 is a characteristic diagram showing a simulation result of a relationship between a distance in a plane direction and an impurity concentration of a semiconductor device formed by the mask forming method according to the embodiment;

【図6】従来例に係る半導体基板の面方向に単調に変化
する不純物濃度分布を得るためのマスクを示す略断面図
である。
FIG. 6 is a schematic cross-sectional view showing a mask for obtaining an impurity concentration distribution that monotonically changes in a plane direction of a semiconductor substrate according to a conventional example.

【図7】上図に係るマスクの設計を示すフローチャート
である。
FIG. 7 is a flowchart showing the design of the mask according to the upper diagram.

【符号の説明】[Explanation of symbols]

1 不純物濃度分布 2a 支持体シリコン基板 2b 埋込酸化膜 2c 活性シリコン層 3 三角形 4 交点 5a マスクされる領域 5b マスクされない領域 6 フォトレジスト 7 シミュレーション結果 8a アノード 8b カソード 9 ドリフト領域 10 半導体基板 11 レジスト Reference Signs List 1 impurity concentration distribution 2a support silicon substrate 2b buried oxide film 2c active silicon layer 3 triangle 4 intersection 5a masked region 5b unmasked region 6 photoresist 7 simulation result 8a anode 8b cathode 9 drift region 10 semiconductor substrate 11 resist

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 裕二 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 岸田 貴司 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 高野 仁路 大阪府門真市大字門真1048番地松下電工株 式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Suzuki 1048 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Works, Ltd. 72) Inventor Hitoshi Takano 1048 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に複数の異なる開口寸法の
開口部を有するマスクを形成し、該マスクを介して不純
物イオンをイオン注入し、熱拡散を行うことにより面方
向に不純物濃度が単調に変化するように不純物濃度分布
領域を形成する半導体装置の製造方法において、前記マ
スクの開口寸法を決めるに際し、前記半導体基板の前記
不純物濃度分布を形成する領域を、面方向に等間隔の複
数の領域に分割し、該領域を底辺とする合同な三角形が
前記領域に存在すると想定し、前記三角形の高さを、前
記不純物濃度分布を示す不純物濃度分布線の最高の不純
物濃度以上に設定し、前記不純物濃度分布線と、前記三
角形の斜辺との交点の内、同一の前記三角形の斜辺との
交点を前記半導体基板上に投影させてできた投影点間に
のみマスクを形成するようにして前記開口寸法を決め、
前記開口部が形成された箇所の前記半導体基板の不純物
濃度が、前記三角形の高さに相当する不純物濃度となる
不純物イオンのドーズ量で、前記マスクを介して前記半
導体基板にイオン注入を行い、該イオン注入により導入
された不純物イオンの熱拡散時の拡散距離が、前記三角
形の底辺の長さに略同じになるようにしたことを特徴と
する半導体装置の製造方法。
1. A mask having a plurality of openings having different opening dimensions is formed on a semiconductor substrate, impurity ions are implanted through the mask, and thermal diffusion is performed, so that the impurity concentration is monotonically increased in a plane direction. In a method of manufacturing a semiconductor device in which an impurity concentration distribution region is formed so as to change, when determining an opening size of the mask, a region in the semiconductor substrate where the impurity concentration distribution is formed is formed by a plurality of regions equally spaced in a plane direction. Assuming that a congruent triangle having the region as the base is present in the region, the height of the triangle is set to be equal to or higher than the highest impurity concentration of the impurity concentration distribution line indicating the impurity concentration distribution, A mask is formed only between projection points formed by projecting the intersection of the same hypotenuse of the triangle among the intersections of the impurity concentration distribution line and the hypotenuse of the triangle on the semiconductor substrate. To determine the opening dimensions,
Impurity concentration of the semiconductor substrate at the location where the opening is formed, at a dose of impurity ions having an impurity concentration corresponding to the height of the triangle, ion implantation into the semiconductor substrate through the mask, A method of manufacturing a semiconductor device, wherein a diffusion distance of thermal diffusion of impurity ions introduced by the ion implantation is substantially equal to a length of a base of the triangle.
【請求項2】 前記不純物濃度分布領域の少なくとも低
濃度側に隣接する箇所の前記半導体基板上に、マスクを
形成したことを特徴とする請求項1記載の半導体装置の
製造方法。
2. The method according to claim 1, wherein a mask is formed on the semiconductor substrate at a location adjacent to at least the low concentration side of the impurity concentration distribution region.
JP19444997A 1997-07-18 1997-07-18 Method for manufacturing semiconductor device Expired - Fee Related JP3271558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19444997A JP3271558B2 (en) 1997-07-18 1997-07-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19444997A JP3271558B2 (en) 1997-07-18 1997-07-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH1140511A true JPH1140511A (en) 1999-02-12
JP3271558B2 JP3271558B2 (en) 2002-04-02

Family

ID=16324765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19444997A Expired - Fee Related JP3271558B2 (en) 1997-07-18 1997-07-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3271558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287973A (en) * 2006-04-18 2007-11-01 Toyota Motor Corp Stencil mask, its utilization method, and charged particle injector utilizing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287973A (en) * 2006-04-18 2007-11-01 Toyota Motor Corp Stencil mask, its utilization method, and charged particle injector utilizing it

Also Published As

Publication number Publication date
JP3271558B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US6855614B2 (en) Sidewalls as semiconductor etch stop and diffusion barrier
JPS5939906B2 (en) Manufacturing method of semiconductor device
KR100779005B1 (en) Semiconductor device and manufacturing method thereof
KR970007786B1 (en) Preparation process of silicon field emitter array
JP2005509270A (en) Double diffusion field effect transistor with reduced on-resistance
KR100259411B1 (en) Process for making doped polysilicon layers on sidewalls
KR890003474B1 (en) Lateral bipolar tr forming on soi plate
JP3271558B2 (en) Method for manufacturing semiconductor device
JP2009147381A (en) Method of manufacturing sic vertical mosfet
JPH04306879A (en) Thyristor and manufacture thereof
US6338997B2 (en) Method of fabricating semiconductor device having improved bias dependability
TWI677982B (en) Semiconductor device and method of manufacturing the same
US5028550A (en) Method of manufacturing semiconductor device
JP2004363515A (en) Method of manufacturing silicon carbide semiconductor device
KR20100079575A (en) Bipolar junction transistor and method of manufacturing the same
CN112259448B (en) Ion implantation method after grid formation
JP2005019614A (en) Method of manufacturing semiconductor device
US6087675A (en) Semiconductor device with an insulation film having emitter contact windows filled with polysilicon film
JP3275699B2 (en) Semiconductor device and manufacturing method thereof
JP4296807B2 (en) Manufacturing method of semiconductor device
JPH05283352A (en) Manufacture of semiconductor device
US5376563A (en) Method of manufacturing an emitter base self alignment structure
JPH0462849A (en) Manufacture of semiconductor device
WO2002056358A2 (en) Sidewalls as semiconductor etch stop and diffusion barrier
CN116613067A (en) High-voltage transistor and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees