JPH1140139A - Positive electrode for battery and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode for battery and nonaqueous electrolyte secondary battery

Info

Publication number
JPH1140139A
JPH1140139A JP9189583A JP18958397A JPH1140139A JP H1140139 A JPH1140139 A JP H1140139A JP 9189583 A JP9189583 A JP 9189583A JP 18958397 A JP18958397 A JP 18958397A JP H1140139 A JPH1140139 A JP H1140139A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
active material
conductive agent
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9189583A
Other languages
Japanese (ja)
Inventor
Kotaro Kobayashi
康太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9189583A priority Critical patent/JPH1140139A/en
Publication of JPH1140139A publication Critical patent/JPH1140139A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery which is superior surely in high rate discharge performance and to make full use of conductive agent in a depolarizing mix for cell for positive active material effectively, even when active material with variation in particle diameters is used. SOLUTION: In a positive electrode for a battery consisting of active material of lithium transition metal compound oxide, a depolarizing mix for cell composed of a conductive agent and a binder, and a two dimensional collector, the conductive agent contains carbon material in a carbon black base, the carbon material in a carbon black base has as physical property such that an absorption amount of di-n-butyl phthalate is not more than 2.5 ml per 1 g, and has a specific resistance of 10 Ω cm when the depolarizing mix for cell is pressurized by 150 kgf/cm<2> under dry condition. It acts effectively, especially when a composition of the lithium transition metal compound oxide is indicated by Lix Mn2- YAy O4 (0.1<=x<=1.1, 0<=y<=0.3, and A is made of not less than 1 kind of metal selected from transition metal excluding Mn).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電池用正極及び非水
電解液二次電池に関するものであり、さらに詳しくは電
池の高率放電特性(負荷特性)向上に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode for a battery and a non-aqueous electrolyte secondary battery, and more particularly to improvement of a high-rate discharge characteristic (load characteristic) of the battery.

【0002】[0002]

【従来の技術】従来、再充電が可能な二次電池の分野で
は、鉛蓄電池、ニッケル−カドミウム電池、ニッケル−
水素電池等の水溶液系電池が主流であった。しかしなが
ら、近年、携帯電話やノート型パソコンの急激な普及に
伴い、より小型で高容量な電池が求められるようになっ
てきた。このような要求に対して、正極にコバルト酸リ
チウム等のリチウム遷移金属複合酸化物、負極にリチウ
ムイオンを挿入・脱離可能な炭素材を用いたリチウム二
次電池が開発された。負極にリチウムイオンを挿入・脱
離可能な炭素材を用いたリチウム二次電池は、負極に金
属リチウムを用いた同電池と比べるとエネルギー密度は
低下するが、安全で且つ従来の水溶液系電池よりも高エ
ネルギー密度であるという長所を持つことから、急激に
市場を広めている。
2. Description of the Related Art Conventionally, in the field of rechargeable secondary batteries, lead-acid batteries, nickel-cadmium batteries, nickel-
Aqueous solution batteries such as hydrogen batteries were the mainstream. However, in recent years, with the rapid spread of mobile phones and notebook personal computers, smaller and higher-capacity batteries have been required. In response to such demands, lithium secondary batteries using a lithium transition metal composite oxide such as lithium cobalt oxide for the positive electrode and a carbon material capable of inserting and removing lithium ions for the negative electrode have been developed. A lithium secondary battery using a carbon material that allows lithium ions to be inserted and desorbed from the negative electrode has a lower energy density than the same battery using metallic lithium as the negative electrode, but is safer than conventional aqueous batteries. Has the advantage of high energy density and is rapidly expanding its market.

【0003】リチウム二次電池用の正極は、一般に以下
のように作製される。リチウム遷移金属複合酸化物から
なる活物質粉末と導電剤を有機溶媒中に溶解させた結着
剤溶液とともに混練、分散させることにより得たスラリ
を二次元集電体であるアルミニウム箔上に塗布、乾燥し
たものを加圧し、固着させる。上記正極は、その活物質
自身の導電性が低いため、活物質と結着剤のみで電極を
形成すると電極のオーム損が大きく、所望の放電容量が
得られないという問題がある。そこで、例えば特開平8
−83607号公報では、導電剤として平均粒径が1〜
10μmである炭素粉末を正極活物質100重量部に対
して2〜10重量部含有させることにより、集電性を向
上させ、電池の充放電サイクル特性や高率放電特性を向
上させることを提案している。
A positive electrode for a lithium secondary battery is generally manufactured as follows. A slurry obtained by kneading and dispersing an active material powder composed of a lithium transition metal composite oxide and a conductive agent in an organic solvent together with a binder solution is applied to an aluminum foil that is a two-dimensional current collector, The dried product is pressed and fixed. Since the positive electrode has low conductivity of the active material itself, if the electrode is formed only with the active material and the binder, there is a problem that the ohmic loss of the electrode is large and a desired discharge capacity cannot be obtained. Therefore, for example, Japanese Patent Application Laid-Open
In JP-83607, the average particle size is 1 to 1 as a conductive agent.
It has been proposed that the carbon powder having a thickness of 10 μm is contained in an amount of 2 to 10 parts by weight based on 100 parts by weight of the positive electrode active material, thereby improving the current collecting property and improving the charge / discharge cycle characteristics and the high rate discharge characteristics of the battery. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記正極
活物質は、その組成や製造法の違いにより様々な平均粒
径、粒度分布を持つ。特に正極活物質がマンガン系複合
酸化物の場合では、正極活物質の粒度分布がその代表的
な出発原料である電解マンガンの粒度分布に大きく依存
する。従ってマンガン系複合酸化物からなる正極活物質
は、0.1μm程度から100μmまでの広範囲な粒度
分布を持つものが多い。活物質の粒度分布にバラツキが
あると、活物質と導電剤粉末とを混合する際に前記導電
剤粉末が局在化しやすい。前記局在化した状態では導電
剤を有効活用しているとは言い難く、所望の電池性能が
得られない場合がある。そのため、上記特開平8−83
607号公報の技術を採用しても導電剤が必ずしも有効
に作用するとは限らない。本発明が解決しようとする課
題は、粒径にバラツキのある活物質粒子を用いた場合で
も、確実に高率放電性能に優れ、且つ有効に導電剤を活
用できる電池用正極を提供することである。
However, the above-mentioned positive electrode active materials have various average particle sizes and particle size distributions depending on the composition and the production method. In particular, when the positive electrode active material is a manganese-based composite oxide, the particle size distribution of the positive electrode active material greatly depends on the particle size distribution of electrolytic manganese, which is a typical starting material. Therefore, many positive electrode active materials composed of a manganese-based composite oxide have a wide particle size distribution from about 0.1 μm to 100 μm. If the particle size distribution of the active material varies, the conductive agent powder tends to be localized when the active material and the conductive agent powder are mixed. In the localized state, it is difficult to say that the conductive agent is effectively utilized, and a desired battery performance may not be obtained in some cases. Therefore, Japanese Patent Application Laid-Open No. 8-83
Even if the technology of JP-A-607 is adopted, the conductive agent does not always work effectively. The problem to be solved by the present invention is to provide a positive electrode for a battery in which even when active material particles having a variation in particle diameter are used, they are surely excellent in high-rate discharge performance and can effectively utilize a conductive agent. is there.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の、リチウム遷移金属複合酸化物からなる活
物質及び導電剤及び結着剤からなる合剤と二次元集電体
からなる電池用正極は、前記導電剤がカーボンブラック
系炭素材を含み、当該カーボンブラック系炭素材は、1
g当りのジブチルフタレート吸収量が2.5ml以下の
物性であり、前記合剤を乾燥状態で150kgf/cm
2で加圧した際の当該合剤の比抵抗が10Ω・cm以下
であることを特徴とする。上記導電剤にはカーボンブラ
ック系炭素材の他に黒鉛等、他の導電性炭素材、Al等
の金属粉末等が使用可能である。本発明におけるカーボ
ンブラックは、いわゆるアセチレンブラック、ファーネ
スブラック、サーマルブラック等を好適に用いることが
できる。カーボンブラック系炭素材として1g当りのジ
ブチルフタレート(以下、DBPと略記する)吸収量が
2.5ml以下のものを用いることが好ましい理由を以
下に説明する。カーボンブラック系炭素材は比表面積が
比較的大きいことから、活物質粉末同士の電気的接触を
良好なものとし、且つ電解液吸液性を大幅に向上させ、
電解液/正極の接触を良好にする利点がある。その反面
カーボンブラック系炭素材を含む活物質合剤作製工程に
おいて、前記合剤のスラリを混合する際、カーボンブラ
ックが多量の液体を吸収し、スラリが不安定になり、更
にカーボンブラック同士が凝集する。前記凝集は活物質
合剤中での導電剤の局在化を引き起こす。従って電池用
電極の導電剤としてのカーボンブラックは、必要以上に
液体を吸収しない物性である必要がある。つまりカーボ
ンブラック1g当りのDBP吸収量が2.5ml以下の
物性である。カーボンブラックのDBP吸収量測定に
は、公知のジブチルフタレートアブソープメータを用
い、全ての測定につき同条件で実施した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention relates to an active material comprising a lithium transition metal composite oxide, a mixture comprising a conductive agent and a binder, and a two-dimensional current collector. In the battery positive electrode, the conductive agent includes a carbon black-based carbon material.
It has physical properties such that the absorption amount of dibutyl phthalate per g is 2.5 ml or less, and the mixture is dried at 150 kgf / cm
It is characterized in that the specific resistance of the mixture when pressurized in 2 is 10 Ω · cm or less. As the conductive agent, other conductive carbon materials such as graphite and metal powders such as Al can be used in addition to carbon black-based carbon materials. As the carbon black in the present invention, so-called acetylene black, furnace black, thermal black and the like can be suitably used. The reason why it is preferable to use a carbon black-based carbon material having a dibutyl phthalate (hereinafter abbreviated as DBP) absorption amount of 2.5 ml or less per 1 g will be described below. Since the carbon black-based carbon material has a relatively large specific surface area, the electrical contact between the active material powders is made good, and the electrolyte absorbing property is greatly improved.
There is an advantage of improving the contact between the electrolyte and the positive electrode. On the other hand, in the step of preparing an active material mixture containing a carbon black-based carbon material, when mixing the slurry of the mixture, the carbon black absorbs a large amount of liquid, the slurry becomes unstable, and the carbon blacks further aggregate. I do. The aggregation causes localization of the conductive agent in the active material mixture. Therefore, carbon black as a conductive agent for a battery electrode needs to have physical properties that do not absorb liquid more than necessary. That is, the physical properties are such that the DBP absorption amount per gram of carbon black is 2.5 ml or less. The DBP absorption of carbon black was measured using a known dibutyl phthalate absorbometer under the same conditions for all measurements.

【0006】また上記比抵抗を示す電池用正極が高率放
電性能に優れることを、本発明者は鋭意検討の結果見出
した。これは活物質粒子の粒径にバラツキがある場合に
も効果があり、前述した課題を解決できる。上記比抵抗
の測定は、φ14に打ち抜いた乾燥状態の正極をその厚
み方向上下からSUS製の円柱棒で150kgf/cm
2で加圧し、そのときの抵抗値をミリオームメータ(横
河ヒューレットパッカード社製4328MILIOHMMETER)
を用いて室温で、最大100V、周波数1kHzの交流
を印加した条件で、以下に示す(1)式により算出するも
のである。これにより二次元集電体の片面あるいは両面
に活物質を含む合剤が塗着されている形態の電池用正極
を用いて合剤の比抵抗を測定可能である。
The present inventor has found that the positive electrode for a battery having the above specific resistance has excellent high-rate discharge performance as a result of earnest studies. This is effective even when the particle diameters of the active material particles vary, and can solve the above-mentioned problem. In the measurement of the specific resistance, a positive electrode in a dry state punched to φ14 was placed at 150 kgf / cm with a SUS cylindrical rod from above and below the thickness direction.
Pressurize with 2 , and measure the resistance value at that time in milliohm meter (4328MILIOHMMETER manufactured by Yokogawa Hewlett-Packard Company)
Is calculated at room temperature under the condition that an alternating current of 100 V at the maximum and a frequency of 1 kHz is applied by the following equation (1). Thus, the specific resistance of the mixture can be measured using the battery positive electrode in which the mixture containing the active material is applied to one or both surfaces of the two-dimensional current collector.

【0007】 比抵抗=(抵抗値×加圧電極面積)/(合剤厚み) (1) (1)式における合剤厚みは、電極厚みから二次元集電体
の厚みを差し引いた値である。実際に比抵抗を測定する
際には二次元集電体の厚み分の抵抗値が加算される訳で
あるが、その値は合剤のそれに比して無視できる程度の
小さい値であるため、測定に際し問題を生じない。ま
た、一旦電解液に接触した活物質合剤の比抵抗測定の際
にも、合剤を乾燥状態にすることにより電解液中のイオ
ンの移動が起こらないため測定に際し問題を生じない。
Specific resistance = (resistance value × pressing electrode area) / (mixture thickness) (1) The mixture thickness in equation (1) is a value obtained by subtracting the thickness of the two-dimensional current collector from the electrode thickness. . When actually measuring the specific resistance, the resistance value for the thickness of the two-dimensional current collector is added, but since that value is negligibly small compared to that of the mixture, There is no problem in measurement. Also, when measuring the specific resistance of the active material mixture once in contact with the electrolytic solution, since the mixture is kept in a dry state, no movement of ions in the electrolytic solution occurs, so that there is no problem in the measurement.

【0008】また本発明の電池用正極の活物質合剤中の
導電材の総含有量は、リチウム遷移金属複合酸化物10
0重量部に対して1〜10重量部とすることが望まし
い。含有量が1重量部未満であると、有効な集電性が損
なわれる。また、10重量部より多く含有させると、電
極の体積容量密度が低下し、電池の設計段階でエネルギ
ー密度の低下を避けられない。
The total content of the conductive material in the active material mixture of the positive electrode for a battery according to the present invention is determined by using a lithium transition metal composite oxide 10
It is desirable to use 1 to 10 parts by weight for 0 part by weight. When the content is less than 1 part by weight, the effective current collecting property is impaired. Further, when the content is more than 10 parts by weight, the volume capacity density of the electrode is reduced, and it is inevitable that the energy density is reduced at the stage of designing the battery.

【0009】いずれのリチウム遷移金属複合酸化物から
なる正極活物質においても、本発明による電極特性向上
の効果は見られるが、LixMn2-yy4(0.1≦x
≦1.1、0≦y≦0.3、A:Co、Al、Fe等の
遷移金属のいずれかからなる)で示されるマンガン系複
合酸化物の場合、特に効果が顕著である。
In any positive electrode active material comprising a lithium transition metal composite oxide, the effect of improving electrode characteristics according to the present invention can be seen, but Li x Mn 2-y A y O 4 (0.1 ≦ x
≦ 1.1, 0 ≦ y ≦ 0.3, A: made of any one of transition metals such as Co, Al, and Fe), the effect is particularly remarkable.

【0010】[0010]

【発明の実施の形態】以下、リチウム二次電池用正極及
びリチウム二次電池を例に本発明の実施の形態を詳細に
説明する。本発明における正極作製方法を以下に記す。
活物質である0.1μm程度から100μmまでの粒度
分布を持つマンガン酸リチウム(LiMn24)に、導
電剤として活物質100重量部に対して8重量部のりん
片状黒鉛(平均粒径:5〜8μm)8重量部及びDBP
吸収量が2.5ml/gのカーボンブラック(アセチレ
ンブラック)2重量部と、結着剤としてのポリフッ化ビ
ニリデンを10重量部添加し、これに分散溶媒としてN
−メチルピロリドンを添加、混練した活物質合剤スラリ
を厚み20μmの二次元集電体であるアルミニウム箔の
両面に塗布、その後乾燥、プレス、断裁することにより
厚み200μmの正極を得た。この正極の比抵抗は、5
Ω・cmであった。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail using a positive electrode for a lithium secondary battery and a lithium secondary battery as examples. The method for producing a positive electrode according to the present invention is described below.
Lithium manganate (LiMn 2 O 4 ) having a particle size distribution of about 0.1 μm to 100 μm, which is an active material, is used as a conductive agent. : 5 to 8 μm) 8 parts by weight and DBP
2 parts by weight of carbon black (acetylene black) having an absorption amount of 2.5 ml / g and 10 parts by weight of polyvinylidene fluoride as a binder were added, and N was added as a dispersing solvent.
An active material mixture slurry to which -methylpyrrolidone was added and kneaded was applied to both sides of an aluminum foil as a two-dimensional current collector having a thickness of 20 µm, and then dried, pressed, and cut to obtain a positive electrode having a thickness of 200 µm. The specific resistance of this positive electrode is 5
Ω · cm.

【0011】(負極の作製法)グラファイト粉末に結着
剤としてのポリフッ化ビニリデンをグラファイト100
重量部に対して10重量部添加し、これに分散溶媒とし
N−メチルピロリドンを添加、混練したスラリを二次元
集電体である厚み10μmの圧延銅箔の両面に塗布、そ
の後乾燥、プレス、断裁することにより厚み130μm
の負極を得た。
(Production Method of Negative Electrode) Polyvinylidene fluoride as a binder is added to graphite powder in graphite 100
10 parts by weight with respect to parts by weight, N-methylpyrrolidone as a dispersion solvent was added thereto, and the kneaded slurry was applied to both sides of a 10 μm-thick rolled copper foil as a two-dimensional current collector, and then dried, pressed, 130μm thickness by cutting
A negative electrode was obtained.

【0012】上記の方法により作製した正極、負極を、
厚み25μmのポリエチレン製セパレータを介して捲回
し、この捲回群を円筒形の電池容器に挿入、上蓋をカシ
メ、封口後、注液口より電解液を所定量注入、封口する
ことにより円筒型リチウム二次電池を得た。電解液には
エチレンカーボネートとジメチルカーボネートの混合溶
液中へ6フッ化リン酸リチウム(LiPF6)を1モル
/リットル溶解したものを用いた。この電池の設計値の
電池容量は1300mAhである。
The positive electrode and the negative electrode produced by the above method are
After being wound through a 25 μm-thick polyethylene separator, the wound group is inserted into a cylindrical battery container, the upper lid is swaged, and after sealing, a predetermined amount of electrolytic solution is injected from the injection port and sealed to form a cylindrical lithium battery. A secondary battery was obtained. As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) at 1 mol / liter in a mixed solution of ethylene carbonate and dimethyl carbonate was used. The battery capacity of the design value of this battery is 1300 mAh.

【0013】本発明の正極及び電池の製造方法には特に
制限はなく、また正極の合剤に用いる結着剤、負極活物
質、電解液も通常用いられているものが使用可能であ
る。本例で用いた以外の上記結着剤としては、テフロ
ン、ポリエチレン、ポリスチレン、ポリブタジエン、ブ
チルゴム、ニトリルゴム、スチレン/ブタジエンゴム、
多硫化ゴム、ニトロセルロース、シアノエチルセルロー
ス、各種ラテックス、アクリロニトリル、フッ化ビニ
ル、フッ化ビニリデン、フッ化プロピレン、フッ化クロ
ロピレン等の単体又はこれらの混合体などが好適に用い
ることができる。但しこれらは電解液とのマッチングが
重要視される。上記列挙した結着剤は本例のような、電
解液が非水電解液(有機電解液)の場合でさえも好適に
用いることができる。本例で用いた以外のリチウム遷移
金属複合酸化物からなる正極活物質としては、リチウム
を挿入・脱離可能な材料であり、予め十分な量のリチウ
ムを挿入した材料が好ましい。例えば、リチウム・コバ
ルト複合酸化物、リチウム・ニッケル複合酸化物、リチ
ウム・バナジウム複合酸化物等がある。また、これら及
び本例で用いたリチウム・マンガン複合酸化物において
マンガンの一部を、それ以外の遷移金属(Co、Al、
Fe等)で置換させたものでも良い。負極活物質にも特
に制限はない。本例で用いた以外にも、例えばリチウム
金属、リチウム合金や各種黒鉛材、コークスなどの炭素
質材料、ポリアセチレンなどの導電性ポリマー等を好適
に用いることができる。中でも上記正極活物質と同様に
リチウムを挿入・脱離可能な材料である各種黒鉛材、コ
ークスなどの炭素質材料、ポリアセチレンなどの導電性
ポリマー等が特に好ましい。電解液としては、一般的な
リチウム塩を電解質とし、これを有機溶媒に溶解した電
解液が用いられる。しかし、用いられるリチウム塩や有
機溶媒としては特に制限されない。本例で用いた以外の
ものとして例えば、電解質としては、LiClO4、L
iAsF6、LiBF4、LiB(C654、CH3SO
3Li、CF3SO3Li等やこれらの混合物が用いられ
る。また、有機溶媒としては、プロピレンカーボネー
ト、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、γ−ブチロラクトン、テトラヒドロフラン、1,
3−ジオキソラン、4−メチル−1,3−ジオキソラ
ン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトニル等の単独溶媒ま
たはこれら2種類以上の混合溶媒を用いることができ
る。
The method for producing the positive electrode and the battery according to the present invention is not particularly limited, and a binder, a negative electrode active material, and an electrolyte commonly used for a positive electrode mixture can be used. Examples of the binder other than those used in this example include Teflon, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber,
A simple substance such as polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloropyrene fluoride, or a mixture thereof can be suitably used. However, matching of these with the electrolytic solution is important. The binders listed above can be suitably used even when the electrolyte is a non-aqueous electrolyte (organic electrolyte) as in this example. The positive electrode active material made of a lithium transition metal composite oxide other than the one used in this example is a material into which lithium can be inserted and desorbed, and a material into which a sufficient amount of lithium has been inserted in advance is preferable. For example, there are a lithium-cobalt composite oxide, a lithium-nickel composite oxide, a lithium-vanadium composite oxide, and the like. Further, in these and the lithium-manganese composite oxide used in this example, part of manganese was replaced with other transition metals (Co, Al,
Fe or the like. There is no particular limitation on the negative electrode active material. In addition to those used in this example, for example, lithium metal, lithium alloy, various graphite materials, carbonaceous materials such as coke, and conductive polymers such as polyacetylene can be suitably used. Among them, various graphite materials which are capable of inserting and removing lithium, carbonaceous materials such as coke, conductive polymers such as polyacetylene, and the like are particularly preferable, similarly to the positive electrode active material. As the electrolytic solution, an electrolytic solution obtained by dissolving a general lithium salt as an electrolyte in an organic solvent is used. However, the lithium salt or organic solvent used is not particularly limited. Examples of electrolytes other than those used in this example include LiClO 4 , L
iAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO
3 Li, CF 3 SO 3 Li, etc., and mixtures thereof are used. Further, as the organic solvent, propylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran,
A single solvent such as 3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitonyl and the like, or a mixed solvent of two or more thereof can be used.

【0014】また本例ではリチウム二次電池用正極及び
リチウム二次電池を例に本発明を説明してきたが、電池
系は特に問わない。
In this embodiment, the present invention has been described by taking the positive electrode for a lithium secondary battery and the lithium secondary battery as examples, but the battery system is not particularly limited.

【0015】[0015]

【実施例】上述した発明の実施の形態に記載したリチウ
ム二次電池(実施例1)の他に、正極の導電剤種類、導
電剤量を表1に示すとおりにした以外は実施例1と同条
件で作製したリチウム二次電池(実施例2〜7、比較例
1〜4)を作製した。各々の正極の比抵抗及び設計値の
電池容量を同じく表1に示す。
EXAMPLES In addition to the lithium secondary battery (Example 1) described in the above-described embodiment of the present invention, Examples 1 and 2 were the same as those of Example 1 except that the type of conductive agent and the amount of conductive agent for the positive electrode were as shown in Table 1. Lithium secondary batteries (Examples 2 to 7, Comparative Examples 1 to 4) manufactured under the same conditions were manufactured. Table 1 also shows the specific resistance of each positive electrode and the designed battery capacity.

【0016】以上の電池において、放電容量及び高率放
電性能についての比較をした。放電容量試験は、定電流
で8時間率(1/8C)で8時間充電した後、8時間率
(1/8C)で終止電圧=3.2Vまで放電した。この
条件での各々の電池の電池容量を表1に示す。電池容量
は実施例2の電池の放電容量を100%とした時の比
(%)で示した。高率放電性能は、初期容量試験後充放
電効率が安定した後、定電流で8時間率で8時間充電
し、放電を8時間率(1/8C)、終止電圧=3.2V
で実施したときの放電容量、1時間率(1C)で1時間
充電し、放電を2時間率(2C)、終止電圧=3.2V
で実施したときの放電容量を測定し、その比を表1に示
す。高率放電は、1/8C放電に対する2C放電容量比
率(%)で示した。
The above batteries were compared with respect to discharge capacity and high-rate discharge performance. In the discharge capacity test, the battery was charged at a constant current at an 8-hour rate (1/8 C) for 8 hours, and then discharged at an 8-hour rate (1/8 C) to a final voltage of 3.2 V. Table 1 shows the battery capacity of each battery under these conditions. The battery capacity was shown as a ratio (%) when the discharge capacity of the battery of Example 2 was set to 100%. The high-rate discharge performance is as follows: after the charge / discharge efficiency is stabilized after the initial capacity test, the battery is charged at a constant current for 8 hours at an 8-hour rate, the discharge is performed at an 8-hour rate (1 / 8C), and the final voltage = 3.2 V.
Discharge capacity at the time of 1 hour, charge at 1 hour rate (1C) for 1 hour, discharge at 2 hour rate (2C), end voltage = 3.2V
, And the ratio is shown in Table 1. The high-rate discharge was represented by a 2C discharge capacity ratio (%) to a 1 / 8C discharge.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかなように、電極の比抵抗が
10Ω・cm以下であり、DBP吸収量が2.5ml/
g以下である実施例1〜10のリチウム二次電池は、安
定した電池容量とともに高率放電(2C/(1/8C)
比)においても75%以上の比が得られている。これに
対し、比抵抗が10Ω・cmよりも高い比較例1〜4
は、放電容量、高率放電性能ともに非常に低いことがわ
かる。この結果から、本発明の実施例の電池は、従来の
電池よりも放電容量、高率放電性能に優れた電池が得ら
れることがわかる。また、正極導電剤であるカーボンブ
ラックのDBP吸収量が比較例4の場合2.5ml/g
を越えているため、電極の比抵抗が10Ω・cmを越え
てしまっている。これは前記カーボンブラックのDBP
吸収量が2.5ml/gよりも大きくなるとスラリ性状
が悪くなり、塗布工程で支障を生じ、そのため正極活物
質合剤中での導電剤の局在化が起こり、実施例の電池に
比して導電剤の有効活用がなされていなかったと考えら
れる(放電容量及び高率放電特性のデータから)。従っ
て、DBP吸収量は2.5ml/g以下である必要があ
る。
As is clear from Table 1, the specific resistance of the electrode is 10 Ω · cm or less, and the DBP absorption is 2.5 ml / cm 2.
g or less, the lithium secondary batteries of Examples 1 to 10 have stable battery capacity and high rate discharge (2C / (1 / 8C)).
Ratio) of 75% or more. On the other hand, Comparative Examples 1 to 4 having a specific resistance higher than 10 Ω · cm
Indicates that both the discharge capacity and the high-rate discharge performance are very low. From these results, it can be seen that the batteries of Examples of the present invention can provide batteries having better discharge capacity and higher rate discharge performance than conventional batteries. Further, when the DBP absorption amount of carbon black as the positive electrode conductive agent was Comparative Example 4, it was 2.5 ml / g.
, The specific resistance of the electrode exceeds 10 Ω · cm. This is the carbon black DBP
If the amount of absorption is more than 2.5 ml / g, the slurry properties deteriorate, causing troubles in the coating process, and as a result, the conductive agent is localized in the positive electrode active material mixture. It is considered that the conductive agent was not effectively used (from the data of the discharge capacity and the high-rate discharge characteristics). Therefore, the DBP absorption amount needs to be 2.5 ml / g or less.

【0019】また、正極導電剤添加量が1重量部を下回
ると若干高率放電特性が低下する傾向が見られる。ま
た、導電剤添加量が10重量部より多くなると、正極の
放電容量の向上以上に活物質充填量が低下するため、設
計段階での電池容量が大幅に低下する。このことから、
導電剤の総添加量は1重量部以上10重量部以下が好ま
しい。本実施例では、正極にマンガン酸リチウム、負極
にグラファイト、電解液にエチレンカーボネートとジメ
チルカーボネートの混合溶液中へ6フッ化リン酸リチウ
ムを1モル/リットル溶解したものを用いたが、前記し
たように本発明は上記の材料構成に限定されるものでは
なく、正極の比抵抗が10Ω・cm以下であれば、他の
材料構成からなる電池においても同等の効果が確認され
ている。
On the other hand, when the amount of the positive electrode conductive agent is less than 1 part by weight, there is a tendency that the high-rate discharge characteristics slightly decrease. On the other hand, when the amount of the conductive agent is more than 10 parts by weight, the amount of the active material charged is reduced more than the improvement of the discharge capacity of the positive electrode, so that the battery capacity at the design stage is significantly reduced. From this,
The total amount of the conductive agent is preferably 1 part by weight or more and 10 parts by weight or less. In this example, lithium manganate was used as the positive electrode, graphite was used as the negative electrode, and lithium hexafluorophosphate dissolved at 1 mol / l in a mixed solution of ethylene carbonate and dimethyl carbonate was used as the electrolyte. However, the present invention is not limited to the above-described material constitution, and the same effect has been confirmed in batteries having other material constitutions as long as the specific resistance of the positive electrode is 10 Ω · cm or less.

【0020】[0020]

【発明の効果】上述したように、本発明によれば、正極
導電剤がカーボンブラック系炭素材を含み、当該カーボ
ンブラック系炭素材は、1g当りのジブチルフタレート
吸収量が2.5ml以下の物性であり、且つ正極活物質
合剤の150kgf/cm2加圧時の比抵抗を10Ω・
cm以下にすることにより、粒度分布の異なる様々な正
極活物質においても常に最適な導電剤の存在状態を提供
することができ、その結果、放電容量、高率放電特性に
優れた電池が得られる。
As described above, according to the present invention, the positive electrode conductive agent contains a carbon black-based carbon material, and the carbon black-based carbon material has a physical property of absorbing 2.5 ml or less of dibutyl phthalate per 1 g. And the specific resistance of the positive electrode active material mixture when pressurized to 150 kgf / cm 2 is 10Ω ·
cm or less, it is possible to always provide an optimal state of the conductive agent even in various positive electrode active materials having different particle size distributions. As a result, a battery having excellent discharge capacity and high rate discharge characteristics can be obtained. .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウム遷移金属複合酸化物からなる活物
質及び導電剤及び結着剤からなる合剤と二次元集電体か
らなる電池用正極において、 前記導電剤がカーボンブラック系炭素材を含み、当該カ
ーボンブラック系炭素材は、1g当りのジブチルフタレ
ート吸収量が2.5ml以下の物性であり、 前記合剤を乾燥状態で150kgf/cm2で加圧した
際の当該合剤の比抵抗が10Ω・cm以下であることを
特徴とする電池用正極。
1. A battery positive electrode comprising a two-dimensional current collector and an active material comprising a lithium-transition metal composite oxide, a mixture comprising a conductive agent and a binder, wherein the conductive agent comprises a carbon black-based carbon material. The carbon black-based carbon material has physical properties such that the absorption amount of dibutyl phthalate per 1 g is 2.5 ml or less, and the specific resistance of the mixture when the mixture is pressurized at 150 kgf / cm 2 in a dry state. A positive electrode for a battery, which has a resistance of 10 Ω · cm or less.
【請求項2】導電剤の総含有量が、活物質100重量部
に対して1〜10重量部であることを特徴とする請求項
1記載の電池用正極。
2. The positive electrode for a battery according to claim 1, wherein the total content of the conductive agent is 1 to 10 parts by weight based on 100 parts by weight of the active material.
【請求項3】リチウム遷移金属複合酸化物からなる活物
質の組成がLixMn2-yy4(0.1≦x≦1.1、
0≦y≦0.3、AはMn以外の遷移金属から選ばれる
1種以上からなる)で示されることを特徴とする請求項
1又は2記載の電池用正極。
3. The composition of an active material comprising a lithium transition metal composite oxide is Li x Mn 2-y A y O 4 (0.1 ≦ x ≦ 1.1,
The positive electrode for a battery according to claim 1, wherein 0 ≦ y ≦ 0.3, and A is at least one selected from transition metals other than Mn.
【請求項4】請求項1〜3のいずれかに記載した電池用
正極を用いる非水電解液二次電池。
4. A non-aqueous electrolyte secondary battery using the battery positive electrode according to claim 1.
JP9189583A 1997-07-15 1997-07-15 Positive electrode for battery and nonaqueous electrolyte secondary battery Pending JPH1140139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9189583A JPH1140139A (en) 1997-07-15 1997-07-15 Positive electrode for battery and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9189583A JPH1140139A (en) 1997-07-15 1997-07-15 Positive electrode for battery and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1140139A true JPH1140139A (en) 1999-02-12

Family

ID=16243765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9189583A Pending JPH1140139A (en) 1997-07-15 1997-07-15 Positive electrode for battery and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1140139A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2007273313A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2017084521A (en) * 2015-10-26 2017-05-18 日立化成株式会社 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019057426A (en) * 2017-09-21 2019-04-11 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2007273313A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2017084521A (en) * 2015-10-26 2017-05-18 日立化成株式会社 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019057426A (en) * 2017-09-21 2019-04-11 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
EP1291941B1 (en) Active material for battery and method of preparing the same
US6007947A (en) Mixed lithium manganese oxide and lithium nickel cobalt oxide positive electrodes
EP3754763B1 (en) Negative electrode active material for lithium secondary battery, method of preparing the same, and negative electrode for lithium secondary battery and lithium secondary battery including the same
KR20210064360A (en) Positive electrode additive and manufacturing method thereof, positive electrode and manufacturing method thereof, and lithium ion battery
CA2384494C (en) Lithium metal dispersion in secondary battery anodes
Zhou et al. Synthesis and electrochemical properties of LiAl0. 05Mn1. 95O4 by the ultrasonic assisted rheological phase method
KR20100106242A (en) Nonaqueous secondary battery
KR20130031085A (en) Positive-electrode active material with high power at the low soc and lithium secondary battery including them
EP3683872A2 (en) Silicon-carbon composite and lithium secondary battery comprising same
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
JP4794192B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP3580209B2 (en) Lithium ion secondary battery
WO1997001191A2 (en) Nonaqueous battery with cathode active material mixture
JP2023538082A (en) Negative electrode and secondary battery containing the same
JP4172061B2 (en) Non-aqueous electrolyte secondary battery
JP4145138B2 (en) Nonaqueous electrolyte secondary battery
US9716264B2 (en) Electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery including the electrode
JPH1140139A (en) Positive electrode for battery and nonaqueous electrolyte secondary battery
JP2002260633A (en) Nonaqueous electrolyte secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JP2002025626A (en) Aging method for lithium secondary battery
JPH07326356A (en) Lithium transition metal composite oxide powder and manufacture thereof, lithium secondary battery positive electrode and lithium secondary battery
JP2011134535A (en) Positive electrode for lithium secondary battery, and method for manufacturing the same