JPH1135943A - Method for controlling furnace pressure of coke oven - Google Patents

Method for controlling furnace pressure of coke oven

Info

Publication number
JPH1135943A
JPH1135943A JP20965697A JP20965697A JPH1135943A JP H1135943 A JPH1135943 A JP H1135943A JP 20965697 A JP20965697 A JP 20965697A JP 20965697 A JP20965697 A JP 20965697A JP H1135943 A JPH1135943 A JP H1135943A
Authority
JP
Japan
Prior art keywords
furnace
exhaust gas
flue
flow rate
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20965697A
Other languages
Japanese (ja)
Other versions
JP3752062B2 (en
Inventor
Hidenori Kiyoshi
英典 木吉
Yasutaka Shihara
康孝 紫原
Yuuji Ishiharaguchi
裕二 石原口
Keihachiro Tanaka
啓八郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20965697A priority Critical patent/JP3752062B2/en
Publication of JPH1135943A publication Critical patent/JPH1135943A/en
Application granted granted Critical
Publication of JP3752062B2 publication Critical patent/JP3752062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling the furnace pressure of a cake oven capable of achieving a uniform furnace pressure in the furnace width direction. SOLUTION: A coke oven 10 whose furnace pressure is to be controlled comprises channels for supplying a fuel gas 24 and air 21 to each combustion chamber 12, horizontal flues 17 for collecting waste gas discharged from each combustion chamber 12 to centralized flues 14a, 14b provided at the front and rear sides of the oven and dampers 16a, 16b for passing the waste gas provided in the neighborhood of the centralized flues 14a, 14b at the both ends of the horizontal flues 17. In the method for controlling the furnace pressure, the waste gas discharge flow area formed by the degree of opening of the dampers 16a, 16b is adjusted in such a manner that the waste gas discharge flow velocity to be collected to the centralized flues 14a, 14b from each horizontal flue 17 retains the oven average waste gas discharge flow velocity as used in the previous control, and the degree of opening of each of the dampers 16a, 16b is determined depending on the waste gas discharge flow area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭化室と燃焼室とが
複数列配列されたコークス炉の炉内圧制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coke oven pressure control method for a coke oven in which a plurality of rows of carbonization chambers and combustion chambers are arranged.

【0002】[0002]

【従来の技術】一般にコークス炉は、炉幅方向に交互に
複数列配列された炭化室と燃焼室との対で1つの炉を形
成し、通常は50〜100個の炉が集まって1つの炉団
を構成している。燃焼室は炉壁(レンガ壁)を介して炭
化室と隣接し、炉長方向に20〜30個の小燃焼室に仕
切られており、各小燃焼室の底部は蓄熱室に通じてい
る。各々の小燃焼室には、燃料ガスコックと空気コック
で流量調整された燃料ガスと空気がそれぞれの予熱用蓄
熱室で予熱されて供給され、これらの燃焼によって炉壁
を通じて両側の炭化室が加熱され、石炭の乾留が行われ
る。各々の小燃焼室で生成した排ガスは熱回収用蓄熱室
に引き落とされて熱回収され、水平煙道に排出され、集
合煙道に集合されて煙突から大気に排出される。そして
予熱用蓄熱室を「立ち側」、熱回収用蓄熱室を「引き
側」と称し、立ち側と引き側は燃焼サイクル(30分の
制御周期)で交互に切り替えられる。
2. Description of the Related Art In general, a coke oven forms one oven by a pair of a carbonization chamber and a combustion chamber which are alternately arranged in a plurality of rows in the oven width direction. Usually, 50 to 100 ovens are gathered to form one oven. It constitutes a furnace group. The combustion chamber is adjacent to the carbonization chamber via a furnace wall (brick wall) and is divided into 20 to 30 small combustion chambers in the furnace length direction, and the bottom of each small combustion chamber communicates with the heat storage chamber. Fuel gas and air whose flow rates have been adjusted by the fuel gas cock and the air cock are preheated and supplied to the respective small combustion chambers in the respective preheating regenerative chambers, and the combustion thereof heats the carbonization chambers on both sides through the furnace wall. , Coal carbonization is performed. Exhaust gas generated in each of the small combustion chambers is drawn down to a heat recovery heat storage chamber, heat is recovered, discharged to a horizontal flue, collected in a flue and discharged to the atmosphere from a chimney. The heat storage chamber for preheating is referred to as “standing side” and the heat storage chamber for heat recovery is referred to as “pulling side”, and the standing side and the pulling side are alternately switched in a combustion cycle (a control cycle of 30 minutes).

【0003】この種のコークス炉では、先に本出願人が
発行した製鉄研究325号に示すように、炉団に供給す
る燃料ガス流量や空気流量を制御して炉団平均乾留時間
を目標乾留時間に保持する炉団平均乾留時間制御と、燃
料ガス流量の変動に伴う燃焼室内圧力(以後、単に炉内
圧と称す)の変動を抑制するのに集合煙道に設けた引き
圧調整用煙道ダンパーの開度を制御する炉団平均炉内圧
制御が一般的に行なわれている。ところで、コークス炉
では多数の炭化室を用いて大量の石炭を乾留するので、
乾留時間は炭化室間でほぼ同一時間になることが望ま
れ、各々の燃焼室に供給される燃料ガスや空気の流量が
調整されている。そして、各々の燃焼室に供給される燃
料ガス流量の変動に伴う炉内圧変動の抑制は、水平煙道
の両端部に設けたウェストダンパー(以後、単にダンパ
ーと称す)の開度調整によって行なわれるが、その調整
には高度の経験と技能が要求され、極めて困難である。
すなわち、燃焼室で生成した排ガスの排気系統は図3に
模式的に示すように、複雑であり、炉内圧の制御は極め
て困難である。図3において、燃焼の前半サイクル(蓄
熱室(i)が引き側のとき)では、燃焼室(i)と燃焼
室(i+1)で生成した排ガスは、実線で示す経路を経
て蓄熱室(i)に引き落とされ、それぞれのレンガ壁に
熱回収されたのち水平煙道(i)に排出される。
[0003] In this type of coke oven, as shown in Steelmaking Research No. 325 previously issued by the present applicant, the flow rate of fuel gas and air supplied to the furnace group is controlled to set the average carbonization time of the furnace group to the target carbonization time. A flue for adjusting the pressure of the furnace to be kept for a certain period of time, and a flue for adjusting the suction pressure provided in the collective flue to suppress fluctuations in the pressure in the combustion chamber (hereinafter simply referred to as furnace pressure) due to fluctuations in the fuel gas flow rate. In general, the furnace core average furnace pressure control for controlling the opening degree of the damper is performed. By the way, in a coke oven, a large amount of coal is carbonized using many carbonization chambers.
It is desired that the carbonization time be substantially the same between the carbonization chambers, and the flow rates of fuel gas and air supplied to each combustion chamber are adjusted. The suppression of the fluctuation of the furnace pressure due to the fluctuation of the flow rate of the fuel gas supplied to each combustion chamber is performed by adjusting the opening of waist dampers (hereinafter simply referred to as dampers) provided at both ends of the horizontal flue. However, the adjustment requires a high level of experience and skill and is extremely difficult.
That is, the exhaust system of the exhaust gas generated in the combustion chamber is complicated as shown schematically in FIG. 3, and it is extremely difficult to control the furnace pressure. In FIG. 3, in the first half cycle of combustion (when the heat storage chamber (i) is on the pulling side), the exhaust gas generated in the combustion chamber (i) and the combustion chamber (i + 1) passes through a path shown by a solid line and is stored in the heat storage chamber (i). After the heat is recovered on each brick wall, it is discharged to the horizontal flue (i).

【0004】燃焼の後半サイクル(蓄熱室(i−1)、
(i+1)が引き側のとき)では、燃焼室(i−1)、
(i)で生成した排ガスは破線で示す経路を経て蓄熱室
(i−1)に引き落とされ、熱回収されたのち水平煙道
(i−1)に排出され、燃焼室(i+1)、(i+2)
で生成した排ガスは破線で示す経路を経て蓄熱室(i+
1)に引き落とされ、熱回収されたのち水平煙道(i+
1)に排出される。そして、水平煙道(i−1)、
(i)、(i+1)に排出された排ガスは、それぞれの
両端部に設けたダンパーを通して集合煙道に集合され
る。このように燃焼室で生成した排ガスの排気系統は相
隣する2つの燃焼室に連なり、1つの水平煙道でのダン
パー開度の調整は2つの燃焼室の炉内圧変動に影響を及
ぼすことになる。したがって、ダンパー開度の操作によ
る炉内圧の変化を定量的に把握しない限り、その正確な
制御は困難である。そこで、従来より各々の燃焼室に供
給する燃料ガス流量に基づいて熟練作業者が経験に基づ
いてダンパーの開度調節を繰り返して、炉幅方向に均一
な炉内圧分布を得んとしているのが実情である。
The latter half cycle of combustion (heat storage chamber (i-1),
(When (i + 1) is the pulling side), the combustion chamber (i-1),
The exhaust gas generated in (i) is drawn down to a heat storage chamber (i-1) via a path shown by a broken line, and after being recovered in heat, is discharged to a horizontal flue (i-1), and is discharged to a combustion chamber (i + 1), (i + 2). )
The exhaust gas generated in step (i +) passes through the path indicated by the broken line
After being withdrawn in 1) and heat recovery, horizontal flue (i +
It is discharged to 1). And horizontal flue (i-1),
Exhaust gas discharged in (i) and (i + 1) is collected in a collecting flue through dampers provided at both ends. In this way, the exhaust system of the exhaust gas generated in the combustion chamber is connected to two adjacent combustion chambers, and the adjustment of the damper opening in one horizontal flue affects the furnace pressure fluctuation of the two combustion chambers. Become. Therefore, accurate control of the furnace pressure is difficult unless the change in the furnace internal pressure due to the operation of the damper opening is grasped quantitatively. Therefore, a skilled worker has repeatedly adjusted the opening degree of the damper based on experience based on the flow rate of fuel gas supplied to each combustion chamber to obtain a uniform furnace pressure distribution in the furnace width direction. It is a fact.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
方法では熟練作業者が必要であるし、作業者の経験と技
能によってダンパーの開度操作にばらつきが生じ、その
結果、各燃焼室の炉内圧が変動し、炉内圧の変動は炉体
損傷の原因となり、最適な炉操業には縁遠いものであっ
た。本発明はかかる事情に鑑みてなされたもので、炉幅
方向に均一な炉内圧分布を達成可能なコークス炉の炉内
圧制御方法を提供することを目的とする。
However, in the conventional method, a skilled worker is required, and the opening degree of the damper varies depending on the experience and skill of the worker. As a result, the furnace pressure in each combustion chamber is increased. The fluctuations in the furnace pressure caused damage to the furnace body and were far from optimal furnace operation. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coke oven pressure control method capable of achieving a uniform furnace pressure distribution in a furnace width direction.

【0006】[0006]

【課題を解決するための手段】前記目的に沿う請求項1
記載のコークス炉の炉内圧制御方法は、石炭を装入して
乾留する炭化室、及び該炭化室を両側から加熱するため
の燃焼室を炉幅方向に交互に複数列備える炉団と、各々
の前記燃焼室に燃料ガスと空気をそれぞれ供給する燃料
ガス流路及び空気流路と、各々の前記燃焼室から排出さ
れた排ガスを炉の前後に設けられた集合煙道に流す水平
煙道と、それぞれの前記水平煙道の前後端にそれぞれ設
けられたダンパーとを有するコークス炉の炉内圧制御方
法において、各々の前記水平煙道から前記集合煙道に向
かう排ガスの排出流速が、それ以前の制御で使用した前
記炉団の平均排ガス排出流速を保持するように、前記ダ
ンパーの開度を決定している。請求項2記載のコークス
炉の炉内圧制御方法は、請求項1記載のコークス炉の炉
内圧制御方法において、前記水平煙道から前記集合煙道
に向かう排ガスの排出流速は、前記燃料ガスの流量、燃
焼用の空気の流量、及び前記ダンパーの排ガス排出流通
面積に基づいて計算している。請求項3記載のコークス
炉の炉内圧制御方法は、請求項1記載のコークス炉の炉
内圧制御方法において、前記炉団の平均排ガス排出流速
は、前記燃焼室の炉内圧力と前記集合煙道のドラフト圧
を測定し、更に排ガスの流量係数αを固定定数、排ガス
の膨張補正係数εを固定定数として行っている。そし
て、請求項4記載のコークス炉の炉内圧制御方法は、請
求項3記載のコークス炉の炉内圧制御方法において、前
記燃焼室の炉内圧力の測定は、1又は少数の燃焼室に炉
内圧力計を配置し、その計測値によって決定している。
According to the present invention, there is provided a semiconductor device comprising:
The coke oven pressure control method of the described coke oven, a carbonization chamber charged with coal and carbonized, and a furnace group provided with a plurality of rows alternately in the furnace width direction of combustion chambers for heating the carbonization chamber from both sides, A fuel gas flow path and an air flow path for supplying fuel gas and air to the combustion chamber, respectively, and a horizontal flue for flowing exhaust gas discharged from each combustion chamber to a collective flue provided before and after the furnace. In a method for controlling the internal pressure of a coke oven having dampers respectively provided at the front and rear ends of each of the horizontal flue, the discharge flow rate of exhaust gas from each of the horizontal flues to the collecting flue is lower than that of the earlier. The opening of the damper is determined so as to maintain the average exhaust gas discharge flow rate of the furnace group used in the control. A method for controlling the pressure in a coke oven according to claim 2 is the method for controlling a pressure in a coke oven according to claim 1, wherein a discharge flow rate of the exhaust gas from the horizontal flue to the collecting flue is a flow rate of the fuel gas. , The flow rate of the combustion air, and the exhaust gas discharge and circulation area of the damper. According to a third aspect of the present invention, there is provided a coke oven internal pressure control method according to the first aspect, wherein the average exhaust gas discharge flow rate of the furnace group is determined by the furnace internal pressure of the combustion chamber and the collective flue. , And the exhaust gas flow rate coefficient α is a fixed constant, and the exhaust gas expansion correction coefficient ε is a fixed constant. The method for controlling the pressure in the coke oven according to claim 4 is the method for controlling the pressure in the coke oven according to claim 3, wherein the measurement of the pressure in the combustion chamber is performed in one or a small number of combustion chambers. A pressure gauge is arranged and determined by the measured value.

【0007】[0007]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の一実施の形
態に係るコークス炉の炉内圧制御方法を適用したコーク
ス炉の主要部の外観図、図2は同コークス炉の流路主要
部の構成図、図3は同コークス炉の燃焼室で生成した排
ガスの排気系統の模式図、図4は同コークス炉の炉内圧
制御方法における炉内圧制御系の構造を示すブロック図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is an external view of a main part of a coke oven to which a coke oven pressure control method according to an embodiment of the present invention is applied, and FIG. 2 is a configuration diagram of a main part of a flow path of the coke oven. 3 is a schematic diagram of an exhaust system for exhaust gas generated in a combustion chamber of the coke oven, and FIG. 4 is a block diagram showing a structure of a furnace internal pressure control system in the furnace internal pressure control method of the coke oven.

【0008】図1及び図2においては、コークス炉10
の内部構造がわかるように部分的に断面が示されてい
る。図を参照して説明すると、石炭が装入される炭化室
11とこの炭化室11を両側から加熱するための燃焼室
12とはZ軸方向(炉幅方向)に互いに交互に配置され
ており、各々多数設けられている。炭化室11の下方に
は蓄熱室13が設けられており、蓄熱室13は供給され
る燃料ガスと空気を燃焼室12に導くと共に、燃焼によ
って生成した排ガスをコークス炉の前後に設けられた集
合煙道14a、14bに導く。したがって高温の排ガス
が通過する蓄熱室13は排ガスによって加熱され、熱を
蓄積するので、燃焼室12に導かれる燃料ガスと空気
は、予め蓄熱室13内で予熱され、温められ燃焼し易く
なる。なお、この実施の形態では、燃料ガスと空気が通
る流路(燃料ガス流路と空気流路)と排ガスが通る水平
煙道(ソールフリュー部)17は燃焼サイクル(30分
の制御周期)で交互に切り替えられる。石炭は各炭化室
11に装入され、乾留が終了した石炭、すなわち乾留さ
れたコークスは図示しない押し出し機によって炉蓋15
側(PS)から押し出され、その反対側(CS)から炉
外に取り出される。
In FIG. 1 and FIG. 2, a coke oven 10
The cross section is partially shown so that the internal structure of FIG. Referring to the drawings, the coking chamber 11 into which coal is charged and the combustion chamber 12 for heating the coking chamber 11 from both sides are alternately arranged in the Z-axis direction (furnace width direction). , Each of which is provided in large numbers. A heat storage chamber 13 is provided below the carbonization chamber 11. The heat storage chamber 13 guides the supplied fuel gas and air to the combustion chamber 12, and collects exhaust gas generated by combustion before and after the coke oven. Lead to flue 14a, 14b. Therefore, the heat storage chamber 13 through which the high-temperature exhaust gas passes is heated by the exhaust gas and accumulates heat, so that the fuel gas and the air guided to the combustion chamber 12 are preheated in the heat storage chamber 13 in advance, heated and easily burned. In this embodiment, the flow path through which the fuel gas and air pass (the fuel gas flow path and the air flow path) and the horizontal flue (sole flue portion) 17 through which the exhaust gas passes take a combustion cycle (a control cycle of 30 minutes). Can be switched alternately. The coal is charged into each of the coking chambers 11, and the coal whose carbonization has been completed, that is, the coke that has been carbonized, is extruded by a not-shown extruder into a furnace cover 15.
From the side (PS) and out of the furnace from the opposite side (CS).

【0009】コークス炉の流路主要部の構成について、
図2を参照して説明する。空気(AIR)21は立ち側
にある空気コック22によって流量調整され、切り替え
コック23、水平管18a及びアンダージェットパイプ
19aを通って蓄熱室13から燃焼室12に供給され
る。また、互いにカロリーの異なるコークスガス(CO
G)と高炉ガス(BFG)を混合した燃料ガス(MG)
24は、燃料ガスコック25によって流量調整され、切
り替えコック26、水平管18g及びアンダージェット
パイプ19gを通って蓄熱室13から燃焼室12に供給
される。炉団に供給される空気の流量や燃料ガスの全体
の流量は流量調節器27、28によってそれぞれ流量調
整される。これらの流量調節器27、28は、図示しな
いプロセスコンピュータによってこれらの設定流量(目
標流量)が制御され、流量を調整する。なお、流量調節
器27、28に、又はこれらに直列に流量計を設けて、
実際の燃料ガス流量及び空気流量を測定してもよい。
Regarding the configuration of the main part of the flow path of the coke oven,
This will be described with reference to FIG. The flow rate of the air (AIR) 21 is adjusted by an air cock 22 on the rising side, and is supplied from the heat storage chamber 13 to the combustion chamber 12 through the switching cock 23, the horizontal pipe 18a, and the under jet pipe 19a. In addition, coke gas (CO
G) and blast furnace gas (BFG) mixed fuel gas (MG)
The flow rate of the fuel gas 24 is adjusted by a fuel gas cock 25, and is supplied from the heat storage chamber 13 to the combustion chamber 12 through the switching cock 26, the horizontal pipe 18g, and the under jet pipe 19g. The flow rates of the air supplied to the furnace group and the entire flow rate of the fuel gas are adjusted by flow controllers 27 and 28, respectively. These flow controllers 27 and 28 control the set flow rates (target flow rates) by a process computer (not shown) to adjust the flow rates. In addition, by providing a flow meter in the flow controllers 27 and 28 or in series with them,
The actual fuel gas flow rate and actual air flow rate may be measured.

【0010】燃焼室12で生成した排ガスは、蓄熱室1
3を介して水平煙道17を通り、炉蓋15側(PS)と
その反対側(CS)に設けられたダンパー16a、16
bの開度によって形成される排ガス排出流通面積比に応
じて流量分配され、ダンパー16a、16bのいずれか
を通って集合煙道14a、14bに排出される。なお、
炉団の代表燃焼室12(炉団で1か所、複数箇所であっ
てもよい)の天井部には図示しない炉内圧力計が、集合
煙道14a、14bにはドラフト圧計が設けられてい
る。また集合煙道14a、14bには図示しない引き圧
調整用の煙道ダンパーが設けられており、炉団に供給す
る燃料ガス流量の変動に伴う炉内圧の変動を引き圧調整
用の煙道ダンパーの開度を調整して抑制する炉内圧制御
系が設けられている。ダンパー16a、16bにはそれ
ぞれアクチュエータが接続されており、各々の開度を調
整可能に構成している。これらのアクチュエータは、図
示しないプロセスコンピュータによってこれらの設定開
度(目標開度)が制御され、各々のダンパー開度を調整
する。
The exhaust gas generated in the combustion chamber 12 is supplied to the heat storage chamber 1
3, dampers 16a, 16 provided on the furnace lid 15 side (PS) and the opposite side (CS) through the horizontal flue 17
The flow rate is distributed according to the exhaust gas discharge flow area ratio formed by the opening degree of b, and the exhaust gas is discharged to the collecting flues 14a and 14b through one of the dampers 16a and 16b. In addition,
A not-shown in-furnace pressure gauge is provided on the ceiling of the representative combustion chamber 12 of the furnace group (one or a plurality of furnace groups may be provided), and a draft pressure gauge is provided on the collecting flues 14a and 14b. I have. The collecting flues 14a and 14b are provided with a flue damper for adjusting the drawing pressure (not shown). A furnace pressure control system is provided for adjusting and suppressing the opening of the furnace. Actuators are connected to the dampers 16a and 16b, respectively, so that their opening degrees can be adjusted. These actuators have their set openings (target openings) controlled by a process computer (not shown), and adjust the respective damper openings.

【0011】本発明の一実施の形態に係るコークス炉の
炉内圧制御方法における炉内圧制御系の構造を図4を参
照して説明する。前記プロセスコンピュータには図4に
示す炉内圧制御系が構築されており、プロセスコンピュ
ータは燃焼サイクル切り替え完了毎に、次に説明する処
理手順によって各々のダンパー16a、16bの開度を
修正制御する。なお図4に示す各ブロックの左上の○内
の数字は、以下に説明する処理手順を示すものである。
A structure of a furnace pressure control system in a coke furnace pressure control method according to an embodiment of the present invention will be described with reference to FIG. A furnace pressure control system shown in FIG. 4 is constructed in the process computer, and the process computer corrects and controls the opening of each of the dampers 16a and 16b in accordance with the processing procedure described below every time the combustion cycle switching is completed. The numbers in the circles at the upper left of each block shown in FIG. 4 indicate the processing procedure described below.

【0012】(手順1)前回の燃焼サイクルで引き側に
あったCSとPSの排ガス排出流通面積STを計算す
る。 SCS,i=Sduct−Sdumper×COS(θCS,i) SPS,i=Sduct−Sdumper×COS(θPS,i) ・・・・・・・(1) によって、CSとPSのダンパー開度θCS、θPSを流通
面積SCS、SPSに変換し、 ST,i=SCS,i+SPS,i ・・・・・・・(2) によって、水平煙道(i)の合計排ガス排出流通面積S
Tを計算する。ここで、Sductはダクト面積、Sdumper
はダンパー面積、添字iは水平煙道に付した番号であ
る。 (手順2)前回の燃焼サイクルで各々の燃焼室に供給さ
れる燃料ガス流量と空気流量より、図3を参照して、水
平煙道を通して集合煙道に集合される排ガス流量を計算
する。 QWG,i(k-1) =QFG,i(k-1) +QFG,i+1(k-1) ・・・・・・・(3) ここで、QWG,iは水平煙道(i)を通して集合煙道に
集合される排ガス流量、QFG,iは燃焼室(i)に供給
される燃料ガス流量と空気流量によって計算される排ガ
ス流量、また、QFG,i+1は燃焼室(i+1)に供給さ
れる燃料ガス流量と空気流量によって計算される排ガス
流量であり、kは燃焼サイクルを表す。
(Procedure 1) The exhaust gas discharge / circulation area ST of CS and PS on the pulling side in the previous combustion cycle is calculated. S CS, i = S duct −S dumper × COS (θ CS, i ) S PS, i = S duct −S dumper × COS (θ PS, i ) (1) The PS damper openings θ CS , θ PS are converted into flow areas S CS , S PS , and ST , i = S CS, i + S PS, i ... (2) i) Total exhaust gas discharge and distribution area S
Calculate T. Here, S duct is the duct area, S dumper
Is the damper area, and the subscript i is the number assigned to the horizontal flue. (Procedure 2) Based on the fuel gas flow rate and the air flow rate supplied to each combustion chamber in the previous combustion cycle, referring to FIG. 3, calculate the flow rate of exhaust gas collected in the collecting flue through the horizontal flue. QWG , i (k-1) = QFG , i (k-1) + QFG , i + 1 (k-1) (3) where QWG , i is a horizontal flue (i). The flow rate of the exhaust gas collected in the collecting flue through QFG , i is the flow rate of the exhaust gas calculated by the flow rate of the fuel gas supplied to the combustion chamber (i) and the flow rate of the air, and the flow rate QFG , i + 1 is the combustion chamber (i + 1) Is an exhaust gas flow rate calculated from a fuel gas flow rate and an air flow rate supplied to the fuel cell, and k represents a combustion cycle.

【0013】(手順3)各々の水平煙道の排ガス排出流
速を計算し、炉団平均排ガス排出流速を求める。燃焼室
で生成し、水平煙道を通して集合煙道に集合される排ガ
ス流量QWG,iは、 QWG,i=α×ε×ST,i×〔2×(Ptop,i −Pdraft )/ρ〕0.5 ・・・・・・・(4) によって表される。ここで、αは排ガスの流量係数、ε
は排ガスの膨張補正係数、Ptop は燃焼室の炉内圧力、
draft は集合煙道のドラフト圧力、ρは排ガスの密度
を表す。排ガス流量の変動、すなわち、燃焼室に供給さ
れる燃料ガス流量と空気流量の変動に対して炉内圧力を
一定に保持するには、ダンパーの流量特性(流量係数α
や排ガスの膨張補正係数ε)を逐次推定し、その結果を
用いてCSとPSの排ガス排出流通面積を計算して決定
することが望ましいが、流量特性を逐次推定することは
極めて困難である。そこで、コークス炉の通常操業範囲
内では、流量係数や排ガスの膨張補正係数の変動は小さ
い(即ち、定数)と仮定し、 VWG,i=QWG,i/ST,i =α×ε×〔2×(Ptop,i −Pdraft )/ρ〕0.5 ・・・(5) によって、各々の水平煙道から集合煙道に集合される排
ガス排出流速VWGを計算し、炉団平均排ガス排出流速
VWGMEを求める。
(Procedure 3) The exhaust gas discharge velocity of each horizontal flue is calculated, and the average exhaust gas discharge velocity of the furnace group is obtained. The exhaust gas flow rate QWG , i generated in the combustion chamber and collected in the collecting flue through the horizontal flue is QWG , i = α × ε × ST , i × [2 × (P top, i −P draft ) / ρ ] represented by 0.5 ......... (4). Where α is the flow coefficient of exhaust gas, ε
Is the exhaust gas expansion correction coefficient, P top is the pressure in the furnace of the combustion chamber,
P draft represents the draft pressure of the collecting stack, and ρ represents the density of the exhaust gas. In order to keep the furnace pressure constant against fluctuations in the exhaust gas flow rate, that is, fluctuations in the fuel gas flow rate and the air flow rate supplied to the combustion chamber, the flow rate characteristics of the damper (flow rate coefficient α
And the expansion correction coefficient ε of the exhaust gas are sequentially estimated, and the results are used to calculate and determine the exhaust gas circulation area of the CS and the PS. However, it is extremely difficult to estimate the flow characteristics sequentially. Therefore, within the normal operating range of the coke oven, it is assumed that the fluctuations of the flow coefficient and the expansion correction coefficient of the exhaust gas are small (that is, constant), and VWG , i = QWG , i / ST , i = α × ε × [2 × (P top, i −P draft ) / ρ] 0.5 ... (5), the exhaust gas discharge velocity VWG collected from each horizontal flue to the collective flue is calculated, and the average exhaust gas discharge velocity VWG of the furnace group is calculated. Ask for ME .

【0014】(手順4)今回の燃焼サイクルで各々の燃
焼室に供給される燃料ガス流量と空気流量より、図3を
参照して、水平煙道を通して集合煙道に集合される排ガ
ス流量を計算する。 QWG,i-1(k) =QFG,i-1(k) +QFG,i(k) QWG,i+1(k) =QFG,i+1(k) +QFG,i+2(k) ・・・・・・・(6) (手順5)今回の燃焼サイクルで水平煙道を通して集合
煙道に集合される排ガスの排出流速を手順3で求めた炉
団平均排ガス排出流速VWGMEに保持するような各々の
水平煙道の合計排ガス排出流通面積を計算する。 ST,i-1=QWG,i-1(k) /VWGME ST,i+1=QWG,i+1(k) /VWGME ・・・・・・・(7)
(Procedure 4) Based on the fuel gas flow rate and the air flow rate supplied to each combustion chamber in the current combustion cycle, referring to FIG. 3, the flow rate of the exhaust gas collected in the collecting flue through the horizontal flue is calculated. I do. QWG , i-1 (k) = QFG , i-1 (k) + QFG , i (k) QWG , i + 1 (k) = QFG , i + 1 (k) + QFG , i + 2 (k) (6) (Procedure 5) In the current combustion cycle, the discharge flow velocity of the exhaust gas collected in the collecting flue through the horizontal flue is maintained at the average exhaust gas discharge velocity VWG ME in the furnace group determined in Step 3. Calculate the total flue gas discharge and distribution area of each horizontal flue. ST , i-1 = QWG , i-1 (k) / VWG ME ST , i + 1 = QWG , i + 1 (k) / VWG ME (7)

【0015】(手順6)手順5で計算した各々の水平煙
道の合計排ガス排出流通面積、及び今回の燃焼サイクル
までの制御で使用したCSとPSの排ガス排出流通面積
比より、今回の燃焼サイクルで引き側にある各々のダン
パーの流通面積を求める。 SCS,i-1(k) =SR,i-1×ST,i-1/(1+SR,i-1) SPS,i-1(k) =ST,i-1/(1+SR,i-1) SCS,i+1(k) =SR,i+1×ST,i+1/(1+SR,i+1) SPS,i+1(k) =ST,i+1/(1+SR,i+1) ・・・・・(8) ここで、SRは今回の燃焼サイクルまでの制御で使用し
たCSとPSの排ガス排出流通面積比である。 (手順7)各々のダンパーの流通面積を開度に変換して
決定し、それをダンパーの開度を修正するアクチュエー
タに出力し、ダンパーの開度を修正する。
(Step 6) Based on the total exhaust gas discharge and circulation area of each horizontal flue calculated in step 5, and the ratio of the CS and PS exhaust gas discharge and circulation areas used in the control up to the current combustion cycle, the current combustion cycle Is used to determine the flow area of each damper on the pulling side. S CS, i-1 (k) = SR , i-1 × ST , i-1 / (1 + SR , i-1 ) SPS, i-1 (k) = ST , i-1 / (1 + SR , i- 1 ) S CS, i + 1 (k) = SR , i + 1 × ST , i + 1 / (1 + SR , i + 1 ) SPS, i + 1 (k) = ST , i + 1 / (1 + SR , i + 1 ) (8) where SR is the ratio of the area of exhaust gas discharge and circulation of CS and PS used in the control up to the current combustion cycle. (Procedure 7) The flow area of each damper is converted into an opening and determined, and is output to an actuator for correcting the opening of the damper, thereby correcting the opening of the damper.

【0016】以上のような制御によって、各々の燃焼室
に供給される燃料ガス流量と空気流量の変動に応じてC
SとPSのダンパーの開度を調整することにより、炉幅
方向の炉内圧力分布を均一分布にすることができる。な
お、本発明の説明においては、各々の水平煙道の両端部
に設けたダンパーの開度を自動的な制御によって修正す
るように説明したが、例えばそれらの設定値を作業者に
操業ガイドし、作業者によってそれらの調整を行っても
よい。
With the above-described control, C is controlled according to the fluctuation of the flow rate of the fuel gas and the flow rate of the air supplied to each combustion chamber.
By adjusting the opening degree of the S and PS dampers, the pressure distribution in the furnace in the furnace width direction can be made uniform. In the description of the present invention, it has been described that the opening degree of the dampers provided at both ends of each horizontal flue is corrected by automatic control. The adjustment may be performed by an operator.

【0017】[0017]

【発明の効果】請求項1〜4記載のコークス炉の炉内圧
制御方法においては、各々の水平煙道から集合煙道に集
合される排ガスの排出流速が、それ以前の制御で使用し
た炉団平均排ガス排出流速を保持するようにPSとCS
のダンパーの開度によって形成される排ガス排出流通面
積を調整し、該排ガス排出流通面積に基づいて各々のダ
ンパーの開度を決定しているので、各々の燃焼室に供給
される燃料ガス流量と空気流量の変動に応じてCSとP
Sのダンパーの開度を調整することによって、炉幅方向
の炉内圧力分布を均一にすることができる。
According to the method for controlling the internal pressure of a coke oven according to any one of claims 1 to 4, the discharge rate of the exhaust gas collected from each horizontal flue to the collecting flue is controlled by the furnace group used in the previous control. PS and CS to maintain the average exhaust gas discharge flow rate
The exhaust gas discharge circulation area formed by the opening degree of the damper is adjusted, and the opening degree of each damper is determined based on the exhaust gas discharge circulation area, so that the fuel gas flow rate supplied to each combustion chamber and CS and P according to air flow fluctuation
By adjusting the opening of the S damper, the pressure distribution in the furnace in the furnace width direction can be made uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係るコークス炉の炉内
圧制御方法を適用したコークス炉の主要部の外観図であ
る。
FIG. 1 is an external view of a main part of a coke oven to which a coke oven pressure control method according to an embodiment of the present invention is applied.

【図2】同コークス炉の流路主要部の構成図である。FIG. 2 is a configuration diagram of a main part of a flow channel of the coke oven.

【図3】同コークス炉の燃焼室で生成した排ガスの排気
系統の模式図である。
FIG. 3 is a schematic diagram of an exhaust system of exhaust gas generated in a combustion chamber of the coke oven.

【図4】同コークス炉の炉内圧制御方法における炉内圧
制御系の構造を示すブロック図である。
FIG. 4 is a block diagram showing a structure of a furnace pressure control system in the furnace pressure control method for the coke oven.

【符号の説明】[Explanation of symbols]

10 コークス炉 11 炭化室 12 燃焼室 13 蓄熱室 14a 集合煙道 14b 集合煙
道 15 炉蓋 16a ダンパ
ー 16b ダンパー 17 ソールフリュー部(水平煙道) 18a 水平管 18g 水平管 19a アンダ
ージェットパイプ 19g アンダージェットパイプ 21 空気 22 空気コック 23 切り替え
コック 24 燃料ガス 25 燃料ガス
コック 26 切り替えコック 27 流量調節
器 28 流量調節器
DESCRIPTION OF SYMBOLS 10 Coke oven 11 Carbonization room 12 Combustion room 13 Thermal storage room 14a Collecting flue 14b Collecting flue 15 Furnace lid 16a Damper 16b Damper 17 Sole flue (horizontal flue) 18a Horizontal tube 18g Horizontal tube 19a Under jet pipe 19g Under jet pipe Reference Signs List 21 air 22 air cock 23 switching cock 24 fuel gas 25 fuel gas cock 26 switching cock 27 flow controller 28 flow controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 啓八郎 東京都中央区日本橋本町1丁目9番4号 株式会社日鉄エレックス内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Keihachiro Tanaka 1-9-4 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Nippon Steel Elex Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 石炭を装入して乾留する炭化室、及び該
炭化室を両側から加熱するための燃焼室を炉幅方向に交
互に複数列備える炉団と、各々の前記燃焼室に燃料ガス
と空気をそれぞれ供給する燃料ガス流路及び空気流路
と、各々の前記燃焼室から排出された排ガスを炉の前後
に設けられた集合煙道に流す水平煙道と、それぞれの前
記水平煙道の前後端にそれぞれ設けられたダンパーとを
有するコークス炉の炉内圧制御方法において、 各々の前記水平煙道から前記集合煙道に向かう排ガスの
排出流速が、それ以前の制御で使用した前記炉団の平均
排ガス排出流速を保持するように、前記ダンパーの開度
を決定することを特徴とするコークス炉の炉内圧制御方
法。
1. A furnace group provided with a plurality of carbonization chambers in which coal is charged and carbonized, and a plurality of combustion chambers for heating the carbonization chambers from both sides are alternately arranged in a furnace width direction, and fuel is provided in each of the combustion chambers. A fuel gas flow path and an air flow path for respectively supplying gas and air, horizontal flue for flowing exhaust gas discharged from each of the combustion chambers to a collective flue provided before and after a furnace, and each of the horizontal smoke A method for controlling the internal pressure of a coke oven having dampers provided at front and rear ends of a passage, wherein the discharge flow rate of exhaust gas from each of the horizontal flue to the collecting flue is controlled by the furnace used in the previous control. A method for controlling the internal pressure of a coke oven, wherein the opening degree of the damper is determined so as to maintain the average exhaust gas discharge flow velocity of the coke oven.
【請求項2】 前記水平煙道から前記集合煙道に向かう
排ガスの排出流速は、前記燃料ガスの流量、燃焼用の空
気の流量、及び前記ダンパーの排ガス排出流通面積に基
づいて計算する請求項1記載のコークス炉の炉内圧制御
方法。
2. The exhaust gas discharge flow rate from the horizontal flue to the collective flue is calculated based on a flow rate of the fuel gas, a flow rate of combustion air, and an exhaust gas discharge flow area of the damper. 2. The method for controlling the internal pressure of a coke oven according to claim 1.
【請求項3】 前記炉団の平均排ガス排出流速は、前記
燃焼室の炉内圧力と前記集合煙道のドラフト圧を測定
し、更に排ガスの流量係数αを固定定数、排ガスの膨張
補正係数εを固定定数として行う請求項1記載のコーク
ス炉の炉内圧制御方法。
3. The average exhaust gas discharge flow rate of the furnace group is obtained by measuring the pressure in the furnace of the combustion chamber and the draft pressure of the flue gas, further setting a flow coefficient α of the exhaust gas as a fixed constant, and an expansion correction coefficient ε of the exhaust gas. 2. The method according to claim 1, wherein the constant is set as a fixed constant.
【請求項4】 前記燃焼室の炉内圧力の測定は、1又は
少数の燃焼室に炉内圧力計を配置し、その計測値によっ
て決定する請求項3記載のコークス炉の炉内圧制御方
法。
4. The method according to claim 3, wherein the furnace pressure in the combustion chamber is measured by arranging a furnace pressure gauge in one or a small number of combustion chambers and determining the measured pressure.
JP20965697A 1997-07-19 1997-07-19 Coke oven pressure control method Expired - Fee Related JP3752062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20965697A JP3752062B2 (en) 1997-07-19 1997-07-19 Coke oven pressure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20965697A JP3752062B2 (en) 1997-07-19 1997-07-19 Coke oven pressure control method

Publications (2)

Publication Number Publication Date
JPH1135943A true JPH1135943A (en) 1999-02-09
JP3752062B2 JP3752062B2 (en) 2006-03-08

Family

ID=16576428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20965697A Expired - Fee Related JP3752062B2 (en) 1997-07-19 1997-07-19 Coke oven pressure control method

Country Status (1)

Country Link
JP (1) JP3752062B2 (en)

Also Published As

Publication number Publication date
JP3752062B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
US11692138B2 (en) Automatic draft control system for coke plants
US11441077B2 (en) Coke plant including exhaust gas sharing
KR101340106B1 (en) Feeding of combustion air for coking ovens
AU2008337954B2 (en) Controllable air channels for feeding additional combustion air into the area of flue gas channels of coking chamber furnaces
US4141797A (en) Method of operating a battery of coke ovens
JPH1135943A (en) Method for controlling furnace pressure of coke oven
JPH1135944A (en) Method for controlling temperature taper of furnace wall of coke oven
JPH10140161A (en) Method for operating cove oven
JP2677891B2 (en) Coke oven temperature control method
JPH1150056A (en) Controlling of opening of cock for coke oven
JPH04288395A (en) Method for controlling internal pressure of coke oven
CN108315022B (en) Coke oven structure with adjustable crossing hole and crossing hole adjusting method
JP2001316674A (en) Method of controlling coke oven to reduce inter-furnace variation in time required to complete carbonization and mean wall temperature in carbonization chamber at extrusion
JPS59142279A (en) Controlling combustion in coke oven
JPS63238191A (en) Method for controlling temperature distribution in oven length direction of coke oven
JPH07166165A (en) Method for controlling inner pressure of coke oven
JPH1150055A (en) Controlling of air/fuel ratio for coke oven
KR800001512B1 (en) Method of operating a battery of coke ovens with a regenerative change of draught
JPH1135946A (en) Method for controlling reduction of combustible hour of coke oven
JPH04258686A (en) Method for controlling the temperature distribution in a line of combustion chambers of coke oven
JPH09302350A (en) Method for controlling heat input to coke oven
JP2001049258A (en) Method for controlling temperature of oven unit of coke oven
JPH0724953U (en) Coke furnace flue temperature controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091216

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101216

LAPS Cancellation because of no payment of annual fees