JPH07166165A - Control method of coke oven pressure - Google Patents

Control method of coke oven pressure

Info

Publication number
JPH07166165A
JPH07166165A JP34231693A JP34231693A JPH07166165A JP H07166165 A JPH07166165 A JP H07166165A JP 34231693 A JP34231693 A JP 34231693A JP 34231693 A JP34231693 A JP 34231693A JP H07166165 A JPH07166165 A JP H07166165A
Authority
JP
Japan
Prior art keywords
combustion chamber
combustion
exhaust gas
coke oven
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34231693A
Other languages
Japanese (ja)
Inventor
Yasunori Yamamoto
保典 山本
Keihachiro Tanaka
啓八郎 田中
Yasutaka Shihara
康孝 紫原
Takashi Sato
孝志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34231693A priority Critical patent/JPH07166165A/en
Publication of JPH07166165A publication Critical patent/JPH07166165A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

(57)【要約】 【目的】 複数配列された燃焼室及び炭化室からなるコ
ークス炉の炉内圧制御を高精度で行う。 【構成】 コークス炉において、炭化室毎のプログラム
加熱制御を実施するに際して、以下に示す特性式を用い
て、燃焼排ガスの流路面積を算出し、該流路面積に基づ
いて各燃焼室3毎の燃焼室圧力制御ダンパー16の開度
を決定することを特徴とする。 【数6】
(57) [Summary] [Purpose] To control the internal pressure of a coke oven consisting of multiple combustion chambers and carbonization chambers with high accuracy. [Structure] When performing program heating control for each carbonization chamber in a coke oven, the flow passage area of combustion exhaust gas is calculated using the following characteristic expression, and each combustion chamber 3 is calculated based on the flow passage area. The opening degree of the combustion chamber pressure control damper 16 is determined. [Equation 6]

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃焼室と炭化室とが複
数配列されたコークス炉の炉内圧制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace pressure control method for a coke oven in which a plurality of combustion chambers and carbonization chambers are arranged.

【0002】[0002]

【従来の技術】従来から使用されているコークス炉は、
炭化室の両側を燃焼室で挟むように、複数の炭化室と燃
焼室とを交互に配列してある。そして、それぞれの燃焼
室に燃焼ガスと空気とが供給されて、燃焼室に挟まれた
炭化室が加熱され、炭化室内に充填した石炭が乾留され
てコークスが生成されている。
2. Description of the Related Art Coke ovens conventionally used are
A plurality of carbonization chambers and combustion chambers are alternately arranged so that both sides of the carbonization chamber are sandwiched by the combustion chambers. Then, combustion gas and air are supplied to the respective combustion chambers, the carbonization chamber sandwiched between the combustion chambers is heated, and the coal filled in the carbonization chamber is carbonized to generate coke.

【0003】この従来のコークス炉における燃焼の制御
は、コークス炉全体に供給する燃料ガスと空気の流量を
一定流量に制御することにより行われており、個々の燃
焼室についての燃料ガスや空気の流量の自動制御は行わ
れていなかった。すなわち、炉団単位でコークス炉の代
表位置で燃焼室の炉内圧を検出し、検出した炉内圧が予
め定めた適正値になるよう、煙道に設けたダンパの開度
を調整していた。
The control of combustion in this conventional coke oven is performed by controlling the flow rates of the fuel gas and air supplied to the entire coke oven to a constant flow rate, and the combustion gas and air of each combustion chamber are controlled. The flow rate was not controlled automatically. That is, the furnace internal pressure of the combustion chamber is detected at the representative position of the coke oven in units of the furnace group, and the opening degree of the damper provided in the flue is adjusted so that the detected furnace internal pressure becomes a predetermined appropriate value.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、コーク
ス炉の炭化室毎のプログラム加熱制御を実施する際に
は、各燃焼室に供給される燃料ガス及び空気の流量が経
時的に大きく変化するので従来の炉団単位の圧力制御で
は各燃焼室の炉内圧力を一定値に保つのは不可能であ
る。コークス炉の燃焼室炉内圧力が適正値に保てなくな
るとコークス炉操業上重大な支障をきたす。すなわち、
燃焼室の炉内圧力が適正値よりも高くなると燃料ガスの
供給系統から燃料ガスが吐出し、作業環境上非常に危険
な状態となり、適正値よりも低くなると燃焼室に空気が
進入し炉体の損傷を招く。
However, when the programmed heating control for each carbonization chamber of the coke oven is performed, the flow rates of the fuel gas and the air supplied to each combustion chamber change greatly with time, which is a conventional problem. It is impossible to keep the in-furnace pressure in each combustion chamber at a constant value by controlling the pressure of each furnace group. If the pressure inside the combustion chamber of the coke oven cannot be maintained at an appropriate value, it will seriously hinder the operation of the coke oven. That is,
When the pressure inside the combustion chamber becomes higher than the proper value, the fuel gas is discharged from the fuel gas supply system, and it becomes a very dangerous state in the work environment.When it becomes lower than the proper value, air enters the combustion chamber and the furnace body Result in damage.

【0005】本発明は、上記した従来の技術の有する問
題点を解決するために提案されたものであり、その目的
とするところは、複数配列された燃焼室及び炭化室から
なるコークス炉において、炭化室毎のプログラム加熱を
実施する際に各燃焼室の炉内圧制御を精度よく行うこと
にある。
The present invention has been proposed in order to solve the above-mentioned problems of the prior art. The object of the present invention is to provide a coke oven having a plurality of combustion chambers and carbonization chambers arranged in a row. It is to accurately control the furnace pressure of each combustion chamber when performing the programmed heating for each carbonization chamber.

【0006】[0006]

【課題を解決するための手段】上記した目的を達成する
ため、石炭を乾留してコークス化する炭化室と、該炭化
室を加熱する燃焼室とを交互に複数列設け、各々の燃焼
室には、燃料ガスを供給する燃料ガス供給路と、空気を
供給する空気供給路と、燃焼排ガスを排出する排ガス流
路とが接続され、前記燃料ガス供給路に燃料ガス流量調
整弁を設け、前記空気供給路に空気流量調整弁を設け、
前記排ガス流路に燃焼排ガス変更弁前に燃焼室圧力制御
ダンパーを設けたコークス炉の炭化室毎のプログラム加
熱制御において、各燃焼室毎に供給される燃料ガスの流
量と空気の流量を検出して排ガス流量(W)を求め、燃
焼室の炉頂圧力(PTOP )と煙道ダンパー前圧力(P
DRF )の差圧と前記排ガス流量(W)とに基づいて燃焼
排ガスの流路面積(S)を求め、各燃焼室毎の燃焼室圧
力制御ダンパーの開度を調整する際に、流量係数(α)
が燃焼排ガスの流路面積(S)を変数とする2次式とし
て表した以下に示す特性式により、各燃焼室毎の燃焼室
圧力制御ダンパーの開度を決定することを特徴とする。
特性式は以下の式で表される。
In order to achieve the above-mentioned object, a plurality of rows of carbonization chambers for carbonizing carbon to form coke and combustion chambers for heating the carbonization chambers are alternately provided in each combustion chamber. Is connected to a fuel gas supply passage for supplying fuel gas, an air supply passage for supplying air, and an exhaust gas passage for discharging combustion exhaust gas, and a fuel gas flow rate adjusting valve is provided in the fuel gas supply passage, An air flow rate adjustment valve is installed in the air supply path,
In the program heating control for each carbonization chamber of the coke oven in which the combustion chamber pressure control damper is provided in front of the combustion exhaust gas change valve in the exhaust gas passage, the flow rate of fuel gas and the flow rate of air supplied to each combustion chamber are detected. The exhaust gas flow rate (W) is calculated by the following method, and the furnace top pressure (P TOP ) and flue damper pre-pressure (P
The flow coefficient (S) of the combustion exhaust gas is calculated based on the differential pressure of ( DRF ) and the exhaust gas flow rate (W), and when the opening of the combustion chamber pressure control damper for each combustion chamber is adjusted, the flow coefficient ( α)
Is characterized by determining the opening degree of the combustion chamber pressure control damper for each combustion chamber by the following characteristic equation expressed as a quadratic equation with the flow passage area (S) of the combustion exhaust gas as a variable.
The characteristic formula is represented by the following formula.

【数2】 [Equation 2]

【0007】また、流量係数(α)を表した、燃焼排ガ
スの流路面積(S)を変数とする2次式の制御パラメー
ター(a,b,c)を任意の一定周期で学習することに
より、特性式を修正して各燃焼室毎の燃焼室圧力制御ダ
ンパーの開度を決定することを特徴とする。
Further, by learning the control parameters (a, b, c) of the quadratic equation having the flow passage area (S) of the combustion exhaust gas as a variable, which expresses the flow coefficient (α), at an arbitrary fixed cycle. The characteristic expression is modified to determine the opening of the combustion chamber pressure control damper for each combustion chamber.

【0008】[0008]

【作用】本発明は上記した構成からなるので、以下に説
明するよう作用する。請求項1記載の発明では、燃焼排
ガス変更弁の排ガス流量を、特性式
Since the present invention has the above-mentioned structure, it operates as described below. In the invention according to claim 1, the exhaust gas flow rate of the combustion exhaust gas changing valve is defined by a characteristic expression

【0009】[0009]

【数3】 [Equation 3]

【0010】として表している。It is represented as.

【0011】そして、上記した特性式を用いて、燃焼排
ガスの流路面積(S)を算出し、該流路面積(S)に基
づいて各燃焼室毎の燃焼室圧力制御ダンパーの開度を決
定する。各々の燃焼室毎では、燃焼室圧力制御ダンパー
を決定した開度に設定することにより炉内圧力制御を行
っている。すなわち、まず燃焼排ガス変更弁の排ガス流
量(W)が燃焼排ガス変更弁に引き落とされる燃料ガス
流量及び空気流量の合計として計算される。次に、燃焼
排ガスの流路面積(S)は特性式
Then, the flow passage area (S) of the combustion exhaust gas is calculated using the above-mentioned characteristic formula, and the opening of the combustion chamber pressure control damper for each combustion chamber is calculated based on the flow passage area (S). decide. In each combustion chamber, the pressure inside the combustion chamber is controlled by setting the combustion chamber pressure control damper to the determined opening. That is, first, the exhaust gas flow rate (W) of the combustion exhaust gas change valve is calculated as the total of the fuel gas flow rate and the air flow rate which are drawn to the combustion exhaust gas change valve. Next, the flow passage area (S) of the combustion exhaust gas is expressed by the characteristic equation

【0012】[0012]

【数4】 [Equation 4]

【0013】に対して、燃焼室の炉頂圧力(PTOP )の
目標値及び煙道ダンパー前圧力(PDRF )の設定値(一
定値)を与え、Sの3次方程式をNewton−Rap
hson法等の数値解法により解くことによって求めら
れる。一般に、流路面積(S)と開度との間には相関が
あるので、あらかじめ求めた関係式によって流路面積
(S)から燃焼圧力制御ダンパー開度を求めることがで
きる。この開度を設定することにより燃焼室の炉頂圧力
(PTOP )は目標値に制御される。
On the other hand, the target value of the top pressure (P TOP ) of the combustion chamber and the set value (constant value) of the pressure before flue damper (P DRF ) are given, and the cubic equation of S is given by Newton-Rap.
It is obtained by solving by a numerical solution method such as the hson method. Generally, since there is a correlation between the flow passage area (S) and the opening degree, the combustion pressure control damper opening degree can be obtained from the flow passage area (S) by a relational expression obtained in advance. By setting this opening, the furnace top pressure (P TOP ) in the combustion chamber is controlled to the target value.

【0014】また、請求項2に記載の発明では、流量係
数(α)を燃焼排ガスの流路面積(S)を変数とする2
次式として表し、該2次式の制御パラメーター(a,
b,c)を求めて、任意の一定周期で学習することによ
り、特性式を修正して各燃焼室毎の燃焼室圧力制御ダン
パーの開度を決定している。
According to the second aspect of the invention, the flow coefficient (α) is a variable of the flow passage area (S) of the combustion exhaust gas.
The control parameter (a,
b, c) are obtained and learned in an arbitrary fixed cycle to correct the characteristic formula to determine the opening degree of the combustion chamber pressure control damper for each combustion chamber.

【0015】したがって、特性変化に対応することがで
き、更に高精度の燃焼室毎の炉内圧力制御を行うことが
可能となる。この学習機能は、稼働率の変更、燃料ガス
性状の変化等のコークス炉の操業条件が変化し、この特
性が変化した場合のみ働かせ、通常のコークス炉の操業
条件に変化がない場合は働かさない方法をとっても良
い。
Therefore, it is possible to cope with a change in characteristics, and it is possible to perform highly accurate furnace pressure control for each combustion chamber. This learning function works only when the operating conditions of the coke oven, such as changes in the operating rate and fuel gas properties, change and this characteristic changes, and does not work when the operating conditions of the normal coke oven do not change. You can take the method.

【0016】[0016]

【実施例】以下、図面に基づいて、本発明の一実施例を
説明する。図1は本発明に係るコークス炉の概略を示し
た模式図、図2は流量係数(α)と燃焼排ガスの流路面
積(S)との関係を示した説明図である。図3は、本制
御方法をプログラム加熱制御を行うコークス炉に適用し
た場合の燃焼排ガス変更弁の排ガス流量、燃焼室圧力制
御ダンパー開度及び燃焼室炉頂圧力の推移図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an outline of a coke oven according to the present invention, and FIG. 2 is an explanatory diagram showing a relationship between a flow coefficient (α) and a flow passage area (S) of combustion exhaust gas. FIG. 3 is a transition diagram of the exhaust gas flow rate of the combustion exhaust gas changing valve, the combustion chamber pressure control damper opening, and the combustion chamber furnace top pressure when the present control method is applied to a coke oven that performs program heating control.

【0017】本発明に係るコークス炉1は、図1に示す
ように、石炭を乾留してコークス化する炭化室2と、該
炭化室2を加熱する燃焼室3とを横方向に交互に複数列
設けてあり、各燃焼室3には、燃料ガスを供給する燃料
ガス供給路4と、空気を供給する空気供給路5と、燃焼
排ガスを排出する排ガス流路6とが接続され、燃料ガス
供給路4に燃料ガス流量調整弁7を設け、空気供給路5
に空気流量調整弁8を設け、排ガス流路6の燃焼排ガス
変更弁9の前に燃焼室圧力制御ダンパー16が設けてあ
る。
As shown in FIG. 1, a coke oven 1 according to the present invention has a plurality of carbonization chambers 2 for carbonizing carbon to be coke and a plurality of combustion chambers 3 for heating the carbonization chamber 2 alternately in the lateral direction. A fuel gas supply path 4 for supplying a fuel gas, an air supply path 5 for supplying an air, and an exhaust gas flow path 6 for discharging a combustion exhaust gas are connected to each combustion chamber 3 in a row. A fuel gas flow rate adjusting valve 7 is provided in the supply passage 4, and an air supply passage 5 is provided.
An air flow rate adjusting valve 8 is provided in the exhaust gas flow path 6, and a combustion chamber pressure control damper 16 is provided in front of the combustion exhaust gas changing valve 9 in the exhaust gas passage 6.

【0018】また、各々の燃焼室3の下方には、蓄熱室
10が設けてある。この蓄熱室10は、燃焼室3に供給
する燃料と空気とを導くとともに、燃焼によって生じた
燃焼排ガスを煙道11に導いている。したがって、蓄熱
室10内は高温の燃焼排ガスにより加熱されるので、こ
の熱により燃焼室3に供給する燃料と空気とを余熱する
ことができ、燃料の燃焼効率を高めることが可能とな
る。
A heat storage chamber 10 is provided below each combustion chamber 3. The heat storage chamber 10 guides the fuel and air to be supplied to the combustion chamber 3 and also guides the combustion exhaust gas generated by the combustion to the flue 11. Therefore, the inside of the heat storage chamber 10 is heated by the high-temperature combustion exhaust gas, so that the heat can preheat the fuel and the air supplied to the combustion chamber 3, and the combustion efficiency of the fuel can be improved.

【0019】また、各空気供給路5に空気を供給する空
気供給本管12には、炉団空気量調整弁13が設けてあ
り、各燃料ガス供給路4に燃料ガスを供給する燃料ガス
供給本管14には、炉団燃料ガス流量調整弁15が設け
てある。また、各燃焼室3毎に設けた排ガス流路6は集
合して煙道11となり、煙突(図示せず)に連絡してい
る。
Further, a furnace group air amount adjusting valve 13 is provided in the air supply main 12 for supplying air to each air supply passage 5, and the fuel gas supply for supplying fuel gas to each fuel gas supply passage 4 is provided. The main tube 14 is provided with a reactor fuel gas flow rate adjusting valve 15. Further, the exhaust gas passages 6 provided for each combustion chamber 3 are collected to form a flue 11, which communicates with a chimney (not shown).

【0020】上記した燃焼室圧力制御ダンパー16に
は、開閉機構(図示せず)が設けてあり、燃焼室圧力制
御ダンパー16の開度を自動的に変更可能となってい
る。この燃焼室圧力制御ダンパー16の開閉機構は、例
えばアクチュエーターからなり、プロセスコンピュータ
ー(図示せず)により電気的に制御され、燃焼室圧力制
御ダンパー16の開度が調整される。
The combustion chamber pressure control damper 16 is provided with an opening / closing mechanism (not shown) so that the opening degree of the combustion chamber pressure control damper 16 can be automatically changed. The opening / closing mechanism of the combustion chamber pressure control damper 16 is, for example, an actuator, and is electrically controlled by a process computer (not shown) to adjust the opening degree of the combustion chamber pressure control damper 16.

【0021】上記したコークス炉1におけるコークス生
成の手順を説明する。まず、炭化室2に余熱した石炭
(粉炭)が供給される。また、燃焼室3には空気供給路
5から空気が、燃料ガス供給路4から燃料ガスが供給さ
れて燃焼室3内で燃焼し、隣接して設置された炭化室2
が加熱される。燃焼室3に供給される燃焼ガスは、互い
にカロリーの異なるコークス炉ガスと高炉ガスとを混合
したものである。
The procedure of coke generation in the above coke oven 1 will be described. First, preheated coal (powdered coal) is supplied to the carbonization chamber 2. Air is supplied to the combustion chamber 3 from the air supply passage 5 and fuel gas is supplied from the fuel gas supply passage 4 to burn in the combustion chamber 3, and the carbonization chambers 2 adjacent to each other are installed.
Is heated. The combustion gas supplied to the combustion chamber 3 is a mixture of coke oven gas and blast furnace gas having different calories.

【0022】そして、燃焼ガス変更弁の排ガス流量
(W)と、燃焼室3の炉頂圧力(PTOP)と、煙道ダン
パー前圧力(PDRF )とを設定値として、特性式
Then, the exhaust gas flow rate (W) of the combustion gas changing valve, the furnace top pressure (P TOP ) of the combustion chamber 3 and the flue damper pre-pressure (P DRF ) are set as set values, and a characteristic equation is set.

【0023】[0023]

【数5】 [Equation 5]

【0024】に代入して、燃焼ガスの流路面積(S)を
算出し、算出した流路面積(S)に基づいて各燃焼室3
毎の燃焼室圧力制御ダンパー16の開度を決定する。流
路面積(S)と燃焼室圧力制御ダンパー16の開度と
は、一般的に一定の相関関係があり、実際の測定により
予め相関関係を求めておけば、流路面積(S)を燃焼室
圧力制御ダンパー16の開度に変換することができる。
By substituting into the flow path area (S) of the combustion gas, and based on the calculated flow path area (S), each combustion chamber 3
The opening degree of each combustion chamber pressure control damper 16 is determined. The flow passage area (S) and the opening degree of the combustion chamber pressure control damper 16 generally have a constant correlation, and if the correlation is obtained in advance by actual measurement, the flow passage area (S) is burned. It can be converted into the opening degree of the chamber pressure control damper 16.

【0025】このようにして求めた燃焼室圧力制御ダン
パー16の開度に基づき、各燃焼室3では、アクチュエ
ーターがプロセスコンピューターにより電気的に制御さ
れ、燃焼室圧力制御ダンパー16の開度が調整される。
Based on the opening of the combustion chamber pressure control damper 16 thus obtained, in each combustion chamber 3, the actuator is electrically controlled by the process computer to adjust the opening of the combustion chamber pressure control damper 16. It

【0026】また、上記した特性式において、流量係数
は燃焼排ガスの流路面積(S)を変数とした2次式で表
すことができる。そこで、実際にコークス炉1を運転し
た場合の実績値である、燃焼ガス変更弁の排ガス流量
(W)と、燃焼排ガスの流路面積(S)と、燃焼室圧力
検出センサー17で検出する燃焼室3の炉頂圧力(P
TOP )と、煙道ダンパー前圧力(PDR F )とにより、上
記した2次式の制御パラメーター(a,b,c)を求
め、この制御パラメーターを予め定めた一定周期で学習
する。例えば、30分毎の燃焼排ガス変更弁の切替えに
合わせてデータを24時間取り込む。すなわち、1日分
48点のデータを用いる。
In the above characteristic equation, the flow coefficient can be expressed by a quadratic equation in which the flow passage area (S) of the combustion exhaust gas is a variable. Therefore, the exhaust gas flow rate (W) of the combustion gas change valve, the flow passage area (S) of the combustion exhaust gas, and the combustion detected by the combustion chamber pressure detection sensor 17, which are the actual values when the coke oven 1 is actually operated. Top pressure of chamber 3 (P
TOP ) and the flue damper pre-pressure (P DR F ), the control parameter (a, b, c) of the above-described quadratic equation is obtained, and this control parameter is learned in a predetermined constant cycle. For example, data is captured for 24 hours in accordance with the switching of the combustion exhaust gas change valve every 30 minutes. That is, data of 48 points for one day is used.

【0027】図2に、上記した2次式の実測値に基づく
一例を示してある。この2次式においては、流量係数の
制御パラメータがそれぞれ、 a=1842,b=3095,c=2402 となっている。
FIG. 2 shows an example based on the measured values of the above-mentioned quadratic equation. In this quadratic equation, the control parameters of the flow coefficient are a = 1842, b = 3095, and c = 2402, respectively.

【0028】本制御方法をプログラム加熱制御を行うコ
ークス炉に適用した場合の実施例を図3に示す。図3に
示すように、プログラム加熱制御により経時的に大きく
変化する燃焼排ガス変更弁9の排ガス流量に対して、本
制御方式で算出した燃焼室圧力制御ダンパー開度16を
設定することにより、燃焼室炉頂圧力目標値±2mmA
q以内に精度よく制御できた。
FIG. 3 shows an embodiment in which the present control method is applied to a coke oven which performs program heating control. As shown in FIG. 3, the combustion chamber pressure control damper opening 16 calculated by the present control method is set for the exhaust gas flow rate of the combustion exhaust gas change valve 9 that greatly changes with time by the program heating control, thereby Chamber furnace top pressure target value ± 2 mmA
It was possible to control accurately within q.

【0029】[0029]

【発明の効果】本発明は、上記したように構成されてい
るので、以下に説明するような効果を奏することができ
る。請求項1記載の発明では、特性式を用いて、燃焼排
ガスの流路面積(S)を算出し、該流路面積(S)に基
づいて各燃焼室毎の燃焼室圧力制御ダンパーの開度を決
定する。各々の燃焼室毎では、燃焼室圧力制御ダンパー
を決定した開度に設定することにより炉内圧力制御を行
っている。
Since the present invention is configured as described above, the following effects can be obtained. In the invention according to claim 1, the flow passage area (S) of the combustion exhaust gas is calculated using the characteristic expression, and the opening of the combustion chamber pressure control damper for each combustion chamber is calculated based on the flow passage area (S). To decide. In each combustion chamber, the pressure inside the combustion chamber is controlled by setting the combustion chamber pressure control damper to the determined opening.

【0030】炉内圧を適正値とすることにより、コーク
ス炉の炉体の損傷を防止することができ、炉体の補修も
最小限で済ますことができる。また、燃料ガス供給系統
からの燃料ガスの吐出を防止でき、安全な環境下でコー
クス炉作業を実行できる。
By setting the furnace pressure to an appropriate value, damage to the furnace body of the coke oven can be prevented, and repair of the furnace body can be minimized. Further, discharge of fuel gas from the fuel gas supply system can be prevented, and coke oven work can be performed in a safe environment.

【0031】請求項2に記載の発明では、流量係数を燃
燃排ガスの流路面積を変数とする2次式として表し、該
2次式の制御パラメーターを求めて、任意の一定周期で
学習することにより、特性式を修正して各燃焼室毎の燃
焼室圧力制御ダンパーの開度を決定している。
According to the second aspect of the present invention, the flow coefficient is expressed as a quadratic equation in which the flow passage area of the flue gas is used as a variable, and the control parameter of the quadratic equation is obtained and learned at an arbitrary fixed cycle. Thus, the characteristic equation is corrected to determine the opening of the combustion chamber pressure control damper for each combustion chamber.

【0032】したがって、特性変化に対応することがで
き、更に高精度の燃焼室毎の炉内圧力制御を行うことが
可能となる。
Therefore, it is possible to cope with a change in characteristics, and it is possible to perform highly accurate furnace pressure control for each combustion chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るコークス炉の概略を示した模式図
である。
FIG. 1 is a schematic diagram showing an outline of a coke oven according to the present invention.

【図2】流量係数と燃焼排ガスの流路面積との関係を示
した説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a flow coefficient and a flow passage area of combustion exhaust gas.

【図3】本発明の制御方法による燃焼排ガス変更弁の排
ガス流量、燃焼室圧力制御ダンパー開度、及び燃焼室圧
力の推移図である。
FIG. 3 is a transition diagram of an exhaust gas flow rate of a combustion exhaust gas changing valve, a combustion chamber pressure control damper opening, and a combustion chamber pressure according to the control method of the present invention.

【符号の説明】[Explanation of symbols]

1 コークス炉 2 炭化室 3 燃焼室 4 燃料ガス供給路 5 空気供給路 6 排ガス流路 7 燃料ガス流量調整弁 8 空気流量調整弁 9 燃焼排ガス変更弁 10 蓄熱室 11 煙道 12 空気供給本管 13 炉団空気流量調整弁 14 燃料ガス供給本管 15 炉団ガス流量調整弁 16 燃焼室圧力制御ダンパー 17 燃焼室圧力検出センサー 1 Coke Oven 2 Carbonization Chamber 3 Combustion Chamber 4 Fuel Gas Supply Path 5 Air Supply Path 6 Exhaust Gas Flow Path 7 Fuel Gas Flow Rate Control Valve 8 Air Flow Rate Control Valve 9 Combustion Exhaust Gas Change Valve 10 Heat Storage Room 11 Flue 12 Air Supply Mains 13 Reactor group air flow rate control valve 14 Fuel gas supply main 15 Reactor group gas flow rate control valve 16 Combustion chamber pressure control damper 17 Combustion chamber pressure detection sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 孝志 福岡県北九州市戸畑区飛畑町1−1 新日 本製鐵株式会社八幡製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Sato 1-1 Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Inside Nippon Steel Corporation Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】石炭を乾留してコークス化する炭化室と、
該炭化室を加熱する燃焼室とを交互に複数列設け、各々
の燃焼室には、燃料ガスを供給する燃料ガス供給路と、
空気を供給する空気供給路と、燃焼排ガスを排出する排
ガス流路とが接続され、前記燃料ガス供給路に燃料ガス
流量調整弁を設け、前記空気供給路に空気流量調整弁を
設け、前記排ガス流路に燃焼排ガス変更弁前に燃焼室圧
力制御ダンパーを設けたコークス炉の炭化室毎のプログ
ラム加熱制御において、 各燃焼室毎に供給される燃料ガスの流量と空気の流量を
検出して排ガス流量(W)を求め、燃焼室の炉頂圧力
(PTOP )と煙道ダンパー前圧力(PDRF )の差圧と前
記排ガス流量(W)とに基づいて燃焼排ガスの流路面積
(S)を求め、各燃焼室毎の燃焼室圧力制御ダンパーの
開度を調整する際に、流量係数(α)が燃焼排ガスの流
路面積(S)を変数とする2次式として表した以下に示
す特性式により、各燃焼室毎の燃焼室圧力制御ダンパー
の開度を決定することを特徴とするコークス炉の炉内圧
制御方法。 【数1】
1. A carbonization chamber in which coal is carbonized to coke.
A plurality of rows of combustion chambers for heating the carbonization chamber are alternately provided, and each combustion chamber has a fuel gas supply path for supplying a fuel gas,
An air supply path for supplying air and an exhaust gas flow path for discharging combustion exhaust gas are connected, a fuel gas flow rate adjusting valve is provided in the fuel gas supply path, and an air flow rate adjusting valve is provided in the air supply path. In the program heating control for each coking chamber of a coke oven that has a combustion chamber pressure control damper in front of the combustion exhaust gas change valve in the flow path, the exhaust gas is detected by detecting the flow rate of fuel gas and air flow rate supplied to each combustion chamber. The flow rate (W) is calculated, and the flow area (S) of the combustion exhaust gas is calculated based on the differential pressure between the furnace top pressure (P TOP ) and the flue damper front pressure (P DRF ) in the combustion chamber and the exhaust gas flow rate (W). And the flow coefficient (α) is a quadratic expression in which the flow passage area (S) of the combustion exhaust gas is used as a variable when adjusting the opening of the combustion chamber pressure control damper for each combustion chamber. Combustion chamber pressure control damper for each combustion chamber A method for controlling the internal pressure of a coke oven, which is characterized in that the opening degree of the coke oven is determined. [Equation 1]
【請求項2】請求項1記載のコークス炉の炉内圧制御方
法において、 流量係数(α)を表した、燃焼排ガスの流路面積(S)
を変数とする2次式の制御パラメーター(a,b,c)
を任意の一定周期で学習することにより、特性式を修正
して各燃焼室毎の燃焼室圧力制御ダンパーの開度を決定
することを特徴とするコークス炉の炉内圧制御方法。
2. The method for controlling the internal pressure of a coke oven according to claim 1, wherein the flow area (S) of the combustion exhaust gas, which represents the flow coefficient (α),
Control parameters (a, b, c) of quadratic equation with variable
A method for controlling the internal pressure of a coke oven, characterized in that the opening degree of the combustion chamber pressure control damper for each combustion chamber is determined by modifying the characteristic equation by learning at a given constant cycle.
JP34231693A 1993-12-15 1993-12-15 Control method of coke oven pressure Withdrawn JPH07166165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34231693A JPH07166165A (en) 1993-12-15 1993-12-15 Control method of coke oven pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34231693A JPH07166165A (en) 1993-12-15 1993-12-15 Control method of coke oven pressure

Publications (1)

Publication Number Publication Date
JPH07166165A true JPH07166165A (en) 1995-06-27

Family

ID=18352788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34231693A Withdrawn JPH07166165A (en) 1993-12-15 1993-12-15 Control method of coke oven pressure

Country Status (1)

Country Link
JP (1) JPH07166165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568331B1 (en) * 1999-12-28 2006-04-05 주식회사 포스코 Coke oven carbonization chamber generated gas transfer control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568331B1 (en) * 1999-12-28 2006-04-05 주식회사 포스코 Coke oven carbonization chamber generated gas transfer control method

Similar Documents

Publication Publication Date Title
JP5227191B2 (en) Optimally controlled coke oven and control method
US5318671A (en) Method of operation of nonrecovery coke oven battery
CN107022359A (en) A kind of coke oven combustion chamber temperature control control nitre method and system
CN212320445U (en) Heat recovery coke oven flue gas control system
US6436335B1 (en) Method for controlling a carbon baking furnace
JPH07166165A (en) Control method of coke oven pressure
JP3283355B2 (en) Pressure control method for coke oven equipment
CN113621389A (en) Measuring and adjusting method for temperature of heat storage chamber
JPH1135944A (en) Control method of furnace wall temperature taper in coke oven
JP2677891B2 (en) Coke oven temperature control method
JPH04288395A (en) Method for controlling pressure inside coke oven
JP3752062B2 (en) Coke oven pressure control method
JPH09302351A (en) Control method of input heat quantity for each kiln of coke oven
JPH10140161A (en) Operating method of coke oven
US4643803A (en) Method of making coke in a coke oven battery
JPS5950196B2 (en) How to determine whether a coke oven has caught fire
JPS63238191A (en) Coke oven furnace length temperature distribution control method
JP2001316674A (en) A coke oven control method that suppresses the variation of coke oven fire time and discharge temperature between kilns
JPH05117660A (en) Method for controlling combustion in coke oven
JPH03157483A (en) Process for controlling combustion of coke oven
CN118879343A (en) A coke oven automatic heating coupling control method
JPH1150055A (en) Air-fuel ratio control method for coke oven
CN107436090A (en) The control system and method for a kind of rotary hearth furnace
JP2002220591A (en) Coke dry quenching facility and method for operating the same
JP2884979B2 (en) Prevention method of black smoke generation in coke oven chimney

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306