JPH1135398A - Compound semiconductor single crystal - Google Patents

Compound semiconductor single crystal

Info

Publication number
JPH1135398A
JPH1135398A JP10139811A JP13981198A JPH1135398A JP H1135398 A JPH1135398 A JP H1135398A JP 10139811 A JP10139811 A JP 10139811A JP 13981198 A JP13981198 A JP 13981198A JP H1135398 A JPH1135398 A JP H1135398A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
compound semiconductor
epitaxial growth
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10139811A
Other languages
Japanese (ja)
Inventor
Tsuneyuki Minase
恒幸 皆瀬
Atsushi Ikeda
淳 池田
Norio Otaki
紀夫 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP10139811A priority Critical patent/JPH1135398A/en
Publication of JPH1135398A publication Critical patent/JPH1135398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject single crystal appropriately used as a substrate for epitaxial growth in the manufacture of a green light emitting device that causes no reduction in luminance by adjusting the concn. of Si and O, both of which exist as impurities in the substrate for epitaxial growth, to values within specified ranges respectively. SOLUTION: In this compound semiconductor single crystal used as a substrate for epitaxial growth, the concn. of Si and O, both of which exist as impurities in the substrate, are adjusted so as to meet the relational expressions, (Si concn.) <1×10<17> atoms/cm<3> and (O concn.) <7×10<16> atoms/cm<3> , respectively. A liquid phase epitaxial growth equipment 2 is provided with a quartz reaction tube 4 in which a boat 6 for epitaxial growth is placed. The boat 6 is provided on its inside with: a substrate holder 8 for setting several, for example five GaP substrates W1 to W5 on it in the longitudinal direction; suveral, several, for example, five growth solution reservoirs 10a to 10e placed in front of the substrate holder 8 so as to correspond to the GaP substrates W1 to W5 , respectively; and also, a solution receiving boat 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、輝度低下のない緑色発
光素子のエピタキシャル用基板として好適に用いられる
化合物半導体単結晶、特にGaP単結晶に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor single crystal, particularly a GaP single crystal, which is suitably used as an epitaxial substrate for a green light-emitting device without a decrease in luminance.

【0002】[0002]

【従来の技術】GaP緑色発光ダイオードにおける高輝
度化の要求は年々高まる一方であるが、輝度低下は様々
な要因により発生するため高輝度化を達成することは簡
単に行なえることではない。例えば、GaP単結晶基板
に液相エピタキシャル成長させて、緑色発光素子用のエ
ピタキシャルウェーハを製造する工程において、基板の
特定位置が低輝度となる問題が発生していた。
2. Description of the Related Art The demand for higher luminance in a GaP green light emitting diode is increasing year by year, but it is not easy to achieve high luminance because the luminance is reduced by various factors. For example, in a process of manufacturing an epitaxial wafer for a green light-emitting device by performing liquid phase epitaxial growth on a GaP single crystal substrate, there has been a problem that a specific position of the substrate has low brightness.

【0003】[0003]

【発明が解決しようとする課題】本発明者は、低輝度と
なったGaP単結晶基板と輝度低下のないGaP単結晶
基板について、不純物濃度を調べたところ、輝度と特定
の不純物濃度について一定の関係が存在することを見出
し本発明を完成したものである。
The present inventor examined the impurity concentration of a GaP single crystal substrate having a low luminance and a GaP single crystal substrate having no luminance decrease, and found that the luminance and a specific impurity concentration were constant. It has been found that a relationship exists and the present invention has been completed.

【0004】本発明は、輝度低下のない緑色発光素子の
エピタキシャル用基板として好適に用いられる化合物半
導体単結晶、特にGaP単結晶を提供することを目的と
する。
An object of the present invention is to provide a compound semiconductor single crystal, particularly a GaP single crystal, which is suitably used as an epitaxial substrate for a green light emitting device without a decrease in luminance.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の化合物半導体単結晶においては、エピタキ
シャル用基板として用いられる化合物半導体単結晶であ
って、基板中に含有される不純物について、Si濃度が
1×1017atoms/cm3 未満かつO濃度が7×1016atom
s/cm3 未満の関係を満たしているようにしたものであ
る。
In order to solve the above-mentioned problems, a compound semiconductor single crystal of the present invention is a compound semiconductor single crystal used as an epitaxial substrate, wherein impurities contained in the substrate are: Si concentration less than 1 × 10 17 atoms / cm 3 and O concentration 7 × 10 16 atoms
The relationship of less than s / cm 3 is satisfied.

【0006】上記濃度範囲外の場合には、基板の中にS
iO2 等の析出が起こっており、エピタキシャル成長工
程において、欠陥を増加させ輝度の低下が生じる。
If the concentration is out of the above range, S
Precipitation of iO 2 and the like has occurred, and in the epitaxial growth step, defects are increased and luminance is reduced.

【0007】上記化合物半導体単結晶はGaP単結晶で
ある。
The compound semiconductor single crystal is a GaP single crystal.

【0008】本発明の化合物半導体単結晶は、緑色発光
素子の製造に好適に用いられる。
The compound semiconductor single crystal of the present invention is suitably used for producing a green light emitting device.

【0009】[0009]

【実施例】以下に本発明の実施例を挙げて説明する。Embodiments of the present invention will be described below.

【0010】下記する実験例1に用いる液相成長装置を
図2に示す。同図において、2は液相成長装置で、石英
製の反応管4を有している。該反応管4内には成長用ボ
ート6が配置されている。該成長用ボート6は、長手方
向に複数、例えば5枚のGaP基板W1〜W5をセット
する基板ホルダ8と、且つ各基板W1〜W5に対応して
設けられる複数の成長溶液溜め部10a〜10eを有し
かつ該基板ホルダ8の正面に設けられているとともに該
基板ホルダ8と互いに摺動可能とされている溶液溜めボ
ート12とを有している。
FIG. 2 shows a liquid phase growth apparatus used in Experimental Example 1 described below. In the figure, reference numeral 2 denotes a liquid phase growth apparatus having a reaction tube 4 made of quartz. A growth boat 6 is arranged in the reaction tube 4. The growth boat 6 includes a substrate holder 8 for setting a plurality of, for example, five GaP substrates W1 to W5 in a longitudinal direction, and a plurality of growth solution reservoirs 10a to 10e provided corresponding to the respective substrates W1 to W5. And a solution storage boat 12 provided on the front of the substrate holder 8 and slidable with respect to the substrate holder 8.

【0011】上記成長用ボート6と少し離れた位置に、
例えばZnからなるドーパント蒸発源14が備えられて
いる。上記反応管4の一端部にはガスを供給するための
ガス供給口16が設けられ、他端部にはガスを排出する
ガス排出口18が設けられている。
At a position slightly away from the growth boat 6,
For example, a dopant evaporation source 14 made of Zn is provided. A gas supply port 16 for supplying gas is provided at one end of the reaction tube 4, and a gas outlet 18 for discharging gas is provided at the other end.

【0012】なお、20a、20bは反応管4の外側に
設けられたヒータである。21は引っ張り棒である。
Reference numerals 20a and 20b denote heaters provided outside the reaction tube 4. 21 is a drawbar.

【0013】実験例1 LEC法によって製造された互いにシリコン濃度及び酸
素濃度の異なる表1に示す14種類のGaP単結晶基板
を用い、図2に示す液相成長装置2を用いて下記するよ
うな手順で液相エピタキシャル層を成長させ、緑色エピ
タキシャルウェーハを製造した。
EXPERIMENTAL EXAMPLE 1 Using 14 kinds of GaP single crystal substrates shown in Table 1 having different silicon concentrations and oxygen concentrations manufactured by the LEC method and using a liquid phase growth apparatus 2 shown in FIG. The liquid phase epitaxial layer was grown by the procedure, and a green epitaxial wafer was manufactured.

【0014】[0014]

【表1】 [Table 1]

【0015】液相エピタキシャル層成長手順 H2 雰囲気中で1000℃まで昇温させてGaメルト
中のGaP多結晶をGaメルト中に溶かしこむ。 引っ張り棒21を操作してGaメルト10a〜10e
と基板W1〜W5を接触させる。
Procedure for Growing Liquid Phase Epitaxial Layer The temperature is raised to 1000 ° C. in an H 2 atmosphere to dissolve the GaP polycrystal in the Ga melt into the Ga melt. Operate the pull rod 21 to obtain the Ga melts 10a to 10e.
And the substrates W1 to W5.

【0016】次に、1010℃まで昇温し基板の一部
をGaメルト中に溶融させて、メルトバックを行う。 毎分1〜3℃の割合で装置を冷却させながら最初にn
層を成長させる。
Next, the temperature is raised to 1010 ° C., and a part of the substrate is melted in a Ga melt to perform a melt back. While cooling the device at a rate of 1 to 3 ° C. per minute,
Grow the layer.

【0017】続いて、ガス供給管16からH2 ガスと
ともにアンモニアガスを供給しながら冷却を続けNの添
加されたn層を成長させる。 最後に、ドーパント蒸発源14を加熱して、Zn蒸気
をH2 ガスとともに供給しながら冷却を続け、p型層を
成長させる。
Subsequently, cooling is continued while supplying ammonia gas together with H 2 gas from the gas supply pipe 16 to grow an n-layer to which N is added. Finally, the dopant evaporation source 14 is heated, and cooling is continued while supplying the Zn vapor together with the H 2 gas to grow the p-type layer.

【0018】なお、成長を終了するときは、21を操作
してGaメルトと基板を引き離し成長を完了させる。
When the growth is finished, the Ga melt is separated from the substrate by manipulating 21 to complete the growth.

【0019】次いで、このエピタキシャルウェーハにp
型電極としてAuの合金、n型電極としてAuの合金を
蒸着し、0.3mm角のペレットにして緑色発光ダイオ
ードを製作し、その輝度を測定した。
Next, p is added to this epitaxial wafer.
An Au alloy was vapor-deposited as a mold electrode, and an Au alloy was vapor-deposited as an n-type electrode, and a 0.3 mm square pellet was manufactured to produce a green light emitting diode, and its luminance was measured.

【0020】TO−18ヘッダー上でエポキシコート無
し条件で、If =10mAで4.5mcd以上の良好な
輝度を得たものとそうでないものとに分類し、輝度と不
純物濃度との関係をグラフにして図1に示した。図1に
おいて、〇はSiO2 の析出がなく輝度4.5mcd以
上のもの、×はSiO2 析出が局部的に発生しやすく、
そのため結晶性が悪く輝度4.5mcdに満たないもの
をそれぞれ示す。
Under the condition of no epoxy coating on the TO-18 header, a good luminance of 4.5 mcd or more was obtained at I f = 10 mA and a good luminance of 4.5 mcd or more was obtained, and the relationship between the luminance and the impurity concentration was graphed. This is shown in FIG. In FIG. 1, Δ indicates that there was no SiO 2 deposition and the luminance was 4.5 mcd or more, and X indicates that SiO 2 deposition was likely to occur locally,
Therefore, those having poor crystallinity and a luminance of less than 4.5 mcd are shown.

【0021】図1の結果から、輝度の低下のない緑色発
光ダイオードのエピタキシャル用基板として好適な不純
物濃度の条件は、Si濃度が1×1017atoms/cm3 以下
であるか、又はSi濃度が1×1017atoms/cm3 以上の
場合にはO濃度が7×1016atoms/cm3 以下であること
がわかった。即ち、緑色発光ダイオードが好適な輝度を
有するためには、Si濃度が1×1017atoms/cm3 以下
及び/又はO濃度が7×1016atoms/cm3 以下であれば
よいものである。
From the results shown in FIG. 1, the condition of the impurity concentration suitable for the epitaxial substrate of the green light emitting diode without a decrease in luminance is that the Si concentration is 1 × 10 17 atoms / cm 3 or less or the Si concentration is 1 × 10 17 atoms / cm 3 or less. When the concentration was 1 × 10 17 atoms / cm 3 or more, it was found that the O concentration was 7 × 10 16 atoms / cm 3 or less. That is, in order for the green light emitting diode to have a suitable luminance, it is sufficient that the Si concentration is 1 × 10 17 atoms / cm 3 or less and / or the O concentration is 7 × 10 16 atoms / cm 3 or less.

【0022】本発明においては、特にSi濃度を1×1
17atoms/cm3未満かつO濃度を7×1016atoms/cm3
未満に特定して好適な輝度の緑色発光ダイオードを得る
ものである。
In the present invention, in particular, the Si concentration is set to 1 × 1
Less than 0 17 atoms / cm 3 and O concentration of 7 × 10 16 atoms / cm 3
Specifically, a green light-emitting diode having a suitable luminance is obtained.

【0023】[0023]

【発明の効果】以上のべたごとく、本発明の化合物半導
体単結晶、特にGaP単結晶は、輝度低下のない緑色発
光素子のエピタキシャル用基板として好適に用いられる
という効果を奏する。
As described above, the compound semiconductor single crystal of the present invention, in particular, the GaP single crystal has an effect that it can be suitably used as an epitaxial substrate of a green light-emitting device without luminance reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験例1におけるSi濃度及びO濃度と輝度と
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between Si concentration and O concentration and luminance in Experimental Example 1.

【図2】実験例1に使用した液相成長装置を示す概略側
面説明図である。
FIG. 2 is a schematic side view illustrating a liquid phase growth apparatus used in Experimental Example 1.

【符号の説明】[Explanation of symbols]

2:液相成長装置、4:反応管、6:成長用ボート、
8:基板ホルダ、10a〜10e:成長溶液溜め部、1
2:溶液溜めボート、14:ドーパント蒸発源、16:
ガス供給口、W1〜W5:基板。
2: liquid phase growth apparatus, 4: reaction tube, 6: growth boat,
8: substrate holder, 10a to 10e: growth solution reservoir, 1
2: solution storage boat, 14: dopant evaporation source, 16:
Gas supply ports, W1 to W5: substrate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エピタキシャル用基板として用いられる
化合物半導体単結晶であって、基板中に含有される不純
物について、Si濃度が1×1017atoms/cm 3 未満かつ
O濃度が7×1016atoms/cm3 未満の関係を満たしてい
ることを特徴とする化合物半導体単結晶。
1. Used as an epitaxial substrate
Compound semiconductor single crystal containing impurities contained in the substrate
About 1 × 1017atoms / cm ThreeLess than and
O concentration is 7 × 1016atoms / cmThreeMeet less than
A compound semiconductor single crystal, characterized in that:
【請求項2】 上記化合物半導体がGaPであることを
特徴とする請求項1記載の化合物半導体単結晶。
2. The compound semiconductor single crystal according to claim 1, wherein said compound semiconductor is GaP.
【請求項3】 上記化合物半導体単結晶は、緑色発光素
子の製造に用いられることを特徴とする請求項1又は2
記載の化合物半導体単結晶。
3. The method according to claim 1, wherein the compound semiconductor single crystal is used for manufacturing a green light emitting device.
The compound semiconductor single crystal according to the above.
JP10139811A 1998-05-21 1998-05-21 Compound semiconductor single crystal Pending JPH1135398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139811A JPH1135398A (en) 1998-05-21 1998-05-21 Compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10139811A JPH1135398A (en) 1998-05-21 1998-05-21 Compound semiconductor single crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21284691A Division JP2800954B2 (en) 1991-07-29 1991-07-29 Compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH1135398A true JPH1135398A (en) 1999-02-09

Family

ID=15254007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139811A Pending JPH1135398A (en) 1998-05-21 1998-05-21 Compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH1135398A (en)

Similar Documents

Publication Publication Date Title
US7527869B2 (en) Single crystal silicon carbide and method for producing the same
JP2007230823A (en) Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
US20110253031A1 (en) Process for producing single-crystal sapphire
CN109461644A (en) The preparation method and substrate of transparent single crystal AlN, ultraviolet light emitting device
JP2800954B2 (en) Compound semiconductor single crystal
US6144044A (en) Gallium phosphide green light-emitting device
JPH11171699A (en) Growth of gallium nitride phosphide single crystal
US7175706B2 (en) Process of producing multicrystalline silicon substrate and solar cell
JPH1135398A (en) Compound semiconductor single crystal
JPH01231331A (en) Manufacture of single crystal of semiconductor
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP3797124B2 (en) N-type GaP single crystal substrate, manufacturing method thereof, epitaxial substrate for GaP green light emitting diode, and GaP green light emitting diode
JP2537322B2 (en) Semiconductor crystal growth method
JPH1197740A (en) Epitaxial wafer for gap light emitting diode and gap light emitting diode
JPS59214276A (en) Manufacture of gallium phosphide green light-emitting element
TW508835B (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
JP2579336B2 (en) Method for manufacturing blue light emitting diode
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JPS5831739B2 (en) Method for manufacturing gallium phosphide green light emitting device
CN116324047A (en) Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot, and method for producing indium phosphide substrate
JPH0967190A (en) Liquid phase epitaxial growth method
CN115652276A (en) Preparation method of metallic transition metal chalcogenide thin film
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal
JPS6285480A (en) Manufacture of gallium phosphide green light emitting element
JP2002029888A (en) Graphite jig and epitaxial wafer obtained by using the same