JPH11350463A - Device for protecting land from sea level rise by global warming gas - Google Patents

Device for protecting land from sea level rise by global warming gas

Info

Publication number
JPH11350463A
JPH11350463A JP10163217A JP16321798A JPH11350463A JP H11350463 A JPH11350463 A JP H11350463A JP 10163217 A JP10163217 A JP 10163217A JP 16321798 A JP16321798 A JP 16321798A JP H11350463 A JPH11350463 A JP H11350463A
Authority
JP
Japan
Prior art keywords
pond
water level
land
pump
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10163217A
Other languages
Japanese (ja)
Inventor
Hitoshi Konno
仁 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chikyu Kagaku Kenkyusho Kk
Original Assignee
Chikyu Kagaku Kenkyusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chikyu Kagaku Kenkyusho Kk filed Critical Chikyu Kagaku Kenkyusho Kk
Priority to JP10163217A priority Critical patent/JPH11350463A/en
Priority to PCT/JP1998/002951 priority patent/WO1999002783A1/en
Priority to US09/403,729 priority patent/US6283673B1/en
Priority to EP98929774A priority patent/EP1010811A4/en
Publication of JPH11350463A publication Critical patent/JPH11350463A/en
Priority to US09/874,013 priority patent/US6554535B2/en
Priority to US10/132,370 priority patent/US20020114670A1/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

PROBLEM TO BE SOLVED: To prevent the land from being submerged caused by a seat level rise by the earth warming gas. SOLUTION: Caissons 6 each storing a pump and a hydraulic turbine and an offshore weir 5 are installed in parallel with a beach on the sea side of the land 2 to be prevented from being submerged, and ponds 8 are formed by partition weirs 7 connected to the land 2. The water level of each pond 8 is invariably kept at the set water level 11 lower than that of the open sea 1 by several meters by the operation of the pump and water turbine, thus not only the submergence of the beach is avoided, but also the land area is expanded to the offing. The water level of the pond 8 is further lowered than the set water level by a pump operation during the ebb tide at night, and the sea water of the open sea 1 is introduced into the pond 8 by a water turbine operation to raise the water level to the set water level during the high tide in the daytime. A tide pumping power generating system is provided, a high-efficiency pumping power plant combined with the development of tidal energy and the normal pumping power generation is constructed, and economical efficiency is applied to the facility.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地球温暖化ガスに
よる海面上昇から、陸地を守ることを目的とする、潮汐
締め切り堰堤と、潮汐揚水発電システムの建設方法とそ
の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tidal cutoff dam, a method of constructing a tidal pumping power generation system, and an apparatus therefor for the purpose of protecting land from sea level rise due to global warming gas.

【0002】[0002]

【従来の技術】1997年12月に京都で開催された、
地球温暖化防止国際会議において、21世紀における海
面上昇の問題が取り上げられるまでは、海面上昇から陸
地を守る技術は、防潮堤の嵩上げ程度であった。しかし
特願平9−200818の発明(発明者金野 仁)のう
ち、潮汐発電サイトで、湾内の満ち潮時に行われる潮汐
揚水発電システムの技術が、海面上昇対策として全地球
海岸線に適用できる事が分ったので、上記発明の追加と
して、本発明を行なった。
2. Description of the Related Art Held in Kyoto in December 1997,
Until the issue of sea-level rise in the 21st century was raised at the International Conference on Global Warming, the technology to protect land from sea-level rise was to raise seawalls. However, among the inventions of Japanese Patent Application No. 9-200818 (inventor Jin Kanno), it can be seen that the technology of the tidal pumping power generation system that is performed at the time of the tide in the bay at the tidal power generation site can be applied to the global coastline as a measure against sea level rise. Therefore, the present invention was carried out as an addition to the above invention.

【0003】[0003]

【発明が解決しようとする課題】21世紀中に海面が5
0cm〜1m上昇したとき、海岸線の後退は避けられ
ず、国土面積の減少、砂浜の消失、ゼロメートル地帯へ
の浸水等が起きる。特に低地国である、オランダ、バン
グラデシュ、海抜1mの島国等では重大な問題である。
本発明は、海面上昇から守ろうとする海岸を、同海岸と
平行に、沖合に設置した沖合堰堤と、これに直角に同海
岸の両端に連結する仕切堰堤とにより外海から隔離し、
そこにできた池の最高水位を、外海の平均海面より数メ
ートル低く、例えば3m低く保つことにより、海岸線の
後退とは逆に、同海岸線を沖の方へ前進せしめるもので
ある。この場合、池の水位を制御するポンプ−水車を装
着したケーソンを、沖合堰堤に接続せしめ、外海と池の
水位差を利用して効率100%前後の潮汐揚水発電を行
い、潮汐エネルギーと揚水発電の合成エネルギーを開発
することにより、同海岸線を海面上昇から守るばかりで
なく、海岸面積の拡大と、新エネルギーの開発と省エネ
ルギーを同時に行って、地球温暖化防止に役立てようと
するものである。
[Problems to be Solved by the Invention] During the 21st century, the sea level became 5
When it rises from 0 cm to 1 m, retreat of the shoreline is inevitable, causing a decrease in land area, loss of sandy beaches, and inundation into the zero meter zone. This is a serious problem especially in lowland countries such as the Netherlands, Bangladesh, and island nations at 1m above sea level.
The present invention, the seashore to protect from sea level rise, parallel to the coast, offshore dike installed offshore, and separated from the open sea by a partition dam connected to both ends of the coast at right angles to this,
By keeping the highest water level of the pond there a few meters below the average sea level of the open sea, for example, 3 m, it is possible to move the shoreline offshore, as opposed to retreating the shoreline. In this case, a caisson equipped with a pump-turbine that controls the water level of the pond is connected to an offshore weir, and tidal pumping and power generation with an efficiency of about 100% is performed using the water level difference between the open sea and the pond. In addition to protecting the coastline from rising sea levels, the development of synthetic energy will help expand the coastal area, simultaneously develop new energy and save energy, and help prevent global warming.

【0004】目的の海岸線が長い場合、仕切堰堤の間隔
を数キロメートル乃至20kmの範囲にとどめ、まず一
個の池を完成して、その池の水位を下げ、潮汐揚水発電
所の運転をしながら、次の池の建設を始めるといった建
設方法を採用する事により、長期にわたる建設期間と年
度予算の関係を合わせながら経済的建設を計ろうとする
ものである。
[0004] When the target coastline is long, the distance between the partition dams is kept within a range of several kilometers to 20 km. First, a pond is completed, the water level of the pond is lowered, and the tidal pumping station is operated. By adopting a construction method such as starting construction of the next pond, the aim is to plan economic construction while matching the relationship between the long-term construction period and the annual budget.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、ポンプ−水車を装着したケーソンを含め沖合堰堤お
よび仕切堰堤はすべてケーソンで構成し、予め造船所で
製作したケーソンを曳き船で現地へ曳航したのち設置し
て工期の短縮を計る。必要に応じて沖合堰堤の補強を行
う。
In order to achieve the above object, all offshore and partition dams, including the caisson equipped with a pump-turbine, are composed of caisson, and the caisson manufactured in advance at the shipyard is towed to the site by a tugboat. Install after towing to shorten the construction period. Reinforce offshore dams as necessary.

【0006】ポンプ−水車の運転開始に先立ち、池の水
位は予め夜間のポンプ運転により外海の平均海面より低
い設定値まで低くしておく、例えば3m下げておく。運
転開始後は夜間の最低潮位時刻の前後3〜6時間の間に
ポンプの最大出力運転を行い、池の水位が設定値より規
定値だけ低くなったとき,例えば2m低くなったとき
に、ポンプの運転を止めるごとくする。次に昼間外海の
潮位が最高になる時刻の前後6時間以内に水車の全力運
転を行い、池の水位が設定値まで上昇したときに水車を
止めるごとくする。この場合ポンプと水車の運転で揚げ
下げする水量は同じであり、ポンプの揚程は水車の落差
より小さく出来るので、夜間のポンプ運転エネルギーは
小さくし、昼間の水車運転エネルギーは大きくすること
が出来るので、揚水発電効率を100%前後に高めるこ
とが出来る。
Prior to the start of operation of the pump-turbine, the water level of the pond is previously lowered to a set value lower than the average sea level of the open sea by night pump operation, for example, by 3 m. After the start of operation, the pump performs the maximum output operation for 3 to 6 hours before and after the lowest tide time at night, and when the water level of the pond becomes lower than the set value by a specified value, for example, 2 m, As if you stopped driving. Next, during the daytime, the turbine is fully operated within 6 hours before and after the time when the tide level of the open sea reaches the highest level, and the turbine is stopped when the water level of the pond rises to the set value. In this case, the amount of water to be lifted and lowered by the operation of the pump and the water turbine is the same, and the head of the pump can be made smaller than the head of the water turbine, so that the nighttime pump operation energy can be reduced and the daytime waterwheel operation energy can be increased. , Pumping power generation efficiency can be increased to about 100%.

【0007】[0007]

【発明の実施の形態】発明の実施の形態を実施例にもと
づき図面を参照して説明する。図1および図3において
海面上昇が予想される海洋1に面して直線状陸地2があ
り、海岸線3から沖に向かって海底勾配3−16が続く
ものとする。水位4は現在の大潮時の平均満潮潮位で、
海面上昇前の平均最大海水位を示す。目的の陸地2の沖
合に、同陸地にほぼ平行に、沖合堰堤5を設置し、その
両端に仕切堰堤7を設置して、海岸線3に接続せしめ
る。沖合堰堤5には図4のポンプ−水車20を内蔵した
ケーソン6を1個ないし2個接続せしめる。かくして海
洋1と陸岸2の間に池8ができ上がる。この池8を海面
上昇対策の一単位として建設し、必要に応じて他の池
9、10等を矢印の方向に追加建設する。仕切堰堤7に
は水門37を設置して、隣接する池の間の水流制御及び
小型作業船の通行に供する。図3および図4における池
8の最高水位11をポンプ運転により設定水位まで下げ
ておく。これによって池8に面した海岸線Cは図3の E
まで沖の方へ広がり、陸地面積が増加したことになる。
万一の堰堤決壊に備えて陸地2を鎖線断面 C−D−Eで
示す如く、海岸線3を沖側へ埋め立てておけば安全であ
る。新造成地C−D−Eは多目的の土地利用が可能とな
る。図4のポンプ−水車20はケーソン6内の海底近く
に装着されて、その前後にドラフトチューブ21と、2
2を配置する。もし将来海洋1の海面が1m上昇して破
線18に達した場合、池8の設定水位11を1m上の破
線19まで上げれば、まだ十分安全であり、ポンプ−水
車の揚程と落差には変化がないことになる。鎖線13は
池の平均水位で、池の有効平均面積を決定する一辺の長
さを示す。海面上昇の高さに合わせて図3のDの位置に
堤防36を安全のために構築しておく。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on embodiments with reference to the drawings. In FIG. 1 and FIG. 3, it is assumed that there is a linear land 2 facing the ocean 1 where sea level rise is expected, and a seabed gradient 3-16 continues from the coastline 3 toward offshore. Water level 4 is the average high tide level at the time of the current tide,
Indicates the average maximum sea level before sea level rise. Offshore of the target land 2, almost parallel to the land, an offshore dam 5 is installed, and partition dams 7 are installed at both ends thereof, so as to be connected to the shoreline 3. One or two caissons 6 each containing a pump-water turbine 20 shown in FIG. 4 are connected to the offshore dam 5. Thus, a pond 8 is created between the ocean 1 and the land 2. This pond 8 is constructed as a unit for measures against sea level rise, and other pond
Construct 9, 9, etc. in the direction of the arrow. A sluice 37 is installed in the partition 7 to control water flow between adjacent ponds and to pass a small work boat. The highest water level 11 of the pond 8 in FIGS. 3 and 4 is lowered to the set water level by pump operation. As a result, the coastline C facing the pond 8 is shown in FIG.
It extends to offshore, and the land area has increased.
It is safe if the coastline 3 is buried offshore, as shown by the cross-section C-D of the land 2 in preparation for an emergency breach. The new land CDE can be used for multiple purposes. The pump-turbine 20 of FIG. 4 is mounted near the seabed in the caisson 6, and before and after it, a draft tube 21 and 2
2 is arranged. If, in the future, the sea level of the ocean 1 rises by 1 m to reach the dashed line 18, if the set water level 11 of the pond 8 is raised to the dashed line 19 1 m above, it is still safe enough and the head and head of the pump-turbine change. There will be no. The chain line 13 indicates the average water level of the pond and the length of one side that determines the effective average area of the pond. The embankment 36 is constructed for safety at the position D in FIG. 3 in accordance with the height of the sea level rise.

【0008】陸地2が島である場合には、図1における
海岸線3を曲線と考えれば、図2における島2の海岸線
3、沖合い堰堤5、ケーソン6、仕切堰堤7その他の符
号は図1、図3、図4と共通に使用できる。島2を取り
巻く池8,9,10の数は、島2の大きさおよび海岸線
3の長さにより増減する。
When the land 2 is an island, considering the coastline 3 in FIG. 1 as a curve, the coastline 3 of the island 2, the offshore dam 5, the caisson 6, the partition dam 7 in FIG. 3 and 4 can be used in common. The number of ponds 8, 9, and 10 surrounding the island 2 varies depending on the size of the island 2 and the length of the coastline 3.

【0009】ポンプおよび水車の運転時の潮位、揚程、
落差、流量、動力およびエネルギーの関係を図5により
説明すると、図5の上半は潮汐の2サイクル間の潮位2
3と時間の関係を示す、潮の1サイクルは12.4時間
である。1日に2回、潮の干満があるから、夜間12時
間の間には必ず1回の干潮があり、昼間12時間の間は
必ず1回満潮がある。図5の下部に池8の最高水位11
と最低水位12を示してある。ポンプおよび水車の最大
動力をそれぞれ Lp, kW,及び Lt, kW,とすると構造
上、Lp=Ltである。またポンプ−水車はカプラン型羽根
車を使用し、ポンプ運転時も、水車運転時も、ともに揚
程、落差に関せず最大出力で運転を行うものとする。ポ
ンプ運転開始時の揚程は24−25で、24は潮位を示
し、25は池8の水位である。ポンプ運転終了時の揚程
は26−27である。この間潮位は24−26のごとく
変化し、池8の水位は25−27のごとく変化する、ポ
ンプの運転時間は34で、その間の平均揚程は32であ
る。同様に、水車運転の開始落差は28−29、終了落
差は30−31で、その間の平均落差は33、水車運転
時間は35である。両者の平均流量を Qp,m/s,及び
Qt,m3/s,ポンプの平均揚程32を Hp,m,水車の平均
落差33を Ht,m,とし、両者の平均効率を Fpと Ftと
した場合の動力,kW,と電力量,kWh,の式は次の如
くなる。 Lp=K*Hp*Qp/Fp−−−−−−−−−−−−−(1) Lt=K*Ht*Qt*Ft−−−−−−−−−−−−−(2) ここにKは比例常数で、Lp=Lt であるから Qp/Qt=(Ht/Hp)*Fm−−−−−−−−−−−−(3) ここにFm=Fp*Ft である、もしHt/Hp=1.5, Fm=0.7と
すると Qp=1.05*Qt−−−−−−−−−−−−−−−(4) しかるに、同じ水量を上げ下げするポンプの運転時間と
水車の運転時間はそれぞれの流量に反比例するから、ポ
ンプの運転時間をTp時間、水車の運転時間をTtとする
と、 Tt=1.05*Tp−−−−−−−−−−−−−−−(5) ポンプの使用電力量はEp=Lp*Tp,kWh,水車の出力
電力量はEt=Lt*Tt,kWhで、Lp=Ltであるから Et/Ep=1.05−−−−−−−−−−−−−−−(6) となる。この場合揚水発電効率は105%である。
[0009] The tide level, head,
The relationship between the head, the flow rate, the power and the energy will be described with reference to FIG. 5. The upper half of FIG.
One cycle of the tide, showing the relationship between 3 and time, is 12.4 hours. Because the tides rise and fall twice a day, there is always one low tide during the 12 hours at night and one high tide during the 12 hours during the day. In the lower part of FIG.
And the lowest water level 12. If the maximum power of the pump and the turbine is Lp, kW and Lt, kW, respectively, then Lp = Lt in terms of structure. The pump-water turbine uses a Kaplan type impeller, and the pump and the water wheel are operated at the maximum output regardless of the head and head during both the operation of the pump and the operation of the turbine. The head at the start of the pump operation is 24-25, 24 indicates the tide level, and 25 indicates the water level of the pond 8. The head at the end of the pump operation is 26-27. During this time, the tide level changes as 24-26, the water level of the pond 8 changes as 25-27, the operation time of the pump is 34, and the average head during that time is 32. Similarly, the start head of the turbine operation is 28-29, the end head is 30-31, the average head between them is 33, and the operation time of the turbine is 35. The average flow rates of both are Qp, m 3 / s, and
Qt, m 3 / s, average head 32 of the pump is Hp, m, average head 33 of the turbine is Ht, m, and the average efficiency of both is Fp and Ft. , Is as follows. Lp = K * Hp * Qp / Fp ----------------------- (1) Lt = K * Ht * Qt * Ft ----------------------- (2) Where K is a proportional constant and Lp = Lt, so Qp / Qt = (Ht / Hp) * Fm −−−−−−−−−−−−− (3) where Fm = Fp * Ft, If Ht / Hp = 1.5 and Fm = 0.7, Qp = 1.05 * Qt ----------------------- (4) However, the operating time of the pump to raise and lower the same amount of water and the operation of the turbine Since the time is inversely proportional to the respective flow rates, assuming that the operation time of the pump is Tp time and the operation time of the water turbine is Tt, Tt = 1.05 * Tp −−−−−−−−−−−−−−−− (5) The power consumption of the pump is Ep = Lp * Tp, kWh, the output power of the turbine is Et = Lt * Tt, kWh, and since Lp = Lt, Et / Ep = 1.05 −−−−−−−−−−−− −−−−− (6) In this case, pumped storage power generation efficiency is 105%.

【0010】[0010]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0011】地球温暖化による海面上昇から陸地および
島への海水の浸入を防止する効果がある。
The present invention has the effect of preventing seawater from entering the land and islands from rising sea levels due to global warming.

【0012】池8、9,10等の水位を常時外海1の水
位より低く保つことにより、陸地2の面積を沖側へ拡大
する効果、すなわち国土面積を拡大する効果がある。
By always keeping the water level of the ponds 8, 9, 10 and the like lower than the water level of the open sea 1, there is an effect of expanding the area of the land 2 to the offshore side, that is, an effect of expanding the national land area.

【0013】1個の池8を1単位とする、潮汐揚水発電
システムを構成して、それぞれの池8、9、10等が効率1
00%前後の効率を持つ揚水発電所となる。
A tidal pumped-storage power generation system having one pond 8 as one unit is constructed, and each pond 8, 9, 10, etc. has an efficiency of 1 unit.
It will be a pumped storage power plant with an efficiency of around 00%.

【0014】必要に応じて1個ないし数個の池を全部ま
たはその1部を埋め立てて土地開発、例えば臨海都市、
海上空港、港湾施設、漁港、工業団地、レジャーラン
ド、農業用地等の造成を行う事が出来る。この場合更に
沖側に前回同様の池を作って潮汐揚水発電所を建設する
ことが出来る。
If necessary, one or several ponds may be reclaimed in whole or in part to make land development, for example, a seaside city,
Construction of marine airports, port facilities, fishing ports, industrial parks, leisure lands, agricultural land, etc. can be performed. In this case, it is possible to construct a tidal pumping station by constructing a pond similar to the previous one offshore.

【0015】池8、9、10等の内部にはポンプ−水車
の運転により、1日1回大潮時同等の海水の出入りがあ
るので、海水が停滞汚染することがないので、養殖漁業
に適している。
The inside of the ponds 8, 9, 10, etc., is operated by a pump-turbine once a day so that the same seawater enters and exits at the time of flood tide, so that the seawater does not stagnate and contaminate, so it is suitable for aquaculture fishing. ing.

【0016】沖合堰堤5は地震の津波から陸岸2を守る
効果がある。台風時の高潮に対しても同様の効果があ
る。
The offshore weir 5 has the effect of protecting the shore 2 from the tsunami of the earthquake. A similar effect can be obtained for storm surges during a typhoon.

【0017】池の水位を常時下げることにより、臨海土
地の排水が良くなり、塩害防止の効果がある。
By constantly lowering the water level of the pond, the drainage of the coastal land is improved, which has the effect of preventing salt damage.

【0018】沖合堰堤および仕切堰堤は、その表面を、
または内部をトンネルとして、自動車道路または鉄道に
利用できる。特に揚水発電所の電源が該堰堤に沿って配
線されているので、電気を利用した新交通システムに適
している、例えば超伝導電車、無人電車等である。
The surface of the offshore dam and the partition dam are as follows:
Alternatively, the inside can be used for a motorway or railroad as a tunnel. In particular, since the power supply of the pumped storage power plant is wired along the bank, it is suitable for a new transportation system using electricity, such as a superconducting train and an unmanned train.

【0019】[0019]

【図面の簡単な説明】[Brief description of the drawings]

【図1】海面上昇が予想される海洋から、水没を防止す
る直線的海岸の間に設置された堰堤群および潮汐発電用
池と海岸線の変化を示す平面図。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a plan view showing changes in coastlines along with a group of dams and tidal power ponds installed between straight shores for preventing submergence from the sea where sea level rise is expected.

【図2】島を海面上昇から守る場合の平面図である。FIG. 2 is a plan view when an island is protected from sea level rise.

【図3】図1のA−A断面図で、海洋1と池8の水位の
変化と、海底勾配および沖合堰堤の位置を示す横断面図
である。
FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1, showing a change in the water level of the ocean 1 and the pond 8, a seabed gradient and a position of an offshore dam.

【図4】図1のB−B断面で、ケーソン6の海側1と池
側8の水位の関係と、内部にポンプ−水車20を装着し
たケーソンの状態を示す横断面図である。
FIG. 4 is a cross-sectional view showing the relationship between the water levels of the sea side 1 and the pond side 8 of the caisson 6 and the state of the caisson with the pump-water turbine 20 mounted therein, taken along the line BB in FIG.

【図5】1日の潮位23の変化とポンプ−水車20の揚
程、落差と運転のタイミングおよび池8の水位11,1
2の変化の関係を示す時間経過図である。
FIG. 5 shows the change of the tide level 23, the head, the head and the operation timing of the pump-turbine 20 and the water levels 11, 1 of the pond 8 in a day.
FIG. 7 is a time lapse diagram showing a relationship between changes of the second embodiment.

【符号の説明】[Explanation of symbols]

1 海洋 2 陸地または島 3 現在の海岸線 4 現在の平均最高潮位 5 沖合堰堤 6 ポンプ−水車を装着したケーソン 7 仕切堰堤 8,9,10 池 11 池の最高水位(設定水位) 12 池の最低水位 13 池の平均水位 14 平均海面 15 現在の平均最低潮位 3−16 海底勾配 17 ケーソン設置海底 18 海面上昇後の最高潮位 19 海面上昇後の池の設定水位 20 ポンプ−水車 21,22 ポンプ−水車のドラフトチューブ 23 潮位曲線 24,26 ポンプ運転の開始時と終了時の潮位 25,27 ポンプ運転の開始時と終了時の池の水位 28,30 水車運転の開始時と終了時の潮位 29,31 水車運転の開始時と終了時の池の水位 32,33 ポンプと水車の各平均揚程と平均落差 34,35 ポンプと水車の各運転時間 36 新造成地の防潮堤 37 水門 DESCRIPTION OF SYMBOLS 1 Ocean 2 Land or island 3 Current coastline 4 Current highest tide 5 Offshore dam 6 Caisson equipped with a pump-turbine 7 Partition dam 8, 9, 10 Pond 11 Highest water level of pond (set water level) 12 Lowest water level of pond 13 Average water level of the ponds 14 Average sea level 15 Current average low tide 3-16 Seabed gradient 17 Sea bottom with caisson 18 Highest tide after sea level rise 19 Set water level of the pond after sea level rise 20 Pump-turbine 21,22 Pump-turbine Draft tube 23 Tide curve 24,26 Tide level at start and end of pump operation 25,27 Pond water level at start and end of pump operation 28,30 Tide level at start and end of turbine operation 29,31 Turbine Pond water level at start and end of operation 32,33 Average head and head of pump and turbine 34,35 Operating hours of pump and turbine 36 New construction Seawalls 37 sluice gates of

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 海面上昇による浸水を防止しようとする
陸地2の海岸3の海側に、ポンプ−水車20を装着した
ケーソン6を含む沖合堰堤5と、仕切堰堤7により池8
を作り、ポンプ運転により、池の水位を常時海面より低
く保つ事により,海面1の上昇から陸地を守る装置とそ
の建設方法。
1. An offshore dam 5 including a caisson 6 equipped with a pump-turbine 20 and a partition dam 7 on the sea side of the coast 3 of the land 2 where flooding due to sea level rise is to be prevented.
A device to protect the land from rising sea level 1 by constantly maintaining the water level of the pond below the sea level by pump operation and its construction method.
【請求項2】 1個の池8を1単位としてまず建設して
池の水位を下げておいてから、必要に応じて同様な池
9,10等を海岸線に沿って増設する事により、年度予
算に合わせた1つの池の工期および工費の調節を行う如
き建設方法。
2. The construction of a single pond 8 as one unit, firstly lowering the water level of the pond, and then adding similar ponds 9, 10 etc. along the shoreline as necessary, so that Construction method that adjusts construction period and construction cost of one pond according to budget.
【請求項3】 池8の水位を常時下げることにより発生
する永久陸地、図3のC−D−Eを、干拓地、臨海都
市、空港、港湾用地、工業団地等の多目的利用に供する
如き新陸地の利用方法。
3. A permanent land created by constantly lowering the water level of the pond 8, C-D-E of FIG. 3, is used for multipurpose use such as reclaimed land, seaside city, airport, harbor land, industrial park and the like. How to use land.
【請求項4】 陸地が島の場合、図2のごとく、沖合堰
堤5は島を取り囲む閉曲線となり、池および仕切堰堤の
数は、島の海岸線の長さに比例して増減する如き装置と
その建設方法。
4. When the land is an island, as shown in FIG. 2, the offshore dam 5 has a closed curve surrounding the island, and the number of ponds and partition dams increases and decreases in proportion to the length of the shoreline of the island. Construction method.
【請求項5】 池の最高水位11を設定水位とし、平均
海面14からの深さでその設定値を定め、池の最低水位
12は設定水位から低く決めておく。ポンプの運転は夜
間潮位が平均海面より低い時に行い、水車の運転は昼間
潮位が平均海面より高い時に行って、毎回水車の平均落
差33がポンプの平均揚程32より大きくなる如くする
ことにより、揚水発電効率を100%前後に高める如き
本発明の装置と運転方法。
5. The maximum water level 11 of the pond is set as a set water level, the set value is determined by the depth from the average sea level 14, and the minimum water level 12 of the pond is determined lower than the set water level. The operation of the pump is performed when the tide level is lower than the average sea level at night, and the operation of the turbine is performed when the tide level is higher than the average sea level in the daytime, so that the average head 33 of the turbine is larger than the average head 32 of the pump every time. An apparatus and an operation method according to the present invention that increase power generation efficiency to about 100%.
【請求項6】 ポンプ−水車20を装着したケーソン6
を、1つの池8の沖合堰堤5の2個所に距離をおいて接
続して、池の中の海水の流れを良くする如きケーソン6
の設置方法。
6. A caisson 6 fitted with a pump-turbine 20.
And a caisson 6 to improve the flow of seawater in the pond by connecting the two offshore dams 5 of one pond 8 at a distance.
Installation method.
【請求項7】 仕切堰堤7に水門37を設置して、必要
に応じて同水門を開き、隣接する池8,9等の水位の制
御を行い、海水の流れを調節し、かつ小型作業船の通行
に供する如き水門装置。
7. A sluice 37 is installed in the partition dam 7, the sluice is opened if necessary, the water level of the adjacent ponds 8, 9 is controlled, the flow of seawater is adjusted, and the small work boat is provided. Sluice gate device for use in traffic.
【請求項8】 ケーソン6を含む沖合堰堤5及び仕切堰
堤7を、自動車、電車等の交通路に使用する本発明の使
用方法。
8. The method according to the present invention, wherein the offshore dam 5 and the partition dam 7 including the caisson 6 are used for a traffic route such as a car, a train, and the like.
【請求項9】 津波の被害の大きい海岸に、1個又は複
数の池8,9,10等を建設して津波を防止し、平常は
潮汐揚水発電所として利用する如き本発明の使用方法。
9. A method according to the present invention, wherein one or a plurality of ponds 8, 9, 10 and the like are constructed on a shore severely damaged by a tsunami to prevent the tsunami and normally used as a tidal pumping power station.
【請求項10】 池8はンプ−水車の運転により、毎日
1回、小潮時でも大潮並みの海水の出入りがあるのを利
用して、養殖漁業特に大型魚の放流養殖を行うごとき池
の利用方法。
10. A method for using a pond for performing aquaculture and fisheries, especially for releasing large-sized fish, using the fact that the pond 8 is driven once a day by the operation of a pump-turbine, and that the seawater flows in and out of the tide even at low tide. .
JP10163217A 1997-07-10 1998-06-11 Device for protecting land from sea level rise by global warming gas Pending JPH11350463A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10163217A JPH11350463A (en) 1998-06-11 1998-06-11 Device for protecting land from sea level rise by global warming gas
PCT/JP1998/002951 WO1999002783A1 (en) 1997-07-10 1998-06-29 System for protecting coastal land from rise of surface of the sea
US09/403,729 US6283673B1 (en) 1997-07-10 1998-06-29 Method of protecting coastal land from rise of surface of the sea
EP98929774A EP1010811A4 (en) 1997-07-10 1998-06-29 System for protecting coastal land from rise of surface of the sea
US09/874,013 US6554535B2 (en) 1997-07-10 2001-06-06 System for protecting coastal land from rise of surface of the sea
US10/132,370 US20020114670A1 (en) 1997-07-10 2002-04-26 System for protecting coastal land from rise of surface of the sea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10163217A JPH11350463A (en) 1998-06-11 1998-06-11 Device for protecting land from sea level rise by global warming gas

Publications (1)

Publication Number Publication Date
JPH11350463A true JPH11350463A (en) 1999-12-21

Family

ID=15769542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10163217A Pending JPH11350463A (en) 1997-07-10 1998-06-11 Device for protecting land from sea level rise by global warming gas

Country Status (1)

Country Link
JP (1) JPH11350463A (en)

Similar Documents

Publication Publication Date Title
Frihy The necessity of environmental impact assessment (EIA) in implementing coastal projects: lessons learned from the Egyptian Mediterranean Coast
US8226325B1 (en) Wave suppressor and sediment collection system
US20130022399A1 (en) Wave Suppressor and Sediment Collection System
JP2004169564A (en) River water stream power generation facility
WO1999002783A1 (en) System for protecting coastal land from rise of surface of the sea
CN102587320B (en) Reservoir-fishpond combined multifunctional seawall
Frihy et al. Human impacts on the coastal zone of Hurghada, northern Red Sea, Egypt
JPS61294009A (en) Protective apparatus wherein energy disipating element is mounted on bank
Iskander Environmental friendly methods for the Egyptian coastal protection
JP4305872B2 (en) Tsunami breakwater
CN104912028A (en) Circular floating breakwater
JPH11350463A (en) Device for protecting land from sea level rise by global warming gas
JP2006249914A5 (en)
US20120315092A1 (en) Tidewater control system
CN214656752U (en) Floating breakwater
Haq et al. Coastal vulnerability: hazards and strategies
KR102487487B1 (en) Construction of tidal and wave power generating station under water
US20240093451A1 (en) Tidal barrage
Bandarin THE VENICE PROJECT: A CHALLENGE FOR MODERN ENGINEERING.
TWI616574B (en) Double sea dike reservoir and construction method thereof
Mertzanis et al. Coastal zone management and special coastal protection works in vulnerable lagoon ecosystems: The case of “Venice lagoon”(Italy) and “North Amvrakikos gulf lagoons complex”(Greece)
Walker Marinas, Sea-Level Reservoirs, Solar Salt Pans and Other Artificial Shorelines
Pratte et al. Modelling Waves, Tides and Currents
Fisher USA--Rhode Island
JPS61162612A (en) Method and device of preventing sinking of city due to raising of water level