JPH11347785A - Solder for die-bonding semi-conductor, its tape and semi-conductor device - Google Patents

Solder for die-bonding semi-conductor, its tape and semi-conductor device

Info

Publication number
JPH11347785A
JPH11347785A JP10155583A JP15558398A JPH11347785A JP H11347785 A JPH11347785 A JP H11347785A JP 10155583 A JP10155583 A JP 10155583A JP 15558398 A JP15558398 A JP 15558398A JP H11347785 A JPH11347785 A JP H11347785A
Authority
JP
Japan
Prior art keywords
solder
semiconductor
semi
lead frame
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10155583A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ito
和利 伊藤
Takeya Ohashi
健也 大橋
Kazuo Hatori
和夫 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10155583A priority Critical patent/JPH11347785A/en
Publication of JPH11347785A publication Critical patent/JPH11347785A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solder by which the thickness of the solder to die-bond a semi-conductor element to a heat radiation substrate is made to be a specified value by providing the solder containing Sn, Ag, Cu and P of the specified weight ratio and the balance Pb of the specified weight ratio. SOLUTION: A solder has the composition consisting of, by weight, 2.5-10% Sn, 0.5-5% Ag, 0.1-1% Cu, 0.005-0.5% P, and the balance >=80%Pb. A Ni-Sn or Cu-Sn intermetallic compound is preferably dispersed in the solder. An aluminum wire lead 7 is bonded to a semi-conductor 4' while the semi-conductor element 4 is welded to a lead frame 1 high in heat conductivity with a solder 2, and mold-packaged with an epoxy resin 5. The lead frame 1 forming a heated substrate is formed of a Cu alloy with Ni-plating thereon. The Cu-Sn or Ni-Sn intermetallic compound particles are interposed between the lead frame 1 and the semi-conductor element 4 to absorb the heat fatigue by blending at least one of Cu and Ni to the solder 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な半導体ダイボ
ンディング用半田に関し、特にパワートランジスタ等の
半導体装置の製造において、放熱基板上に半導体ペレッ
トをマウントするに際して使用される半導体ダイボンデ
ィング用半田とそれを用いた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel semiconductor die bonding solder, and more particularly to a semiconductor die bonding solder used for mounting a semiconductor pellet on a heat dissipation substrate in the manufacture of a semiconductor device such as a power transistor. And a semiconductor device using the same.

【0002】[0002]

【従来の技術】パワートランジスタ等の半導体装置の構
造では図4に示すように放熱基板1上に半田2を供給し
た上で、その半田を溶融させた後、コレット6に吸着保
持した半導体ペレット4を溶融した半田上に所定の荷重
でもって戴置することにより、上記半導体ペレットを放
熱基板上にマウントするようにしている。
2. Description of the Related Art In the structure of a semiconductor device such as a power transistor, as shown in FIG. 4, a solder 2 is supplied onto a heat radiating substrate 1, and after melting the solder, a semiconductor pellet 4 adsorbed and held by a collet 6 is formed. The semiconductor pellet is mounted on a heat-dissipating substrate by placing the semiconductor pellet on a molten solder with a predetermined load.

【0003】特開昭58−215289号公報には、Sn1〜1
0%,Ag1〜26%,Cu0.4〜3%及び残部Pb
からなる半導体ダイボンディング用半田が知られてい
る。更に特開昭61−273296号公報には、Sn5〜60
%,Bi0.1〜15% にGe0.05〜1%,Te0.
05〜1%,Ca0.05〜1%,Ni0.01〜0.05
%,P0.01〜2%,Pd0.01〜0.3%,Cu0.
01〜0.5%,Ag0.01〜3%の1種又は2種以上を
含み、残部Pbからなる自動車用ラジエータ等の組立て
に使用する耐食はんだが知られている。
[0003] JP-A-58-215289 discloses Sn1-1.
0%, Ag 1-26%, Cu 0.4-3% and balance Pb
Is known. Further, Japanese Patent Application Laid-Open No. 61-273296 discloses Sn5-60
%, 0.1 to 15% of Bi, 0.05 to 1% of Ge, 0.1% of Te.
0.05-1%, Ca 0.05-1%, Ni 0.01-0.05
%, P0.01 to 2%, Pd0.01 to 0.3%, Cu0.
Corrosion-resistant solders containing one or more of 0.01 to 0.5% and 0.01 to 3% of Ag and having a balance of Pb and used for assembling radiators for automobiles and the like are known.

【0004】[0004]

【発明が解決しようとする課題】従来の半導体装置は、
最終的に放熱基板と半導体ペレットとの間に介在する半
田の厚みを放熱性を確保する関係上、所定値に設定する
必要がある。上記に用いられる半田材は一般にPb−S
n系及びSn−Sb系であるが、Sn−Sb系はPb−
Sn系に比較して融点が低く、なおかつ硬いため、本発
明の対象とする自動車等の高温環境下での半導体装置の
半田材としては適当ではない。また、Pb−Sn系半田
材を用いた場合でも半導体装置の製造において、コレッ
トにより半導体ペレットを溶融した半田上に戴置する際
に、放熱基板上に半田を定量供給したとしても、コレッ
トから半導体ペレットに付与される荷重のばらつきによ
って、半田の厚みにばらつきが発生する。すなわちコレ
ットによる荷重が大きすぎると、半導体ペレットが溶融
した半田を外周に大きく押し広げすぎ、結果として半田
の厚みが小さくなる。半田の厚みが小さくなると放熱基
板と半導体ペレットとの熱膨張係数の差を緩衝する機能
を有する半田が少ないことになり、熱膨張係数の差が半
田に直接作用してクラックが発生し、これを原因として
放熱性の低下を来す。逆にコレットによる荷重が小さす
ぎると溶融した半田がそのままの状態で硬化することに
なり、半田の厚みが大きいままとなる。半田の厚みが大
きいと十分な放熱性を確保できなくなる。このように、
半田の厚みにばらつきがあると製品化された半導体装置
の信頼性が、放熱性の面で大幅に低下するという問題が
あった。
A conventional semiconductor device is:
Finally, it is necessary to set the thickness of the solder interposed between the heat dissipation substrate and the semiconductor pellet to a predetermined value in order to ensure heat dissipation. The solder material used above is generally Pb-S
n-type and Sn-Sb type, but Sn-Sb type is Pb-
Since it has a lower melting point and is harder than a Sn-based material, it is not suitable as a solder material for a semiconductor device in a high-temperature environment such as an automobile, which is an object of the present invention. Further, even when a Pb-Sn-based solder material is used, in the manufacture of a semiconductor device, when a semiconductor pellet is placed on a molten solder by a collet, even if a fixed amount of solder is supplied onto the heat dissipation substrate, the semiconductor is not supplied from the collet. Variations in the load applied to the pellets cause variations in the thickness of the solder. That is, if the load due to the collet is too large, the solder in which the semiconductor pellets have melted is pushed too much to the outer periphery, and as a result, the thickness of the solder becomes small. When the thickness of the solder is reduced, the amount of solder having a function of buffering the difference in the thermal expansion coefficient between the heat dissipation board and the semiconductor pellet is reduced, and the difference in the thermal expansion coefficient acts directly on the solder to cause cracks. The cause is a decrease in heat dissipation. Conversely, if the load due to the collet is too small, the molten solder will be cured as it is, and the thickness of the solder will remain large. If the thickness of the solder is large, sufficient heat dissipation cannot be ensured. in this way,
If the thickness of the solder varies, there is a problem that the reliability of the manufactured semiconductor device is significantly reduced in terms of heat dissipation.

【0005】また、特開昭58−215289号公報に記載の半
田では信頼性が十分でなく、更に特開昭61−273296号公
報の半田では同じく信頼性に問題がある。
The solder disclosed in Japanese Patent Application Laid-Open No. 58-215289 has insufficient reliability, and the solder disclosed in Japanese Patent Application Laid-Open No. 61-273296 has another problem in reliability.

【0006】本発明の目的は、放熱基板に半導体素子を
ダイボンディングする際の半田の厚みを目的とする所定
値に確保できる半導体ダイボンディング用半田とそのテ
ープ及びそれを用いた半導体装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor die bonding solder which can ensure a desired thickness of a solder when a semiconductor element is die-bonded to a heat dissipation substrate, a tape thereof, and a semiconductor device using the same. It is in.

【0007】[0007]

【課題を解決するための手段】本発明の半導体ダイボン
ディング用半田は、重量で、Sn2.5〜10% ,Ag
0.5〜5%,Cu0.1〜1%,P0.005〜0.5%
を含み、残部が80%以上、好ましくは85〜95%、
より好ましくは90〜95%のPbから成る半田;Sn
2.5〜10%,Ag0.5〜5%,Ni0.1〜1%,
P0.005〜0.5%を含み、残部が前述と同様のPb
を有する半田及びSn2.5〜10%,Ag0.5〜5
%,CuとNiの和が0.1〜1%,P0.005〜0.
5%を含み、残部が前述と同様のPbを有する半田材で
あることを特徴とする。本発明においては、半田内部に
Ni−SnあるいはCu−Sn金属間化合物の微小粒子
が均一な分散状態で含有することが望ましい。また、本
発明は前述の半田組成を有する半導体ダイボンディング
用テープ、更に、このテープを用いて、半導体素子が放
熱基板となるリードフレーム上にマウント接合され、リ
ードフレームの外部端子となる部分を除き、全体が樹脂
に被われている半導体装置にある。
According to the present invention, the solder for semiconductor die bonding of the present invention is Sn 2.5 to 10% by weight, Ag
0.5 to 5%, Cu 0.1 to 1%, P 0.005 to 0.5%
And the balance is 80% or more, preferably 85 to 95%,
More preferably 90-95% Pb solder; Sn
2.5-10%, Ag 0.5-5%, Ni 0.1-1%,
Pb containing 0.005 to 0.5%, with the balance being Pb
And Sn 2.5 to 10%, Ag 0.5 to 5
%, The sum of Cu and Ni is 0.1 to 1%, and P 0.005 to 0.5%.
5%, with the balance being a solder material having the same Pb as described above. In the present invention, it is desirable that fine particles of Ni-Sn or Cu-Sn intermetallic compound be contained in the solder in a uniformly dispersed state. Further, the present invention provides a semiconductor die bonding tape having the above-described solder composition, and further, using this tape, a semiconductor element is mounted and joined on a lead frame serving as a heat dissipation board, except for a portion serving as an external terminal of the lead frame. , A semiconductor device entirely covered with resin.

【0008】Pb−Sn系半田材において、Snは半田
自身の機械的強度を向上するために添加するが、2.5
wt% 未満では十分な強度を確保することができず1
0wt%を越えると半田材が脆くなり塑性加工が困難とな
るため、実用的範囲は通常2.5〜10wt%である。A
gは2〜5wt%添加すると半田の融点が上昇するので
高温半田として利用できるものの作業性、仕上がり及び
経済性の観点から通常0.5〜2wt% のAgを含んだ
半田が使用される。したがって、本発明におけるAgの
配合割合は高温半田としての利用を考えて0.5〜5w
t% とする。本発明では、SnとAgの外にNi及び
Cuを必須成分とする。NiとCuを添加すると半田材
中には当然金属間化合物が生成することになるが、この
場合の金属間化合物は半田テープ中に均一に分散してお
り、マウント時において基板と半田材の界面に金属間化
合物層を生じることはない。一般にPb−Sn系半田を
用いて、放熱基板となるリードフレーム上に半導体ペレ
ットをマウントすると、基板と半田材の界面には基板に
Niメッキが施されている場合にはNi−Sn,めっき
が施されていないリードフレームの場合にはCu−Sn
の金属間化合物が生成する。これらの金属間化合物層は
いずれも機械的に硬くて脆いため、接合後の熱履歴によ
り成長して必要以上に厚くなると、半田が基板の熱膨張
率と半導体ペレットの熱膨張率の差を緩和できなくな
り、基板と半田の接合界面近傍にクラックなどの欠陥が
発生する。しかし、本発明はすでに半田テープ内にNi
−SnあるいはCu−Snの金属間化合物が生成してお
り、マウント時及びその後の熱履歴においても、上記の
ような金属間化合物層の成長がないので半導体装置の信
頼性維持の妨げとはならない。また、半田材の内部に金
属間化合物粒子が均一に分散含有されることにより、放
熱基板となるリードフレーム上に半導体素子を半田を介
してマウントする際には、その放熱基板と半導体素子と
の間に半田材中の金属間化合物の微小粒子でもって、半
田材の厚みを確保することが可能となる。さらに、金属
間化合物が微細分散することによる二次的な効果とし
て、半田材の高温強度が向上することもあげられる。N
iとCuの量が各々あるいはその和が0.1wt%未満で
は金属間化合物粒子が少なく、また、1wt%を越える
と半田材中に金属間化合物の粗大粒ができて脆くなるた
め、それらの範囲は0.1〜1wt%である。また、Ni
とCuを添加した半田材は基板上への濡れ広がり性が低
下するが、これはさらにPを添加することにより改善で
きる。この濡れ広がり性を改善できるPの濃度は0.0
05〜0.5wt%であり、また、Bi,Fe等の不純
物が0.1% 以下若干含まれている。
[0008] In the Pb-Sn solder material, Sn is added to improve the mechanical strength of the solder itself.
If it is less than wt%, sufficient strength cannot be secured and 1
If it exceeds 0 wt%, the solder material becomes brittle and plastic working becomes difficult, so the practical range is usually 2.5 to 10 wt%. A
When g is added in an amount of 2 to 5 wt%, the melting point of the solder increases, so that it can be used as a high-temperature solder. However, from the viewpoints of workability, finish and economy, a solder containing 0.5 to 2 wt% of Ag is usually used. Therefore, the mixing ratio of Ag in the present invention is set to 0.5 to 5 w
t%. In the present invention, Ni and Cu are essential components in addition to Sn and Ag. When Ni and Cu are added, an intermetallic compound is naturally generated in the solder material. However, in this case, the intermetallic compound is uniformly dispersed in the solder tape, and the interface between the substrate and the solder material when mounting is performed. No intermetallic compound layer is formed. In general, when a semiconductor pellet is mounted on a lead frame serving as a heat radiating substrate using Pb-Sn solder, Ni-Sn and plating are applied to the interface between the substrate and the solder material when the substrate is Ni-plated. Cu-Sn in the case of a lead frame not subjected to
Is formed. Since all of these intermetallic compound layers are mechanically hard and brittle, the solder reduces the difference between the coefficient of thermal expansion of the substrate and the coefficient of thermal expansion of the semiconductor pellet when the layer grows more than necessary due to the thermal history after bonding. It becomes impossible, and defects such as cracks occur near the joint interface between the substrate and the solder. However, the present invention has already
Since the intermetallic compound of —Sn or Cu—Sn is generated and the thermal history at the time of mounting and thereafter does not grow the above-mentioned intermetallic compound layer, it does not hinder the maintenance of the reliability of the semiconductor device. . In addition, since the intermetallic compound particles are uniformly dispersed and contained in the solder material, when the semiconductor element is mounted on a lead frame serving as a heat radiating board via solder, the heat radiating board and the semiconductor element are connected to each other. The thickness of the solder material can be ensured by the fine particles of the intermetallic compound in the solder material in between. Further, as a secondary effect of finely dispersing the intermetallic compound, improvement in the high-temperature strength of the solder material can also be mentioned. N
If the amount of i and Cu or each of the sums is less than 0.1 wt%, the amount of intermetallic compound particles is small, and if it exceeds 1 wt%, coarse particles of the intermetallic compound are formed in the solder material and become brittle. Is 0.1 to 1 wt%. Also, Ni
The solder material to which Cu and Cu are added has reduced wettability and spreadability on the substrate, but this can be improved by further adding P. The concentration of P which can improve the wet spreading property is 0.0.
It is 0.5 to 0.5 wt%, and slightly contains impurities such as Bi and Fe of 0.1% or less.

【0009】[0009]

【発明の実施の形態】(実施例1)図1は本発明に係る
パワートランジスタの断面図及び図2はその斜視図であ
る。
(Embodiment 1) FIG. 1 is a sectional view of a power transistor according to the present invention, and FIG. 2 is a perspective view thereof.

【0010】図1,図2において、1は放熱基板を兼ね
た銅合金製リードフレーム、4はシリコン素子である半
導体素子であり、銅リードフレーム1は半導体素子4の
放熱効果を上げるため、引き出しリード側8とは厚みを
異にする異厚材となっている。2は半導体素子4を取り
付けるための半田、7は半導体素子4に電流を流すワイ
ヤリードで通常アルミ線が使用される。5はモールドさ
れた樹脂である。図1のリードフレーム1は図2に示す
ごとく、引き出しリード側8は数本に分かれており、端
子となるが、その先端は予めダイバー部として整列固定
されている。図1,図2はそのダイバー部を切り落とし
た形状である。
In FIGS. 1 and 2, reference numeral 1 denotes a lead frame made of a copper alloy also serving as a heat radiating substrate, 4 denotes a semiconductor element which is a silicon element, and the copper lead frame 1 is drawn out to enhance the heat radiating effect of the semiconductor element 4. The lead side 8 is made of a different thickness material having a different thickness. Reference numeral 2 denotes solder for attaching the semiconductor element 4, and reference numeral 7 denotes a wire lead for passing a current through the semiconductor element 4, which is usually an aluminum wire. 5 is a molded resin. As shown in FIG. 2, the lead frame 1 shown in FIG. 1 has a plurality of lead-out leads 8 which are divided into several terminals and serve as terminals. FIG. 1 and FIG. 2 show a shape in which the diver portion is cut off.

【0011】半導体素子4は熱伝導率の高い銅材である
リードフレーム1に半田2により融着され、つぎにアル
ミ線からなるワイヤリード7を通常超音波により半導体
素子4に接合し、エポキシ樹脂5によりモールドパッケ
ージされる。
The semiconductor element 4 is fused to a lead frame 1 made of a copper material having a high thermal conductivity by means of solder 2, and then a wire lead 7 made of an aluminum wire is bonded to the semiconductor element 4 by an ordinary ultrasonic wave. 5 to form a mold package.

【0012】放熱基板となるリードフレーム1はCu合
金にNiめっきが施されたものが用いられる。
A lead frame 1 serving as a heat dissipation board is made of a Cu alloy plated with Ni.

【0013】本実施例においては放熱基板となるリード
フレーム1に半導体素子4をマウントする際に、半田材
2にその組成が重量でSn2.5〜10%,Ag0.5〜
5%,Cu及びNiの少なくとも一方を0.1〜1% ,
P0.005〜0.5%及び残部Pbより構成される半田
材を用いた点にある。半田材にCu及びNiを配合する
ことにより、Cu−SnあるいはNi−Snの金属間化
合物粒子が放熱基板と半導体ペレットの間に介在するた
め、所望の半田厚が確保でき、トランジスタの熱サイク
ルによる熱疲労を吸収できる。この構造では放熱基板に
Cu合金材及びCu合金材にNiめっきが施されたもの
が用いられる。
In this embodiment, when the semiconductor element 4 is mounted on the lead frame 1 serving as a heat dissipation board, the composition of the solder material 2 is Sn 2.5 to 10% by weight and Ag 0.5 to 0.5%.
5%, at least one of Cu and Ni is 0.1 to 1%,
The point is that a solder material composed of 0.005 to 0.5% P and the balance Pb is used. By mixing Cu and Ni into the solder material, Cu-Sn or Ni-Sn intermetallic compound particles are interposed between the heat dissipation substrate and the semiconductor pellet, so that a desired solder thickness can be secured, and the heat cycle of the transistor is reduced. Can absorb thermal fatigue. In this structure, a heat dissipating substrate is made of a Cu alloy material or a Cu alloy material plated with Ni.

【0014】以下に本発明によるダイボンディング用半
田とそれを用いた半導体装置の試験結果について述べ
る。
Hereinafter, test results of the die bonding solder according to the present invention and a semiconductor device using the same will be described.

【0015】Pb−5%Sn−2.5% Agからなる半
田材にNi及びPを表1に示す組成に配合し、黒鉛ルツ
ボに入れ、高周波誘導加熱炉にて大気中で溶解した後、
鋳型に鋳込み鋳塊とした。その鋳塊から、押し出し加
工,圧延加工,打ち抜き加工を経て、最終的に圧延,切
断加工により、縦,横4mm,厚さ0.1mm の半田テープ
を得た。これらの半田テープをCu合金材及びCu合金
材にNiめっきが施された放熱基板と半導体ペレットの
間に介在させ、380℃程度で加熱してマウントして前
述した半導体装置を製作した。これらの半導体装置のマ
ウント時の半田濡れ性試験と半導体装置を150℃に加
熱し、常温まで冷却する熱サイクル試験を1000回繰
り返す熱疲労試験を行い、各々における半田濡れ性と半
田接合部のクラック発生状況を調べた。その結果を表1
に示す。
[0015] Ni and P are mixed in a solder material composed of Pb-5% Sn-2.5% Ag in the composition shown in Table 1, placed in a graphite crucible, melted in the air in a high frequency induction heating furnace, and then melted.
The ingot was cast into a mold. The ingot was extruded, rolled, and punched, and finally rolled and cut to obtain a 4 mm long, 0.1 mm thick solder tape. These solder tapes were interposed between a semiconductor alloy and a heat-dissipating substrate in which a Ni alloy was plated on a Cu alloy material and a Cu alloy material, heated at about 380 ° C., and mounted to manufacture the above-described semiconductor device. Solder wettability tests for mounting these semiconductor devices and thermal fatigue tests in which the semiconductor devices are heated to 150 ° C. and cooled to room temperature are repeated 1000 times. The occurrence situation was examined. Table 1 shows the results.
Shown in

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示す様に、NiとPを含まないもの
は半田濡れ性が良いが、クラックが発生する。これにN
iを含有させることによりクラッチの発生はなくなる
が、半田濡れ性が悪くなる。更に、Pが0.7% と高
く、更にNiが1.5% と高いものは半田濡れ性が悪く
なること、また、Niが1.5%と高くなっても、0.0
5%と低くなってもクラックが発生してしまう。
As shown in Table 1, those containing neither Ni nor P have good solder wettability, but cracks occur. This is N
The inclusion of i eliminates the occurrence of clutches, but deteriorates solder wettability. Further, those having a high P of 0.7% and a high Ni of 1.5% have poor solder wettability.
Cracks will occur even if it is as low as 5%.

【0018】(実施例2)実施例1に代えてPb−5%
Sn−2.5% Agからなる半田材にCu及びPを表2
に示す組成に配合し、黒鉛ルツボに入れ、高周波誘導加
熱炉にて大気中で溶解した後、鋳型に鋳込み鋳塊とし
た。その鋳塊から、押し出し加工,圧延加工,打ち抜き
加工を経て、最終的に圧延,切断加工により、縦,横4
mm,厚さ0.1mmの半田テープを得た。これらの半田テー
プをCu合金材及びCu合金材にNiめっきが施された
放熱基板と半導体ペレットの間に介在させ、380℃程
度で加熱してマウントして半導体装置を製作した。これ
らの半導体装置のマウント時の半田濡れ性試験と半導体
装置を150℃に加熱し、常温まで冷却する熱サイクル
試験を1000回繰り返す熱疲労試験を行い、各々にお
ける半田濡れ性及び半田接合部のクラック発生状況を調
べた。その結果を表2に示す。
Example 2 Pb-5% instead of Example 1
Table 2 shows Cu and P in the solder material composed of Sn-2.5% Ag.
Was placed in a graphite crucible, melted in the air in a high-frequency induction heating furnace, and then cast into a mold to form an ingot. The ingot is extruded, rolled, and punched, and finally rolled and cut to obtain a length and width of 4 mm.
A 0.1 mm thick solder tape was obtained. These solder tapes were interposed between a semiconductor alloy and a Cu alloy material and a heat-dissipating substrate in which a Cu alloy material was subjected to Ni plating, and heated at about 380 ° C. to mount a semiconductor device. A thermal fatigue test in which the solder wettability test at the time of mounting these semiconductor devices and a heat cycle test in which the semiconductor devices are heated to 150 ° C. and cooled to room temperature is repeated 1000 times is performed. The occurrence situation was examined. Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】表2に示す様に、Cu量及びP量の効果は
Ni量とP量との関係とほぼ同様であった。
As shown in Table 2, the effects of the Cu content and the P content were almost the same as the relationship between the Ni content and the P content.

【0021】(実施例3)実施例1と同様にPb−5%
Sn−2.5% Agからなる半田材にNi,Cu及びP
を表3に示す組成に配合し、黒鉛ルツボに入れ、高周波
誘導加熱炉にて大気中で溶解した後、鋳型に鋳込み鋳塊
とした。その鋳塊から、押し出し加工,圧延加工,打ち
抜き加工を経て、最終的に圧延,切断加工により、縦,
横4mm,厚さ0.1mm の半田テープを得た。これらの半
田テープをCu合金材及びCu合金材にNiめっきが施
された放熱基板と半導体ペレットの間に介在させ、38
0℃程度で加熱してマウントして半導体装置を製作し
た。これらの半導体装置のマウント時の半田濡れ性試験
及び半導体装置を150℃に加熱し、常温まで冷却する
熱サイクル試験を1000回繰り返す熱疲労試験を行
い、各々における半田濡れ性及び半田接合部のクラック
発生状況を調べた。その結果を表3に示す。
(Example 3) Pb-5% as in Example 1
Ni, Cu and P are added to the solder material composed of Sn-2.5% Ag.
Was blended in the composition shown in Table 3, placed in a graphite crucible, melted in the air in a high-frequency induction heating furnace, and then cast into a mold to form an ingot. From the ingot, through extrusion, rolling, and punching, and finally rolling and cutting,
A 4 mm wide, 0.1 mm thick solder tape was obtained. 38. These solder tapes are interposed between a semiconductor alloy and a Cu alloy material and a heat radiating substrate in which a Cu alloy material is subjected to Ni plating and a semiconductor pellet.
The semiconductor device was fabricated by heating at about 0 ° C. and mounting. A thermal fatigue test in which the solder wettability test at the time of mounting these semiconductor devices and a heat cycle test in which the semiconductor devices are heated to 150 ° C. and cooled to room temperature is repeated 1,000 times is performed, and the solder wettability and cracks in the solder joints in each of them are performed. The occurrence situation was examined. Table 3 shows the results.

【0022】[0022]

【表3】 [Table 3]

【0023】表3で明らかなように、NiとCuの配合
量が各々0.1wt% 未満あるいは1wt%を越えると
マウント時の半田濡れ性及び接合部のクラック発生のい
ずれかに問題が生じる。また、NiとCuの配合量の和
が0.1wt% 未満あるいは1wt%を越えると同じよ
うにマウント時の半田濡れ性及び接合部のクラック発生
のいずれかに問題が生じる。したがって、NiとCuの
配合量及びNiとCuの配合量の和は0.1〜1wt%
が適当である。また、Pを添加したものはマウント時の
半田濡れ性に効果がみられ、その最適濃度範囲は0.0
05〜0.5wt%の範囲である。
As apparent from Table 3, when the compounding amounts of Ni and Cu are less than 0.1 wt% or more than 1 wt%, respectively, there arises a problem in either solder wettability at the time of mounting or crack generation at the joint. Similarly, if the sum of the amounts of Ni and Cu is less than 0.1 wt% or more than 1 wt%, there is a problem in either solder wettability at the time of mounting or cracking at the joint. Therefore, the sum of the amounts of Ni and Cu and the amount of Ni and Cu is 0.1 to 1 wt%.
Is appropriate. The addition of P has an effect on the solder wettability during mounting, and the optimum concentration range is 0.0.
It is in the range of 0.5 to 0.5 wt%.

【0024】(実施例4)実施例1で得た本発明のダイ
ボンディンク用半田を用いた半導体装置(パワートラン
ジスタ)の信頼性を評価した。これは、PN接合部と室
温との温度差が100℃になる条件下でトランジスタの
ベース,エミッタ間に電圧を印加して断続動作させ、熱
抵抗を測定してその変化(△VBE)を測定して寿命の判
定を行った。その結果を図3に示す。同図において横軸
は断続動作回数、縦軸はトランジスタの動作停止後一定
時間における△VBEの変化率であり、初期値から1.3
倍以上変化した場合故障と判定する。図から明らかなよ
うに、従来の半田(Pb−5wt%Sn−2.5wt%
Ag)を用いたパワートランジスタが約5000回の断
続動作で故障するのに対し、本発明の半田(Pb−5w
t%Sn−2.5wt%Ag−0.5wt%Cu−0.1
wt%P)を用いたパワートランジスタは30000回と6
倍以上の伸びを示した。なお、本発明の半田でNiを配
合したもの及びNiとCuの両方を適量配合したものも
同じ傾向を示した。本試験後の試料を断面研磨して半田
接合部を観察した。その結果、溶融した半田中にNi−
SnあるいはCu−Snの金属間化合物粒子が半導体ペ
レットの下方部分に集中して存在することが確認され
た。このことは本発明の半田テープを使用して放熱基板
上に半導体ペレットをマウントした場合、その半田中に
分散したNi−SnあるいはCu−Snの金属間化合物
粒子が放熱基板と半導体ペレット間に介在するため、そ
の微小粒子でもって、半田の厚みを所定値に規制できた
ためと考えられる。
Example 4 The reliability of a semiconductor device (power transistor) using the solder for die bonding of the present invention obtained in Example 1 was evaluated. This is because, under the condition that the temperature difference between the PN junction and the room temperature becomes 100 ° C., a voltage is applied between the base and the emitter of the transistor to perform intermittent operation, the thermal resistance is measured, and the change (ΔV BE ) is measured. The life was determined by measuring. The result is shown in FIG. In the figure, the horizontal axis represents the number of intermittent operations, and the vertical axis represents the rate of change of ΔV BE over a certain period of time after the operation of the transistor was stopped, which is 1.3 times the initial value.
If it changes twice or more, it is determined that a failure has occurred. As is clear from the figure, the conventional solder (Pb-5 wt% Sn-2.5 wt%)
Ag) fails in about 5000 intermittent operations, whereas the solder (Pb-5w
t% Sn-2.5 wt% Ag-0.5 wt% Cu-0.1
power transistor using wt% P)
Elongation more than doubled. The same tendency was observed for the solder of the present invention in which Ni was mixed and in which both Ni and Cu were mixed in appropriate amounts. The cross section of the sample after this test was polished, and the solder joint was observed. As a result, Ni-
It was confirmed that Sn or Cu-Sn intermetallic compound particles were concentrated in the lower part of the semiconductor pellet. This means that when a semiconductor pellet is mounted on a heat dissipation substrate using the solder tape of the present invention, Ni-Sn or Cu-Sn intermetallic compound particles dispersed in the solder are interposed between the heat dissipation substrate and the semiconductor pellet. Therefore, it is considered that the thickness of the solder could be regulated to a predetermined value by the fine particles.

【0025】(実施例5)実施例1〜3に記載の半田は
圧延によって必要の厚さのテープに製造され、巻回され
る。そして使用時に必要な長さに短冊状に切断し、その
上で短冊状の半田部材を更に引き抜き加工によりより薄
いテープ状に成形される。これにより、所定の厚みを有
する半田テープが製作され、半導体素子の平面形状と同
じ形状に切断して、それを半導体素子を接合する部分に
真空チャックを使って載置し、その上に素子を同様に載
置して半田を溶融することによりダイボンディングされ
る。なお、NiとCuの少なくとも一方は前述の金属間
化合物が形成される含有量となる。
(Embodiment 5) The solders described in Embodiments 1 to 3 are manufactured into a tape having a required thickness by rolling and wound. Then, it is cut into strips to a required length at the time of use, and then the strip-shaped solder member is further drawn to form a thinner tape. As a result, a solder tape having a predetermined thickness is manufactured, cut into the same shape as the planar shape of the semiconductor element, and placed on a portion where the semiconductor element is joined using a vacuum chuck, and the element is placed thereon. Die bonding is also performed by placing and melting the solder. At least one of Ni and Cu has a content at which the above-mentioned intermetallic compound is formed.

【0026】(実施例6)図4はパワートランジスタの
製造方法の半導体チップのボンディング工程であり、
(a)は平面図、(b)はその一部分の断面図である。
半導体装置の製造工程における前工程においてパワート
ランジスタ素子を作り込まれたウエハはダイシング工程
で個々のペレットに分断され半導体素子4となる。分断
された半導体素子4はピックアップ工程においてコレッ
ト6に真空吸着されてピックアップされる。ピックアッ
プされた半導体素子4はコレット6が適当な移動装置に
よって移動されることにより、ペレットボンディング工
程へ供給される。コレット6の構造は下面が開放され上
面が閉塞されたペレット保持体の上面に通気管9が接続
されており、通気管9は図示外の真空源に接続されてい
る。そして、真空吸着により、半導体素子4はコレット
保持体の下面に吸着保持される。このとき、コレット6
による半導体素子4の吸着はコレット6の下面の下方に
チップが若干突出した状態とする。ペレットボンディン
グは半導体素子4を真空吸着したコレット6が移動装置
によってリードフレーム1へ移送され、リードフレーム
上に配置された溶融した半田上に押し付けて半田付けさ
れる。このときの押し付け荷重により、溶融した半田が
四方に逃げるため、従来半田では所望の半田厚さが確保
できないが、本発明の半田材を用いることにより半導体
素子4を半田付け(マウント)すると、半田中に分散した
Ni−SnあるいはCu−Snの金属間化合物粒子がリ
ードフレーム1と半導体素子4の間に介在するため、そ
の微小粒子でもって半田の厚みを所定値に規制すること
ができた。
(Embodiment 6) FIG. 4 shows a semiconductor chip bonding step in a method of manufacturing a power transistor.
(A) is a plan view, and (b) is a sectional view of a part thereof.
The wafer in which the power transistor elements are formed in the previous step of the semiconductor device manufacturing process is divided into individual pellets in the dicing step to become the semiconductor elements 4. The separated semiconductor element 4 is vacuum-adsorbed to the collet 6 and picked up in a pickup step. The picked-up semiconductor element 4 is supplied to the pellet bonding step by moving the collet 6 by an appropriate moving device. The structure of the collet 6 is such that a ventilation tube 9 is connected to the upper surface of the pellet holder whose lower surface is open and whose upper surface is closed, and the ventilation tube 9 is connected to a vacuum source (not shown). Then, the semiconductor element 4 is suction-held on the lower surface of the collet holder by vacuum suction. At this time, collet 6
The semiconductor element 4 is attracted to the chip by slightly projecting below the lower surface of the collet 6. In the pellet bonding, the collet 6 which has vacuum-adsorbed the semiconductor element 4 is transferred to the lead frame 1 by a moving device, and is pressed and soldered on the molten solder arranged on the lead frame. Due to the pressing load at this time, the molten solder escapes in all directions, so that the desired solder thickness cannot be secured with the conventional solder. However, when the semiconductor element 4 is soldered (mounted) by using the solder material of the present invention, the solder Since the Ni-Sn or Cu-Sn intermetallic compound particles dispersed therein are interposed between the lead frame 1 and the semiconductor element 4, the fine particles can regulate the thickness of the solder to a predetermined value.

【0027】[0027]

【発明の効果】本発明によれば、半田部材内に分散した
微小な金属間化合物粒子が含有されることにより、放熱
基板上に半田部材を介して半導体ペレットをマウントし
た際、その放熱基板と半導体素子間に半田部材内の微小
粒子が介在することになり、その粒子でもって半田部材
の所望の厚みを確保することが可能となり、半導体装置
の信頼性が大幅に向上する。更に、本発明に用いられる
半田材は従来の半田材と同様の取り扱い性を確保する一
方で接着強度が増し、信頼性が飛躍的に向上する。
According to the present invention, when the semiconductor pellet is mounted on the heat radiating substrate via the solder member by containing fine intermetallic compound particles dispersed in the solder member, the heat radiating substrate is Since fine particles in the solder member are interposed between the semiconductor elements, it is possible to secure a desired thickness of the solder member with the particles, and the reliability of the semiconductor device is greatly improved. Furthermore, the soldering material used in the present invention ensures the same handling properties as the conventional soldering material, while increasing the adhesive strength and dramatically improving the reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の断面図。FIG. 1 is a cross-sectional view of a semiconductor device of the present invention.

【図2】本発明の半導体装置の斜視図。FIG. 2 is a perspective view of a semiconductor device of the present invention.

【図3】本発明の半導体装置の断続動作試験結果を示す
特性図。
FIG. 3 is a characteristic diagram showing an intermittent operation test result of the semiconductor device of the present invention.

【図4】本発明の半田テープを使用した半導体ペレット
のマウント状態を示す平面図と断面図。
FIGS. 4A and 4B are a plan view and a sectional view showing a mounting state of a semiconductor pellet using the solder tape of the present invention.

【符号の説明】[Explanation of symbols]

1…リードフレーム、2…半田、4…半導体素子、6…
コレット、7…ワイヤリード。
DESCRIPTION OF SYMBOLS 1 ... Lead frame, 2 ... Solder, 4 ... Semiconductor element, 6 ...
Collet, 7 ... wire lead.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】重量で、Sn2.5〜10%,Ag0.5〜
5%,Cu0.1〜1%,P0.005〜0.5% を含み、残
部が80%以上のPbから成ることを特徴とする半導体
ダイボンディング用半田。
(1) Sn 2.5 to 10% by weight, Ag 0.5 to 5
A solder for semiconductor die bonding, comprising 5%, 0.1 to 1% of Cu and 0.005 to 0.5% of P, with the balance being 80% or more of Pb.
【請求項2】重量で、Sn2.5〜10%,Ag0.5〜
5%,Ni0.1〜1%,P0.005〜0.5% を含み、残
部が80%以上のPbから成ることを特徴とする半導体
ダイボンディング用半田。
2. 2.5% by weight of Sn and 0.5% by weight of Ag.
A solder for semiconductor die bonding, comprising 5%, Ni 0.1% to 1%, and P 0.005 to 0.5%, with the balance being 80% or more of Pb.
【請求項3】重量で、Sn2.5〜10%,Ag0.5〜
5%,CuとNiの和が0.1〜1%,P0.005〜
0.5%を含み、残部が80%以上のPbから成ること
を特徴とする半導体ダイボンディング用半田。
3. 2.5% by weight of Sn and 0.5% by weight of Ag.
5%, the sum of Cu and Ni is 0.1 to 1%, P 0.005 to
A solder for semiconductor die bonding, comprising 0.5% and the balance being 80% or more of Pb.
【請求項4】半田内部にNi−Sn又はCu−Sn金属
間化合物が分散したことを特徴とする請求項1〜3のい
ずれかに記載の半導体ダイボンディング用半田。
4. The solder for semiconductor die bonding according to claim 1, wherein a Ni-Sn or Cu-Sn intermetallic compound is dispersed inside the solder.
【請求項5】請求項1〜4のいずれかに記載の半田より
なることを特徴とする半導体ダイボンディング用テー
プ。
5. A semiconductor die bonding tape comprising the solder according to claim 1.
【請求項6】請求項1〜5のいずれかに記載の半導体ダ
イボンディング用半田によって放熱基板となるリードフ
レーム上に半導体素子が接合され、前記リードフレーム
の外部端子となる部分を除き前記リードフレーム及び前
記半導体素子が樹脂によって被われていることを特徴と
する半導体装置。
6. A lead frame, wherein a semiconductor element is joined to a lead frame serving as a heat dissipation board by the semiconductor die bonding solder according to any one of claims 1 to 5, except for a portion serving as an external terminal of the lead frame. And a semiconductor device, wherein the semiconductor element is covered with a resin.
JP10155583A 1998-06-04 1998-06-04 Solder for die-bonding semi-conductor, its tape and semi-conductor device Pending JPH11347785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10155583A JPH11347785A (en) 1998-06-04 1998-06-04 Solder for die-bonding semi-conductor, its tape and semi-conductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10155583A JPH11347785A (en) 1998-06-04 1998-06-04 Solder for die-bonding semi-conductor, its tape and semi-conductor device

Publications (1)

Publication Number Publication Date
JPH11347785A true JPH11347785A (en) 1999-12-21

Family

ID=15609225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10155583A Pending JPH11347785A (en) 1998-06-04 1998-06-04 Solder for die-bonding semi-conductor, its tape and semi-conductor device

Country Status (1)

Country Link
JP (1) JPH11347785A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262645A (en) * 2011-05-10 2013-08-21 法国圣戈班玻璃厂 Pane comprising electrical connection element
US10355378B2 (en) 2011-05-10 2019-07-16 Saint-Gobain Glass France Pane having an electrical connection element
CN112157257A (en) * 2020-09-17 2021-01-01 中国科学院电工研究所 In-situ toughening method for tough and integral Cu/Sn/Ag welding material
US11217907B2 (en) 2011-05-10 2022-01-04 Saint-Gobain Glass France Disk having an electric connecting element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262645A (en) * 2011-05-10 2013-08-21 法国圣戈班玻璃厂 Pane comprising electrical connection element
JP2014519150A (en) * 2011-05-10 2014-08-07 サン−ゴバン グラス フランス Glass plate with electrical connection elements
US10305239B2 (en) 2011-05-10 2019-05-28 Saint-Gobain Glass France Pane comprising an electrical connection element
US10355378B2 (en) 2011-05-10 2019-07-16 Saint-Gobain Glass France Pane having an electrical connection element
US11217907B2 (en) 2011-05-10 2022-01-04 Saint-Gobain Glass France Disk having an electric connecting element
US11456546B2 (en) 2011-05-10 2022-09-27 Saint-Gobain Glass France Pane having an electrical connection element
CN112157257A (en) * 2020-09-17 2021-01-01 中国科学院电工研究所 In-situ toughening method for tough and integral Cu/Sn/Ag welding material

Similar Documents

Publication Publication Date Title
US6187114B1 (en) Solder material and electronic part using the same
US7208819B2 (en) Power module package having improved heat dissipating capability
JP6773143B2 (en) Solder material for semiconductor devices
US20100068552A1 (en) Module including a stable solder joint
WO2017217145A1 (en) Solder bonded part
US8637379B2 (en) Device including a semiconductor chip and a carrier and fabrication method
KR101609495B1 (en) Semiconductor device and fabrication method for semiconductor device
US20080246164A1 (en) Soldering Method, Solder Pellet for Die Bonding, Method for Manufacturing a Solder Pellet for Die Bonding, and Electronic Component
JP2013229457A (en) Semiconductor device and manufacturing method of the same
CN107527827B (en) Semiconductor device manufactured by fluxless soldering
JP5227427B2 (en) Bonding structure and bonding material
JP2001230351A (en) Joining material for electronic module, module type semiconductor device, and method of manufacturing the same
JP2011023631A (en) Junction structure
JPS6141135B2 (en)
JPH11347785A (en) Solder for die-bonding semi-conductor, its tape and semi-conductor device
US11398447B2 (en) Semiconductor device and method for producing semiconductor device
JP6529632B1 (en) Semiconductor device using solder alloy, solder paste, molded solder, and solder alloy
US6876067B2 (en) Semiconductor device
JP2006140039A (en) Lead wire and solar cell using the same
JP3446829B2 (en) Semiconductor device
EP3955277A1 (en) Semiconductor device and method for fabricating the same
JPH08204081A (en) Lead frame for semiconductor device, semiconductor device, and manufacturing method thereof
JP3552623B2 (en) Composite material and heat sink for semiconductor device using the same
JPH0290663A (en) Lead frame
JPH0864799A (en) Semiconductor chip, semiconductor device using it and manufacture thereof