JPH11345697A - Static eliminating device - Google Patents

Static eliminating device

Info

Publication number
JPH11345697A
JPH11345697A JP15461498A JP15461498A JPH11345697A JP H11345697 A JPH11345697 A JP H11345697A JP 15461498 A JP15461498 A JP 15461498A JP 15461498 A JP15461498 A JP 15461498A JP H11345697 A JPH11345697 A JP H11345697A
Authority
JP
Japan
Prior art keywords
surface potential
capacitance
neutralized
applied voltage
arithmetic processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15461498A
Other languages
Japanese (ja)
Inventor
Akira Sasakura
朗 笹倉
Yasuo Mizokoshi
泰男 溝腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15461498A priority Critical patent/JPH11345697A/en
Publication of JPH11345697A publication Critical patent/JPH11345697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely eliminate static by variably controlling strength of discharge in compliance with a capacitance size of an object to be statically eliminated and a static eliminating condition. SOLUTION: A surface potential of an object 1 to be statically eliminated is measured by a surface potentiometer sensor 2. An output signal is inputted to a recorder 9 and an A/D converting part 4. The measured value converted to a digital signal by the A/D converting part 4 is inputted to an arithmetic processing part 5. In the arithmetic processing part 5, a size of an applied voltage to apply (in a direction of attenuating the charge) to a discharge electrode needle 8 is determined from the surface potential value inputted, by using a specific table, functions or the like. A voltage outputted from a D/A converting part 6 is amplified to a determined applied voltage by using an amplifier 7, and is applied to the discharge electrode needle 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、IC、液晶パネル
生産等の精密除電を必要とする分野に用いる除電装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static eliminator used in fields requiring precise static elimination, such as IC and liquid crystal panel production.

【0002】[0002]

【従来の技術】一般に除電装置は、装置内に設けられた
針に高電圧を印加し針先からのコロナ放電による電荷放
出のタイプと、軟X線等の照射による空気分子の励起を
用いるタイプとに大別される。放射線を用いるものは、
安全上厳重な遮蔽等が必要であるため、高電圧印加タイ
プが広く用いられている。高電圧印加型では、プラス、
マイナス放電を同時、または交互に発生させて、除電を
行うが、どちらかの極性の放電のバランスが崩れると、
被除電物を逆帯電させてしまうため、放電量を一定に保
つための工夫が多くなされている。また除電時間を早め
るため、被除電物の表面電位を測定し、交互に放電する
際に、除電に有効な極性の放電時間を長くする工夫がな
されているものもある。
2. Description of the Related Art Generally, a static eliminator is of a type in which a high voltage is applied to a needle provided in the device and a charge is released by corona discharge from the needle tip, and a type in which air molecules are excited by irradiation with soft X-rays or the like. They are roughly divided into Those that use radiation
Since strict shielding is required for safety, a high voltage application type is widely used. For the high voltage application type,
Simultaneously or alternately generate negative discharges to remove electricity, but if the balance of discharge of either polarity is lost,
Since the object to be neutralized is reversely charged, many attempts have been made to keep the discharge amount constant. Further, in order to shorten the charge elimination time, some devices have been devised to measure the surface potential of the charge removal target and to prolong the discharge time of a polarity effective for charge elimination when alternately discharging.

【0003】[0003]

【発明が解決しようとする課題】従来の高電圧印加型除
電機では、静電容量が大きい被除電物を基準に出力調整
を行うと、小さな静電容量の被除電物が来た場合には、
物体の表面電位の変動が激しく現れ、精密に除電するこ
とができなかった。逆に小さな静電容量の被除電物を基
準に、出力を調整すると、大きな静電容量の物体が来た
場合は、除電時間が長くなり、実用的ではなかった。ま
た、帯電量の大きな物体に対しては、帯電を打ち消す極
性の放電時間を長くすることで、除電時間を短くするこ
とができる。しかし、放電の強さは可変できないため、
静電容量の小さな物体に対しては表面電位の変動が大き
く現れ、精密な除電はできない。また、従来の技術で
は、除電を施した場合の被除電物の除電状態が確認でき
ないため、なんらかの状態変化によって除電状態が変化
した場合は、被除電物が十分に除電されていない場合
や、逆帯電を帯びる場合が生じ、生産の歩留まり、安定
性を悪化させていた。
In a conventional high-voltage applying type static eliminator, if the output is adjusted with reference to the static elimination object having a large capacitance, when the static elimination object having a small capacitance comes, ,
The surface potential of the object greatly fluctuated, and the charge could not be accurately removed. Conversely, if the output is adjusted based on the object to be neutralized having a small capacitance, when an object having a large capacitance comes, the static elimination time becomes longer, which is not practical. Further, for an object having a large charge amount, the charge elimination time can be shortened by increasing the discharge time of the polarity for canceling the charge. However, because the intensity of the discharge cannot be varied,
For an object having a small capacitance, the surface potential greatly fluctuates, and precise static elimination cannot be performed. Further, in the conventional technology, since the static elimination state of the static elimination object when static elimination is performed cannot be confirmed, if the static elimination state changes due to some state change, the static elimination object is not sufficiently neutralized, or the reverse. In some cases, the battery may be charged, thereby deteriorating the production yield and stability.

【0004】本発明は、被除電物の静電容量の大きさと
除電状態にあわせて、放電の強さを可変制御して精密な
除電を行うことができる除電装置を提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a static eliminator capable of performing precise static elimination by variably controlling the intensity of discharge in accordance with the capacitance of the object to be neutralized and the static elimination state. .

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、印加
電圧を付加することにより被除電物に対してコロナ放電
を生じさせる少なくとも1本の放電電極針と、被除電物
の表面電位を連続的に測定する表面電位計と、測定した
表面電位に応じて被除電物の表面電位をゼロに収束させ
る前記印加電圧を演算する演算処理手段と、演算により
求めた印加電圧を前記放電電極針に出力する電圧出力手
段とを有し、前記表面電位計の測定結果を前記演算処理
手段にフィードバックして放電電極針への印加電圧を可
変することを特徴とする除電装置である。
According to the first aspect of the present invention, at least one discharge electrode needle for generating a corona discharge to an object to be neutralized by applying an applied voltage, and a surface potential of the object to be neutralized is reduced. A surface voltmeter for continuously measuring, an arithmetic processing means for calculating the applied voltage for converging the surface potential of the object to be removed to zero according to the measured surface potential, and the discharge electrode needle for calculating the applied voltage obtained by the calculation. And a voltage output means for outputting a voltage to the discharge electrode needle by feeding back a measurement result of the surface voltmeter to the arithmetic processing means.

【0006】請求項2の発明は、請求項1記載の除電装
置であって、前記演算処理手段は、表面電位測定値の変
動から被除電物の静電容量を演算し、予め表面電位と印
加電圧の関係を示す基準関数が前記静電容量範囲毎に設
定され、前記静電容量に対応する前記基準関数に切り替
えて演算することを特徴とする。
According to a second aspect of the present invention, there is provided the static eliminator according to the first aspect, wherein the arithmetic processing means calculates the capacitance of the object to be neutralized from the fluctuation of the measured surface potential and applies the surface potential in advance. A reference function indicating a voltage relationship is set for each of the capacitance ranges, and the calculation is performed by switching to the reference function corresponding to the capacitance.

【0007】請求項3の発明は、請求項1記載の除電装
置であって、前記被除電物の静電容量の大きさを感知す
る静電容量感知手段を更に有し、前記演算処理手段は、
予め表面電位と印加電圧の関係を示す基準関数が前記静
電容量範囲毎に設定され、前記静電容量に対応する前記
基準関数に切り替えて演算することを特徴とする。
According to a third aspect of the present invention, there is provided the static eliminator according to the first aspect, further comprising capacitance sensing means for sensing the magnitude of the capacitance of the object to be neutralized, and the arithmetic processing means. ,
A reference function indicating the relationship between the surface potential and the applied voltage is set in advance for each of the capacitance ranges, and the calculation is performed by switching to the reference function corresponding to the capacitance.

【0008】請求項4の発明は、請求項3記載の除電装
置であって、前記静電容量感知手段は、連続的に感知を
行い、被除電物の静電容量の値を前記演算処理手段にフ
ィードバックすることを特徴とする。
According to a fourth aspect of the present invention, in the static eliminator according to the third aspect, the capacitance sensing means continuously senses and calculates the capacitance value of the object to be neutralized by the arithmetic processing means. Feedback.

【0009】請求項5の発明は、請求項1、2、3又は
4記載の除電装置であって、被除電物の表面電位の状態
をモニタリングする監視手段を設けたことを特徴とす
る。
According to a fifth aspect of the present invention, there is provided the static eliminator according to any one of the first to third aspects, further comprising a monitoring means for monitoring a state of a surface potential of the object to be neutralized.

【0010】[0010]

【発明の実施の形態】以下、発明の実施の形態について
図面を用いて説明する。図1は、本発明に係る除電装置
を示すブロック図である。同図に示すように、この除電
装置は、表面電位計センサ2、表面電位計3、A/D変
換部4、演算処理部5、D/A変換部6、アンプ7、放
電電極針8、記録計9から構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a static eliminator according to the present invention. As shown in FIG. 1, the static eliminator includes a surface voltmeter sensor 2, a surface voltmeter 3, an A / D converter 4, an arithmetic processing unit 5, a D / A converter 6, an amplifier 7, a discharge electrode needle 8, It comprises a recorder 9.

【0011】被除電物1を除電装置下に設置し、表面電
位計センサ2によって被除電物の表面電位を測定する。
測定信号はアナログ信号として表面電位計3から出力さ
れる。出力された信号は記録計9とA/D変換部4に入
力される。記録計9は外部から測定値をモニタすること
を目的とする監視手段として用いているので、記録計9
の代わりにメーターや、デジタル表示器を用いても構わ
ない。A/D変換部4でデジタル信号に変換された測定
値は演算処理部5に入力される。ここで、演算処理部5
はパソコンでもよいし、ワンチップマイコンでもよい。
The object to be neutralized 1 is placed under a static eliminator, and the surface potential of the object to be neutralized is measured by a surface voltmeter sensor 2.
The measurement signal is output from the surface electrometer 3 as an analog signal. The output signal is input to the recorder 9 and the A / D converter 4. Since the recorder 9 is used as monitoring means for monitoring the measured value from the outside, the recorder 9
Alternatively, a meter or a digital display may be used. The measured value converted into a digital signal by the A / D converter 4 is input to the arithmetic processing unit 5. Here, the arithmetic processing unit 5
May be a personal computer or a one-chip microcomputer.

【0012】演算処理部5では、入力された表面電位値
から、放電電極針8に印加する印加電圧(帯電を減衰さ
せる極方向)の大きさを、規定のテーブル、または関数
等から決定する。本実施形態では、演算処理部5では、
図2(A)に示す関数2−1に基づいて、測定された表
面電位に対応する放電針8への印加電圧を決定する。決
定された印加電圧値はD/A変換部6へ入力され、アナ
ログ信号に変換される。一般的にD/A変換部6では放
電電極針が十分に放電できる高電圧(±数kV以上のオ
ーダー)は発生させられないので、アナログ信号は決定
された印加電圧までアンプ7を用いて増幅出力され、放
電電極針8に印加される。ここで、アンプ7の出力電圧
はプラス、マイナスの両極の出力ができるものであり、
表面電位の逆極性の電圧を出力する。放電電極針8は、
1本の針として説明しているが、複数にしてもかまわな
い。また、放電電極針8も、スコロトロン型除電機の細
い金属線であってもかまわない。高電圧を印加された放
電電極針8は先端でコロナ放電を生じ電荷を放出し、被
除電物1の表面電位をゼロに収束させるように減衰させ
る。被除電物1の表面電位は連続的に表面電位計3で計
測され、滅衰後の表面電位は同様にA/D変換され、演
算処理部5にフィードバックされる。こうして、さらに
被除電物1の表面電位をゼロに収束させるように減衰さ
せる。
The arithmetic processing unit 5 determines the magnitude of the applied voltage (polar direction for attenuating the charge) to be applied to the discharge electrode needle 8 from a prescribed table or a function from the input surface potential value. In the present embodiment, the arithmetic processing unit 5
The voltage applied to the discharge needle 8 corresponding to the measured surface potential is determined based on the function 2-1 shown in FIG. The determined applied voltage value is input to the D / A converter 6 and converted into an analog signal. In general, the D / A converter 6 does not generate a high voltage (in the order of ± several kV or more) at which the discharge electrode needle can sufficiently discharge, so that the analog signal is amplified using the amplifier 7 up to the determined applied voltage. It is output and applied to the discharge electrode needle 8. Here, the output voltage of the amplifier 7 can output both positive and negative poles.
Outputs a voltage of the opposite polarity to the surface potential. The discharge electrode needle 8 is
Although a single needle has been described, a plurality of needles may be used. In addition, the discharge electrode needle 8 may be a thin metal wire of a scorotron type removing machine. The discharge electrode needle 8 to which the high voltage is applied generates a corona discharge at the tip to release electric charges, and attenuates the surface potential of the object 1 to be converged to zero. The surface potential of the object to be neutralized 1 is continuously measured by the surface voltmeter 3, and the surface potential after decay is similarly A / D converted and fed back to the arithmetic processing unit 5. Thus, the surface potential of the object 1 is further attenuated so as to converge to zero.

【0013】また、演算処理部5で、減衰前の表面電位
と減衰後の表面電位の差(変動量)を求める。この変動
量が小さな場合は被除電物1の静電容量が大きい場合で
ある。静電容量の大きな被除電物1では表面電位を減衰
させるためには、多くの電荷が必要である。そのため、
表面電位に対する印加電圧を高くしてやる(放電量を増
加させる)ことで、除電時間を短縮させることができ
る。
Further, the arithmetic processing unit 5 obtains a difference (variation amount) between the surface potential before attenuation and the surface potential after attenuation. The case where this fluctuation amount is small is the case where the capacitance of the object 1 is large. The charge removal target 1 having a large capacitance requires a large amount of charge to attenuate the surface potential. for that reason,
By increasing the applied voltage with respect to the surface potential (increasing the amount of discharge), the charge elimination time can be reduced.

【0014】そこで、静電容量の大きな場合は先に用い
た表面電位と印加電圧の関数2−1より印加電圧が大き
くなる関数2−2(図2(B)参照)に切り替え、以後
の除電動作を行う。逆に変動量が大きな場合は、被除電
物の静電容量が小さい場合である。同じ関数2−1を用
い続けた場合は除電による表面電位の変動が大きいた
め、表面電位ゼロに収束させるように制御することが困
難になる。そのため、関数2−3(図2(C)参照)の
ように、印加電圧が小さくなる関数に切り替える。説明
では関数は基準のものと、低静電容量用のもの、高静電
容量用のものの3種類を示したが、より細かく場合分け
を行って、関数を増やすことも可能であり、また説明で
は関数は直線的なものを示したが、曲線状あるいは階段
状に変化する関数を用いても良い。静電容量による基準
関数の切り替えは、初めに行いそのまま固定してもよい
し、表面電位の測定とともに常に静電容量を演算し切り
替えてもよい。また、被除電物の静電容量があらかじめ
一定であることがわかっている場合は、基準の関数2−
1を、その静電容量に最適なように設定しておくと、切
り替えの動作が生じず、時間的な無駄が生じない。
Therefore, when the capacitance is large, the function 2-1 (see FIG. 2B) in which the applied voltage is increased is switched from the previously used function 2-1 of the surface potential and the applied voltage to the function 2-1. Perform the operation. Conversely, when the fluctuation amount is large, the capacitance of the object to be removed is small. If the same function 2-1 is continuously used, the fluctuation of the surface potential due to static elimination is large, and it is difficult to control the surface potential to converge to zero. Therefore, as shown in a function 2-3 (see FIG. 2C), the function is switched to a function that reduces the applied voltage. In the explanation, three types of functions are shown: one for reference, one for low capacitance, and one for high capacitance. However, it is also possible to perform more detailed cases and increase the number of functions. Although the function is shown as a linear function, a function that changes in a curved or stepwise manner may be used. The switching of the reference function by the capacitance may be performed first and fixed as it is, or the capacitance may always be calculated and switched together with the measurement of the surface potential. If the capacitance of the object to be neutralized is known to be constant beforehand, the reference function 2-
If 1 is set so as to be optimal for the capacitance, no switching operation occurs and no time is wasted.

【0015】このようにして被除電物1の静電容量に応
じて印加電圧関数を切り替え、除電を続ける。被除電物
1の表面電位を測定し、関数に照合して印加電圧を求
め、増幅して、放電電極針8から放電する動作を繰り返
し、最終的に被除電物1の表面電位がゼロ付近で放電は
生じなくなる。表面電位がゼロ付近では、放電がほとん
ど生じないため、ゼロを行き過ぎても逆帯電を生じるこ
ともなく、結果、数Vのオーダの除電が可能となる。ま
た、一旦ゼロ付近まで表面電位が減衰した後になんらか
の外部からの影響で被除電物1の表面電位が上昇した場
合は、再度その表面電位にあわせて、放電電極針8の放
電が行われ、除電が行われる。
In this manner, the applied voltage function is switched according to the capacitance of the object 1 to be removed, and the charge removal is continued. The surface potential of the object 1 is measured, the applied voltage is determined by comparing the surface potential with the function, the voltage is amplified, and the operation of discharging from the discharge electrode needle 8 is repeated. No discharge occurs. When the surface potential is near zero, almost no discharge occurs, so that even if the surface potential goes beyond zero, reverse charging does not occur, and as a result, static elimination on the order of several volts is possible. Further, if the surface potential of the object to be neutralized 1 rises due to some external influence after the surface potential has been attenuated to near zero, the discharge electrode needle 8 is discharged again in accordance with the surface potential, and the static elimination is performed. Is performed.

【0016】本実施形態では、入力部にA/D変換物を
設けていたが、入力部にA/D変換部を用いずに直接ア
ナログ信号のみを用いてもよい。また、放電電極針8に
対する印加電圧を決定する際、印加電圧関数のグラフを
用いる変わりに、表面電位と印加電圧の関係を示すテー
ブルを用いることもできる。また、被除電物の静電容量
があらかじめ一定であることがわかっている場合には、
その静電容量にあわせたテーブル、関数などを登録して
おいてもよい。さらに、被除電物の静電容量は、演算処
理部により求めていたが、静電容量測定装置を備えて測
定してもよい。この場合は、該測定装置で常に(連続的
に)被除電物の静電容量を測定し、演算処理部にフィー
ドバックする。
In this embodiment, an A / D converter is provided in the input unit. However, an analog signal may be directly used without using the A / D converter in the input unit. When determining the applied voltage to the discharge electrode needle 8, instead of using the graph of the applied voltage function, a table showing the relationship between the surface potential and the applied voltage can be used. Also, if it is known in advance that the capacitance of the object to be neutralized is constant,
A table, a function, or the like corresponding to the capacitance may be registered. Further, the capacitance of the object to be neutralized has been obtained by the arithmetic processing unit, but may be measured by using a capacitance measuring device. In this case, the measuring device always (continuously) measures the capacitance of the object to be neutralized and feeds it back to the arithmetic processing unit.

【0017】[0017]

【発明の効果】本発明によれば、被除電物の除電中の表
面電位を常に測定し、前記表面電位計の測定結果を前記
演算処理手段にフィードバックして放電電極針への印加
電圧を可変するので、精密な除電が可能となる。また、
被除電物の静電容量を求め、前記静電容量の大きさに対
して予め設定した基準関数にしたがって演算するので、
更に精度のよい除電をするとともに除電時間を短縮する
ことができる。この静電容量を演算処理手段にフィード
バックすることにより、被除電物の静電容量の変化も感
知して、より精密な除電が可能となる。また被除電物の
表面電位の帯電状態、除電状態がモニタできるため、生
産の安定稼働と製品の安定性に貢献することができる。
According to the present invention, the surface potential of the object to be neutralized is constantly measured during static elimination, and the measurement result of the surface voltmeter is fed back to the arithmetic processing means to vary the voltage applied to the discharge electrode needle. Therefore, precise static elimination is possible. Also,
Since the capacitance of the object to be neutralized is calculated and calculated according to a predetermined reference function for the magnitude of the capacitance,
Furthermore, static elimination can be performed with high accuracy, and the static elimination time can be shortened. By feeding back the capacitance to the arithmetic processing means, a change in the capacitance of the object to be neutralized is also sensed, and more precise static elimination becomes possible. In addition, since the charged state of the surface potential of the object to be neutralized and the state of static elimination can be monitored, it is possible to contribute to stable production operation and product stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る除電装置を示すブロック図であ
る。
FIG. 1 is a block diagram showing a static eliminator according to the present invention.

【図2】被除電物の静電容量に対する印加電圧の基準関
数を示すグラフである。
FIG. 2 is a graph showing a reference function of an applied voltage with respect to a capacitance of an object to be neutralized.

【符号の説明】[Explanation of symbols]

1 被除電物 2 表面電位計センサ 3 表面電位計 4 A/D変換部 5 演算処理部 6 D/A変換部 7 アンプ 8 放電電極針 9 記録計 REFERENCE SIGNS LIST 1 object to be removed 2 surface voltmeter sensor 3 surface voltmeter 4 A / D converter 5 arithmetic processing unit 6 D / A converter 7 amplifier 8 discharge electrode needle 9 recorder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 印加電圧を付加することにより被除電物
に対してコロナ放電を生じさせる少なくとも1本の放電
電極針と、被除電物の表面電位を連続的に測定する表面
電位計と、測定した表面電位に応じて被除電物の表面電
位をゼロに収束させる前記印加電圧を演算する演算処理
手段と、演算により求めた印加電圧を前記放電電極針に
出力する電圧出力手段とを有し、 前記表面電位計の測定結果を前記演算処理手段にフィー
ドバックして放電電極針への印加電圧を可変することを
特徴とする除電装置。
At least one discharge electrode needle for generating a corona discharge to an object to be neutralized by applying an applied voltage, a surface potentiometer for continuously measuring the surface potential of the object to be neutralized, and a measurement Computing processing means for calculating the applied voltage for converging the surface potential of the object to be removed to zero according to the surface potential, and voltage output means for outputting the applied voltage obtained by the calculation to the discharge electrode needle, A static eliminator, wherein a measurement result of the surface voltmeter is fed back to the arithmetic processing means to vary a voltage applied to a discharge electrode needle.
【請求項2】 前記演算処理手段は、表面電位測定値の
変動から被除電物の静電容量を演算し、予め表面電位と
印加電圧の関係を示す基準関数が前記静電容量範囲毎に
設定され、前記静電容量に対応する前記基準関数に切り
替えて演算することを特徴とする請求項1記載の除電装
置。
2. The arithmetic processing means calculates an electrostatic capacity of an object to be neutralized from a variation in a measured surface potential value, and a reference function indicating a relationship between a surface potential and an applied voltage is set in advance for each of the electrostatic capacity ranges. The static eliminator according to claim 1, wherein the calculation is performed by switching to the reference function corresponding to the capacitance.
【請求項3】 前記被除電物の静電容量の大きさを感知
する静電容量感知手段を更に有し、 前記演算処理手段は、予め表面電位と印加電圧の関係を
示す基準関数が前記静電容量範囲毎に設定され、前記静
電容量に対応する前記基準関数に切り替えて演算するこ
とを特徴とする請求項1記載の除電装置。
3. The apparatus according to claim 2, further comprising: capacitance sensing means for sensing the magnitude of the capacitance of the object to be neutralized, wherein the arithmetic processing means determines in advance that the reference function indicating the relationship between the surface potential and the applied voltage is the static function. The static eliminator according to claim 1, wherein the static elimination device is set for each capacitance range and is operated by switching to the reference function corresponding to the capacitance.
【請求項4】 前記静電容量感知手段は、連続的に感知
を行い、被除電物の静電容量の値を前記演算処理手段に
フィードバックすることを特徴とする請求項3記載の除
電装置。
4. The static eliminator according to claim 3, wherein the capacitance sensing unit continuously performs sensing and feeds back a value of the capacitance of the object to be neutralized to the arithmetic processing unit.
【請求項5】 被除電物の表面電位の状態をモニタリン
グする監視手段を設けたことを特徴とする請求項1、
2、3又は4記載の除電装置。
5. A monitoring device for monitoring a state of a surface potential of an object to be neutralized is provided.
The static eliminator according to 2, 3, or 4.
JP15461498A 1998-06-03 1998-06-03 Static eliminating device Pending JPH11345697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15461498A JPH11345697A (en) 1998-06-03 1998-06-03 Static eliminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15461498A JPH11345697A (en) 1998-06-03 1998-06-03 Static eliminating device

Publications (1)

Publication Number Publication Date
JPH11345697A true JPH11345697A (en) 1999-12-14

Family

ID=15588045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15461498A Pending JPH11345697A (en) 1998-06-03 1998-06-03 Static eliminating device

Country Status (1)

Country Link
JP (1) JPH11345697A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606433B1 (en) 2004-04-29 2006-08-01 박광옥 System for control the removal of static electricity and method therof
JP2011151039A (en) * 2011-05-09 2011-08-04 Fuiisa Kk Human body mounting type static eliminator, and static electricity eliminating method
JPWO2016199282A1 (en) * 2015-06-11 2018-03-29 富士機械製造株式会社 Component mounting line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606433B1 (en) 2004-04-29 2006-08-01 박광옥 System for control the removal of static electricity and method therof
JP2011151039A (en) * 2011-05-09 2011-08-04 Fuiisa Kk Human body mounting type static eliminator, and static electricity eliminating method
JPWO2016199282A1 (en) * 2015-06-11 2018-03-29 富士機械製造株式会社 Component mounting line

Similar Documents

Publication Publication Date Title
KR20080010382A (en) Ion control sensor
KR102483516B1 (en) Radon detector using pulsified alpha particle
JPH11345697A (en) Static eliminating device
JP4410220B2 (en) Ion generator performance measuring device
JP2005077348A (en) Discharge performance evaluation device and discharge performance evaluation method
CN113484539B (en) Loading system and method for modulating and biasing voltage of electrostatic suspension accelerometer
JP3476069B2 (en) Ionizer adjustment and evaluation equipment
JPH0772196A (en) Static potential level measuring instrument
RU57512U1 (en) IONIZATION CAMERA
JP7010169B2 (en) Static eliminator and electronic balance
JPWO2019187515A1 (en) Capacitance detector
WO2013057803A1 (en) Radiation and ion detection device equipped with correction device and analysis display device and analysis display method
GB1558601A (en) Device for monitoring the centring intensity and uniformity of a beam of ionizing radiation
FR2446490A1 (en) Integrated measurement of ionising nuclear radiation - is determined by discharge of polypropylene film on metallic carriage
JPS60214267A (en) Surface electrometer
US5138173A (en) Charge detector for semiconductor substrates
SU1052893A1 (en) Piezometric device
SU1176458A1 (en) Static charge eliminator
SU1429061A1 (en) Method of checking electrostatic safety of object
JPH04194670A (en) Electrostatic voltage measuring instrument
SU1659834A1 (en) Device for measuring dielectric parameters of materials
JP3117459U7 (en)
Dimeff et al. Vibrating membrane electrometer with high conversion gain
RU1772710C (en) Humidity monitoring method
CN110554250A (en) Electrostatic field detection device adopting reverse electric field compensation technology