JPH11342493A - Structure and method for welding tube body - Google Patents

Structure and method for welding tube body

Info

Publication number
JPH11342493A
JPH11342493A JP15120598A JP15120598A JPH11342493A JP H11342493 A JPH11342493 A JP H11342493A JP 15120598 A JP15120598 A JP 15120598A JP 15120598 A JP15120598 A JP 15120598A JP H11342493 A JPH11342493 A JP H11342493A
Authority
JP
Japan
Prior art keywords
welding
groove
angle
surface side
outer side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15120598A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamashita
鐵生 山下
Tomomi Otani
知未 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15120598A priority Critical patent/JPH11342493A/en
Publication of JPH11342493A publication Critical patent/JPH11342493A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To minimize a residual stress generated in a weld zone on an inner side and restrain the occurrence of stress corrosion cracking by forming a groove on inner and outer sides of a pair of tube body edge part and making a groove angle of the tube body outer side smaller than that of the inner side. SOLUTION: Edge parts of the first tube body 1 and the second tube body 2, on which an X-shape groove 13 is formed, are butted. Since the relation ship between an angle θi of a groove 13a on the inner side and an angle θo of a groove 13b on the outer side of the groove 13 is θi>θo, width dimension of a welding 4b on the outer side is smaller than that of a welding 4a on the inner side. After the welding 4a on the inner side is completed, the welding 4b on the outer side is carried out. Therefore, when the metal of the welding 4b is solidified, shrinkage force generated in the tube bodies 1, 2 in an axial direction becomes smaller in a case that the width dimension of the outer side welding 4b is made smaller than that of the inside welding 4a in comparison with shrinkage force generated wherein width dimension of the outer side welding 4b is not made smaller than the welding 4a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は接合された一対の
管体の端部を内面側と外面側とから溶接する管体の溶接
構造および溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe welding structure and a welding method for welding the ends of a pair of joined pipes from an inner surface and an outer surface.

【0002】[0002]

【従来の技術】たとえば、原子力関連のプラントあるい
は各種エネルギ関連のプラントなどにおいては流体を移
送するために管体が用いられ、そのような場合、上記管
体は溶接によって結合されることが多い。上記管体が厚
肉である場合、一対の管体の溶接される端部に開先を形
成し、内面側と外面側とから溶接してこれら管体を結合
するようにしている。
2. Description of the Related Art For example, in a nuclear power plant or various energy plants, a pipe is used to transfer a fluid. In such a case, the pipe is often connected by welding. When the pipes are thick, a groove is formed at the welded end of the pair of pipes, and the pipes are welded from the inner surface side and the outer surface side to connect these pipe bodies.

【0003】図5に従来の溶接構造を示す。同図中1は
第1の管体であり、2は第2の管体である。これら管体
1,2の突き合わされた端部にはX型の開先3が形成さ
れている。この開先3は、管体1,2の内面側の開先3
aの角度と外面側の開先3bの角度がともに同じ角度θ
に設定されている。そして、内面側の開先3aに溶接4
aを施してから、外面側の開先3bに溶接4bが行われ
る。
FIG. 5 shows a conventional welding structure. In the figure, reference numeral 1 denotes a first tube, and 2 denotes a second tube. An X-shaped groove 3 is formed at the butted ends of these tubes 1 and 2. The groove 3 is a groove 3 on the inner surface side of the tubes 1 and 2.
a and the angle of the groove 3b on the outer surface side are the same angle θ.
Is set to Then, welding 4 is applied to the groove 3a on the inner surface side.
After performing a, welding 4b is performed on the groove 3b on the outer surface side.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな溶接によると、溶接後に管体1,2の内面側の溶接
部分に非常に高い引張りの残留応力が発生し、これが基
で内面側の溶接部分に応力腐食割れ5が発生する虞があ
った。これは、外面側の溶接4bの金属が軸方向に収縮
する際に同図に矢印で示す方向の回転モーメントMが発
生するから、その回転モーメントMによって内面側の溶
接4a部分に上記応力腐食割れ5が生じると考えられ
る。
However, according to such welding, a very high tensile residual stress is generated in the welded portions on the inner surfaces of the tubular bodies 1 and 2 after the welding, and this is the basis for the welding on the inner surfaces. There was a risk that stress corrosion cracking 5 would occur in the portion. This is because when the metal of the outer surface side weld 4b contracts in the axial direction, a rotational moment M is generated in the direction indicated by the arrow in the figure, and the rotational moment M causes the stress corrosion cracking to occur on the inner surface side weld 4a. 5 would occur.

【0005】この発明は、突き合わされた管体の端部の
内面側と外面側とに開先を形成して溶接する場合、内面
側の溶接部分に発生する溶接残留応力を低減できるよう
にした管体の溶接構造および溶接方法を提供することに
ある。
According to the present invention, when a groove is formed between an inner surface and an outer surface of an end portion of a butted pipe body and welding is performed, a residual welding stress generated in a welded portion on the inner surface can be reduced. An object of the present invention is to provide a welding structure and a welding method for a pipe.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、一対
の管体の端部の内面側と外面側とにそれぞれ開先を形成
し、これら端部を溶接する溶接構造において、上記開先
は、上記管体の外面側の開先角度が内面側の開先角度よ
りも小さく設定されていることを特徴とする管体の溶接
構造にある。
According to a first aspect of the present invention, there is provided a welding structure for forming a groove on an inner surface and an outer surface of ends of a pair of pipes and welding the ends. The pipe welding structure is characterized in that the groove angle on the outer surface side of the tube is set smaller than the groove angle on the inner surface side.

【0007】請求項2の発明は、一対の管体の端部の内
面側と外面側とにそれぞれ開先を形成し、これら端部を
溶接する溶接方法において、上記管体の外面側の開先角
度を内面側の開先角度よりも小さく設定するとともに、
上記内面側を溶接してから外面側を溶接することを特徴
とする管体の溶接方法にある。
According to a second aspect of the present invention, there is provided a welding method in which a groove is formed on an inner surface and an outer surface of ends of a pair of tubes, and these ends are welded. The tip angle is set smaller than the groove angle on the inner side,
A method of welding a tubular body, characterized in that the inner surface side is welded and then the outer surface side is welded.

【0008】[0008]

【発明の実施の形態】以下、この発明の一実施の形態を
図1乃至図4を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.

【0009】図1はこの発明の溶接構造を示し、結合さ
れる第1の管体1と第2の管体2とはX型開先13が形
成された端部が突き合わされる。上記X型開先13は、
管体1,2の内面側の開先13aの角度をθi、外面側
の開先13bの角度をθoとすると、θi>θoになる
よう設定されている。
FIG. 1 shows a welding structure according to the present invention, in which the first tube 1 and the second tube 2 to be joined are joined at the ends where an X-shaped groove 13 is formed. The X-shaped groove 13 is:
Assuming that the angle of the groove 13a on the inner surface side of the tubular bodies 1 and 2 is θi and the angle of the groove 13b on the outer surface side is θo, θi> θo is set.

【0010】第1の管体1と第2の管体2とのX型開先
13が形成された端部を突き合わせたならば、これら管
体1,2の内面側の開先13aを溶接してから、外面側
の開先13bを溶接する。
When the ends of the first tubular body 1 and the second tubular body 2 where the X-shaped grooves 13 are formed abut each other, the inner grooves 13a of the tubular bodies 1 and 2 are welded. Then, the groove 13b on the outer surface side is welded.

【0011】図2(a)に示すように、X型開先13の
内面側の開先13aの角度θiと外面側の開先13bの
角度θoとの関係がθi>θoであるから、外面側の溶
接4bの幅寸法Woは内面側の溶接4aの幅寸法Wiに
比べて小さくなる。
As shown in FIG. 2A, the relationship between the angle θi of the groove 13a on the inner surface side of the X-shaped groove 13 and the angle θo of the groove 13b on the outer surface is θi> θo. The width dimension Wo of the inner side weld 4b is smaller than the width dimension Wi of the inner side weld 4a.

【0012】これに対して従来のX型開先3は、図2
(b)に示すように内面側の開先3aの角度と外面側の開
先3bの角度がともに同じ角度θに設定されているか
ら、幅寸法Wも同じとなる。
On the other hand, the conventional X-shaped groove 3 is shown in FIG.
As shown in (b), the angle of the groove 3a on the inner surface side and the angle of the groove 3b on the outer surface are both set to the same angle θ, so that the width dimension W is also the same.

【0013】そのため、内面側の溶接4aを行ってから
外面側の溶接4bを行うことで、外面側の溶接4bの金
属が凝固する際、上記管体1,2に発生する軸方向の収
縮力は、図3(a)に示すように外面側の溶接4bの幅寸
法を内面側の溶接4aの幅寸法よりも小さくした本願発
明の収縮力C1の方が、図3(b)に示すように外面側
の溶接4bの幅寸法を小さくしていない従来構造の場合
の収縮力C2よりも小さくなる。つまり、溶接の幅寸法
が小さければ、その分、溶融金属量が少なくなるからそ
の溶融金属の凝固に伴ない発生する収縮力も小さくな
る。
Therefore, by performing the welding 4a on the inner surface side and then performing the welding 4b on the outer surface side, when the metal of the welding surface 4b on the outer surface solidifies, the axial contraction force generated in the tubular bodies 1 and 2 is generated. As shown in FIG. 3 (b), as shown in FIG. 3 (b), the contraction force C1 of the present invention in which the width dimension of the outer side weld 4b is smaller than the width dimension of the inner side weld 4a as shown in FIG. The contraction force C2 in the case of the conventional structure in which the width dimension of the outer side weld 4b is not reduced is smaller. That is, if the width dimension of the weld is small, the amount of the molten metal is correspondingly reduced, so that the contraction force generated due to solidification of the molten metal is also reduced.

【0014】このように、管体1,2の軸方向に沿って
発生する収縮力C1が小さくなれば、図1に示すように
溶接部の内面側に引張り力を発生させる回転モーメント
M1も、図5に示す従来の構造によって発生する回転モ
ーメントMよりも小さくなるから、内面側の溶接4aに
応力腐食割れが発生しにくくなる。
As described above, if the contraction force C1 generated along the axial direction of the pipes 1 and 2 becomes smaller, the rotational moment M1 that generates a tensile force on the inner surface side of the welded portion as shown in FIG. Since it is smaller than the rotational moment M generated by the conventional structure shown in FIG. 5, stress corrosion cracking is less likely to occur in the weld 4a on the inner surface side.

【0015】さらに、外面側の溶接4bの幅寸法Woを
内面側の溶接4aの幅寸法Wiよりも小さくしたこと
で、それに応じて管体1,2の軸方向だけでなく、周方
向の残留応力も小さくなる。それによって、径方向の変
形量も、図3(c)に鎖線Xで示すようにこの発明の構
造を採用した方が図3(d)に鎖線Yで示す従来の構造
を採用した場合よりも小さくすることができる。
Further, the width Wo of the outer side weld 4b is made smaller than the width Wi of the inner side weld 4a. Stress is also reduced. As a result, the amount of deformation in the radial direction is also greater when the structure of the present invention is employed as shown by the dashed line X in FIG. 3C than when the conventional structure shown by the dashed line Y in FIG. Can be smaller.

【0016】図4は、内側と外側との開先13a,13
bの角度比(θo/θi)と、溶接された一対の管体
1,2に残留する残留応力との関係を測定したグラフで
ある。残留応力としては軸方向と周方向との残留応力を
測定した。同図中曲線Aは軸方向の残留応力を示し、曲
線Bは周方向の残留応力を示す。
FIG. 4 shows inner and outer grooves 13a, 13a.
6 is a graph showing a relationship between an angle ratio (θo / θi) and a residual stress remaining in a pair of welded pipes 1 and 2. As the residual stress, the residual stress in the axial direction and the circumferential direction was measured. In the figure, curve A indicates the residual stress in the axial direction, and curve B indicates the residual stress in the circumferential direction.

【0017】その結果、上記角度比(θo/θi)が1
よりも小さくなるにつれて、軸方向及び周方向の残留応
力がともに減少することが確認された。つまり、内側の
開先13aの角度θiに対して外側の開先13bの角度
θoが小さくなるにつれて、残留応力も少なくなること
が分かる。
As a result, the angle ratio (θo / θi) is 1
It was confirmed that both the residual stress in the axial direction and the residual stress in the circumferential direction decreased as the diameter became smaller. That is, it can be seen that the residual stress decreases as the angle θo of the outer groove 13b becomes smaller than the angle θi of the inner groove 13a.

【0018】一対の管体1,2を溶接する際、角度の大
きい内側の開先13aを溶接してから角度の小さい外側
の開先13bを溶接するようにしたから、外面側の溶接
4bに発生する収縮力C1を小さくし、内面側の溶接4
aに応力腐食割れが発生するのを防止することが可能と
なる。
When the pair of pipes 1 and 2 are welded, the inner groove 13a having a large angle is welded, and then the outer groove 13b having a small angle is welded. The generated contraction force C1 is reduced and the inner side 4
a can be prevented from generating stress corrosion cracking.

【0019】つまり、収縮力の発生の少ない開先角度が
小さい外面側の溶接4bを、内面側の溶接4aの後で行
うことで、収縮力の発生を小さくして応力腐食割れの発
生を防止することができる。
In other words, by performing welding 4b on the outer surface having a small groove angle with less generation of contraction force after welding 4a on the inner surface, the generation of contraction force is reduced and the occurrence of stress corrosion cracking is prevented. can do.

【0020】また、外側の開先13bの溶接は、内側の
開先13bの溶接に比べて作業性などの点で制約を受け
ることがほとんどないものの、内側の溶接は十分な作業
空間を確保できないなど作業性などに制約を受けること
が多い。そのため、この発明のように、外側の開先13
bの角度θoを小さくしても、溶接作業に支障を来すと
いうことがほとんどない。
The welding of the outer groove 13b is hardly restricted in terms of workability as compared with the welding of the inner groove 13b, but the inner welding cannot secure a sufficient working space. It is often limited by workability. Therefore, as in the present invention, the outer groove 13
Even if the angle θo of b is small, there is almost no trouble in the welding operation.

【0021】この発明は上記一実施の形態に限定される
ものでなく、たとえば開先としてはX型開先に代わりK
型開先などであってもよく、要は管体の内面側と外面側
とをそれぞれ溶接するための開先形状であれば、この発
明を適用することができる。
The present invention is not limited to the above embodiment. For example, instead of the X-shaped groove, a K-shaped groove is used.
The present invention can be applied to a groove having a shape for welding the inner surface side and the outer surface side of the pipe body, respectively.

【0022】[0022]

【発明の効果】請求項1の発明によれば、一対の管体の
開先が形成された端部を突き合わせて溶接する場合、上
記管体の外面側の開先角度を内面側の開先角度よりも小
さくした。
According to the first aspect of the present invention, when welding the ends of the pair of pipes where the grooves are formed, the angle of the groove on the outer surface of the tube is adjusted to the groove on the inner surface. Smaller than the angle.

【0023】そのため、外面側の溶接部の溶融金属量を
少なくできることで、内面側の溶接部に発生する残留応
力を低く押えることができるから、その部分に応力腐食
割れが発生するのを抑制することができる。
Therefore, since the amount of molten metal in the weld on the outer surface side can be reduced, the residual stress generated in the weld on the inner surface side can be kept low, thereby suppressing the occurrence of stress corrosion cracking in that portion. be able to.

【0024】請求項2の発明によれば、管体の外面側の
開先角度を内面側の開先角度よりも小さくするととも
に、開先の内面側を溶接してから外面側を溶接するよう
にした。
According to the second aspect of the present invention, the groove angle on the outer surface side of the tube is made smaller than the groove angle on the inner surface side, and the inner surface side of the groove is welded before the outer surface side is welded. I made it.

【0025】そのため、溶融金属量の少ない外面側の溶
接が後になることで、内面側の溶接部に発生する残留応
力を低く押え、応力腐食割れの発生を抑制することがで
きる。
[0025] Therefore, since the welding on the outer surface side with a small amount of molten metal is performed later, the residual stress generated in the welded portion on the inner surface side can be suppressed low, and the occurrence of stress corrosion cracking can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施の形態を示す一対の管体の溶
接構造の断面図。
FIG. 1 is a sectional view of a welding structure for a pair of pipes, showing one embodiment of the present invention.

【図2】(a),(b)はこの発明の従来との溶接構造
における開先の角度の説明図。
FIGS. 2A and 2B are explanatory views of a groove angle in a conventional welding structure of the present invention.

【図3】(a),(b)はこの発明の従来との溶接構造
における収縮力と回転モーメントの発生状態の説明図
(c)、(d)は同じく径方向への変形量の説明図。
FIGS. 3 (a) and 3 (b) are explanatory diagrams of a state of generation of a contraction force and a rotational moment in a conventional welding structure of the present invention, and FIGS. 3 (c) and 3 (d) are explanatory diagrams of a deformation amount in a radial direction. .

【図4】内側と外側との開先角度の比と残留応力との関
係を示すグラフ。
FIG. 4 is a graph showing a relationship between a ratio of a groove angle between an inner side and an outer side and a residual stress.

【図5】従来の管体の溶接構造を示す断面図。FIG. 5 is a cross-sectional view showing a conventional pipe welding structure.

【符号の説明】[Explanation of symbols]

1…第1の管体 2…第2の管体 13…X型開先 13a…内面側の開先 13b…外面側の開先 DESCRIPTION OF SYMBOLS 1 ... 1st pipe 2 ... 2nd pipe 13 ... X type groove 13a ... Inner side groove 13b ... Outer side groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一対の管体の端部の内面側と外面側とに
それぞれ開先を形成し、これら端部を溶接する溶接構造
において、 上記開先は、上記管体の外面側の開先角度が内面側の開
先角度よりも小さく設定されていることを特徴とする管
体の溶接構造。
1. A welding structure for forming a groove on each of an inner surface and an outer surface of an end of a pair of tubes and welding the ends, wherein the groove is formed on an outer surface of the tube. A welding structure for a tubular body, wherein a tip angle is set smaller than a groove angle on an inner surface side.
【請求項2】 一対の管体の端部の内面側と外面側とに
それぞれ開先を形成し、これら端部を溶接する溶接構造
において、 上記管体の外面側の開先角度を内面側の開先角度よりも
小さく設定するとともに、上記内面側を溶接してから外
面側を溶接することを特徴とする管体の溶接方法。
2. A welding structure for forming a groove on an inner surface side and an outer surface side of an end portion of a pair of tubes, and welding these ends, wherein a groove angle on an outer surface side of the tube is adjusted to an inner surface side. A method for welding a tubular body, wherein the angle is set smaller than the groove angle of the pipe, and the inner surface side is welded and then the outer surface side is welded.
JP15120598A 1998-06-01 1998-06-01 Structure and method for welding tube body Withdrawn JPH11342493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15120598A JPH11342493A (en) 1998-06-01 1998-06-01 Structure and method for welding tube body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15120598A JPH11342493A (en) 1998-06-01 1998-06-01 Structure and method for welding tube body

Publications (1)

Publication Number Publication Date
JPH11342493A true JPH11342493A (en) 1999-12-14

Family

ID=15513543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15120598A Withdrawn JPH11342493A (en) 1998-06-01 1998-06-01 Structure and method for welding tube body

Country Status (1)

Country Link
JP (1) JPH11342493A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009662A1 (en) 2003-07-21 2005-02-03 Grant Prideco, L.P. Pipe/connector weld joint, and methods of welding same
EP1961501A1 (en) * 2005-12-16 2008-08-27 JFE Steel Corporation Method of manufacturing electric resistance welded tube with excellent weld characteristic
CN102198565A (en) * 2011-04-08 2011-09-28 胜利油田龙玺石油钢管有限公司 Novel dissimilar steel welding technology
CN102294552A (en) * 2011-08-08 2011-12-28 胜利油田龙玺石油钢管有限公司 Anti-ice marine riser welding method
CN103317216A (en) * 2013-07-08 2013-09-25 武汉钢铁(集团)公司 Gas-shield butt welding method for engineering structural steel of tension-resisting strength >/=650MPa
CN103752996A (en) * 2013-12-20 2014-04-30 柳州市银兴车轮制造有限公司 Butt joint technology for two annular workpieces
CN109333007A (en) * 2018-11-15 2019-02-15 中联重科股份有限公司 Annular slab and its processing method
CN109623092A (en) * 2018-12-29 2019-04-16 张家港市江南锅炉压力容器有限公司 A kind of welding method for boiler drum cylinder
CN111299883A (en) * 2019-11-12 2020-06-19 中国化学工程第六建设有限公司 Welding method of TP347 high-pressure thick-wall stainless steel pipeline

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741580B2 (en) 2003-07-21 2010-06-22 National Oilwell Varco, L.P. Method of welding a pipe/connector joint
EP1646472A1 (en) * 2003-07-21 2006-04-19 Grant Prideco LP Pipe/connector weld joint, and methods of welding same
WO2005009662A1 (en) 2003-07-21 2005-02-03 Grant Prideco, L.P. Pipe/connector weld joint, and methods of welding same
EP1646472A4 (en) * 2003-07-21 2008-10-29 Grant Prideco Lp Pipe/connector weld joint, and methods of welding same
US7510218B2 (en) 2003-07-21 2009-03-31 Grant Prideco, L.P. Pipe/connector weld joint, and methods of welding same
US7527301B2 (en) 2003-07-21 2009-05-05 Grant Prideco, L.P. Pipe/connector weld joint, and methods of welding same
US9000320B2 (en) 2005-12-16 2015-04-07 Jfe Steel Corporation Method of manufacturing electric resistance welding pipe having excellent characterization of welded seam
EP1961501A4 (en) * 2005-12-16 2012-08-29 Jfe Steel Corp Method of manufacturing electric resistance welded tube with excellent weld characteristic
EP1961501A1 (en) * 2005-12-16 2008-08-27 JFE Steel Corporation Method of manufacturing electric resistance welded tube with excellent weld characteristic
CN102198565A (en) * 2011-04-08 2011-09-28 胜利油田龙玺石油钢管有限公司 Novel dissimilar steel welding technology
CN102294552A (en) * 2011-08-08 2011-12-28 胜利油田龙玺石油钢管有限公司 Anti-ice marine riser welding method
CN103317216A (en) * 2013-07-08 2013-09-25 武汉钢铁(集团)公司 Gas-shield butt welding method for engineering structural steel of tension-resisting strength >/=650MPa
CN103317216B (en) * 2013-07-08 2015-11-11 武汉钢铁(集团)公司 The gas of tensile strength >=650MPa level Kind of Steels Used in Engineering Structures protects docking welding method
CN103752996A (en) * 2013-12-20 2014-04-30 柳州市银兴车轮制造有限公司 Butt joint technology for two annular workpieces
CN109333007A (en) * 2018-11-15 2019-02-15 中联重科股份有限公司 Annular slab and its processing method
CN109623092A (en) * 2018-12-29 2019-04-16 张家港市江南锅炉压力容器有限公司 A kind of welding method for boiler drum cylinder
CN111299883A (en) * 2019-11-12 2020-06-19 中国化学工程第六建设有限公司 Welding method of TP347 high-pressure thick-wall stainless steel pipeline

Similar Documents

Publication Publication Date Title
US4556240A (en) Corrosion-resistant, double-wall pipe structures
JPH11342493A (en) Structure and method for welding tube body
JP2010155275A (en) Weld joint and method for manufacturing the same
JP2008116150A (en) Panel for boiler waterwall
RU2085350C1 (en) Adapter for welding stainless steel pipes with zirconium alloy pipes
JP2018501111A (en) Fluid conduit element and method for manufacturing a fluid conduit element
KR100216867B1 (en) Butt-welding joint
JPS635887A (en) Joining method for pipe of dissimilar material
JPH0835789A (en) Heat-exchanger and method for sealing its tube plate and heat-transfer pipe
JP2005028405A (en) Pipe welding method, and structure of welded part
JPH0724541A (en) Shape memory alloy joint and its production
JP2015080789A (en) Pipe body joining structure
JP3264015B2 (en) Inclined joint welding method
JPH08152290A (en) Method for welding different metals and welded structure thereof
KR101017648B1 (en) Tensile residual stresses reduction and removal method of welded pipes inside wall including different metal meterial
JP2004144316A (en) Duct, connection structure for duct, and method for manufacturing duct
JPH0671652B2 (en) Fillet welding method
JP2007154997A (en) Joint tube and joining method of cylindrical member using this
JPS5950430B2 (en) Clad pipe manufacturing method
JPS58122198A (en) Construction of welded joint of corrosion resistant pipe
JP2002257238A (en) Fluid pressure cylinder preventing lowering of fatigue strength in welding part of fluid pressure cylinder, and manufacturing method
JPS58148080A (en) Joint of different materials
JPH0558809B2 (en)
JPS63123591A (en) Welding method for pipe joint part
SU1655675A1 (en) Method for obtaining permanent joint of pipes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802