JPH11342379A - Production of organic acid from organic waste - Google Patents

Production of organic acid from organic waste

Info

Publication number
JPH11342379A
JPH11342379A JP9032899A JP9032899A JPH11342379A JP H11342379 A JPH11342379 A JP H11342379A JP 9032899 A JP9032899 A JP 9032899A JP 9032899 A JP9032899 A JP 9032899A JP H11342379 A JPH11342379 A JP H11342379A
Authority
JP
Japan
Prior art keywords
acid
organic
reaction
mpa
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9032899A
Other languages
Japanese (ja)
Other versions
JP3644842B2 (en
Inventor
Hiroyuki Yoshida
弘之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP9032899A priority Critical patent/JP3644842B2/en
Publication of JPH11342379A publication Critical patent/JPH11342379A/en
Application granted granted Critical
Publication of JP3644842B2 publication Critical patent/JP3644842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Abstract

PROBLEM TO BE SOLVED: To efficiently produce valuable sources comprising org. acids such as lactic acid, fatty acids, amino acids, EPA and DHA by treating organic wastes such as marine products such as fish waste and marine processed products with supercritical water or subcritical water. SOLUTION: Treatment with supercritical water is carried out under the conditions of at about >=375 deg.C, at about >=22.1 MPa and for about 1 to 10 min reaction time. The conditions vary depending on the kinds of the objective org. wastes, their states, treating amts. or the like and more properly, for example, to make the conditions at about 375 to 400 deg.C and at about 22.1 to 24.0 MPa is taken into consideration. The treatment with subcritical water is carried out under conditions of at about 200 to 300 deg.C and at about 1.5 to 15 MPa. More properly, for example, at about 230 to 280 deg.C and at about 1.9 to 5.9 MPa. After the treatment, the solid content such as residual bones is separated by filtering, and the liquefied org. material is separated into an oil contents, fatty acids, lactic acid or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、廃棄有機
物からの有機酸の製造方法に関するものである。さらに
詳しくは、この出願の発明は、魚市場や飲食店、食品加
工業等から廃棄される魚のあら(魚肉や、はらわた、
骨、うろこ)等からの廃棄有機物の分解によって、生理
活性物質としてのアミノ酸、ペプチドもしくは蛋白質、
エイコサペンタエン酸(EPA)、ドコサヘキサエン酸
(DHA)、あるいは生分解性ポリマー、たとえばポリ
乳酸等の有用物質、さらに各種の化学品等への利用が期
待される有機酸を取得することのできる新しい方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an organic acid from waste organic matter. More specifically, the invention of this application relates to the fish trash (fish meat, fried fish,
Decomposition of waste organic matter from bones, scales, etc., results in amino acids, peptides or proteins as bioactive substances,
A new method that can obtain useful substances such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or biodegradable polymers such as polylactic acid, and organic acids expected to be used for various chemicals and the like. It is about.

【0002】[0002]

【従来の技術とその課題】1996年1月より、ロンド
ン条約の改正によって食品加工産業等から廃棄される多
くの天然有機物の海洋投棄ができなくなった。このた
め、魚市場や加工場から出る魚のあら(魚肉、はらわ
た、骨、うろこ)、砂糖工場の廃糖蜜、焼酎工場の絞り
かすや廃液をはじめとする各種大量の廃有機物が海洋へ
投棄できない状況になっている。たとえば、大阪府だけ
でも、魚市場から排出される魚のあらは、魚の入荷量の
約45%、1日320トンにものぼると算出されてい
る。このような大量の廃棄有機物の処理が焦眉の課題に
なっている。
2. Description of the Related Art Since January 1996, the amendment of the London Treaty has made it impossible to dump many natural organic substances discarded from the food processing industry and the like into the ocean. Due to this, various large amounts of waste organic matter, such as fish ash (fish meat, flour, bones, scales) from fish markets and processing plants, molasses from sugar factories, marc and waste liquid from shochu plants cannot be dumped into the ocean. It has become. For example, in Osaka alone, it is calculated that the size of fish discharged from the fish market amounts to about 45% of the amount of fish received and amounts to 320 tons per day. Treatment of such a large amount of waste organic matter has become an urgent issue.

【0003】このような状況において、これら廃棄物を
コンポスト化しようとする検討が各方面において進めら
れているが、コンポストの集積にもおのずと限界があ
る。また一方で、これら廃棄物の有効資源化プロセスの
開発も進められており、乾燥粉砕品を養殖魚の餌として
利用すること等も試みられている。しかしこの場合に
も、乾燥粉砕品そのものは、付加価値が低く、逆に生産
販売価格が高くなるため、経済性において実際的でない
という問題がある。
[0003] In such a situation, various attempts have been made to convert these wastes into compost, but there is naturally a limit to the accumulation of compost. On the other hand, the development of an effective resource recovery process for these wastes is also underway, and attempts have been made to use dried and ground products as feed for cultured fish. However, also in this case, there is a problem that the dried and crushed product itself is not economically practical because the added value is low and the production and sale price is high.

【0004】このため、より付加価値が高く、産業上の
利用価値の大きな有効資源化を図ることが重要な課題に
なっている。そこで、この出願の発明は、以上のとおり
の従来技術の問題点を解消し、廃棄有機物の有効資源化
して、付加価値と産業上の利用性の高い物質として取得
することのできる、新しい技術手段を提供することを課
題としている。
[0004] For this reason, it has become an important issue to make available resources with higher added value and great industrial use value. Therefore, the invention of this application solves the above-mentioned problems of the prior art, makes it possible to convert waste organic substances into effective resources, and obtain new technical means that can be obtained as a substance having high added value and industrial utility. The challenge is to provide

【0005】[0005]

【課題を解決するための手段】この出願は、上記の課題
を解決するために、第1の発明として、廃棄有機物を超
臨界水もしくは亜臨界水により処理して有機酸を製造す
ることを特徴とする廃棄有機物からの有機酸の製造方法
を提供する。また、この出願は、第1の発明に関連し
て、第2の発明として、廃棄有機物が水産廃棄物もしく
は水産加工品である製造方法を、第3の発明として、カ
ルボン酸、ヒドロキシカルボン酸およびアミノ酸のうち
の少なくとも1種のものを製造する製造方法をも提供す
る。
In order to solve the above-mentioned problems, the present invention is, as a first invention, characterized in that waste organic matter is treated with supercritical water or subcritical water to produce an organic acid. A method for producing an organic acid from waste organic matter. In addition, this application relates to the first invention, as a second invention, a production method in which the waste organic matter is marine waste or processed marine product, and as a third invention, a carboxylic acid, a hydroxycarboxylic acid and A method for producing at least one of the amino acids is also provided.

【0006】[0006]

【発明の実施の形態】この出願の発明は、上記のとおり
の特徴を持つものであるが、以下にその実施の形態につ
いて説明する。まず、この発明が対象とする廃棄有機物
は、魚のあらをはじめとする各種の廃棄物や糖分、炭水
化物、タンパク質等を成分とする天然あるいは加工品と
しての有機廃棄物である。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below. First, the waste organic matter targeted by the present invention is various kinds of waste such as fish ash, and organic waste as a natural or processed product containing sugar, carbohydrate, protein and the like as components.

【0007】これらの廃棄有機物を、この発明において
は、超臨界水、ないしは超臨界水よりも低温低圧な条件
としての亜臨界水によって処理して、有機酸を製造す
る。この方法で肝要な点は、酸化反応等によってCO2
という地球温暖化ガスにまで変換することなしに、有効
資源としての有機酸を製造し、回収することである。こ
の発明の方法において超臨界水ないしは亜臨界水による
加水分解等の処理により生成させる有機酸は、カルボン
酸、そしてこれに水酸基やアミノ基が置換されたヒドロ
キシカルボン酸、アミノ酸、ヒドロキシアミノカルボン
酸等である。有機酸には、その無水物やエステル、アミ
ド、アミド結合を持つペプチド等の、処理過程におい
て、もしくは通常の安定化や保護の手段によって生成さ
れる誘導体をも含んでいる。
In the present invention, these waste organic substances are treated with supercritical water or subcritical water at a lower temperature and lower pressure than the supercritical water to produce an organic acid. An important point in this method is that CO 2 is generated by an oxidation reaction or the like.
To produce and recover organic acids as effective resources without converting them into global warming gases. In the method of the present invention, the organic acid produced by treatment such as hydrolysis with supercritical water or subcritical water is carboxylic acid, and hydroxycarboxylic acid, amino acid, hydroxyaminocarboxylic acid and the like in which a hydroxyl group or an amino group is substituted. It is. Organic acids also include their derivatives, such as their anhydrides, esters, amides, peptides with amide bonds, etc., in the course of processing or by conventional stabilization and protection measures.

【0008】たとえばカルボン酸としては、酪酸やこは
く酸等の一価もしくは多価の脂肪酸、エイコサペンタエ
ン酸(EPA)、ドコサヘキサエン酸(DHA)等の長
鎖不飽和脂肪酸、ヒドロキシカルボン酸としての、乳酸
やクエン酸等が例示される。また各種のアミノ酸やペプ
チドも例示される。これら有機酸はいずれも有用なもの
である。たとえばその一つとしての乳酸が重要なものと
して考慮される。乳酸は、その希釈溶液に殺菌作用があ
り、医薬品への応用をはじめ、なめし皮の脱灰や、清涼
飲料、合成清酒等にも用いられている物質であって、産
業上の利用価値の高いものであり、また、近年では、乳
酸を原料としたポリマー(ポリ乳酸)は、生分解性ポリ
マーとして環境面での価値の高い素材としても注目され
ているものである。
Examples of the carboxylic acid include mono- or polyvalent fatty acids such as butyric acid and succinic acid, long-chain unsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and lactic acid as hydroxycarboxylic acid. And citric acid. In addition, various amino acids and peptides are also exemplified. All of these organic acids are useful. For example, lactic acid as one of them is considered important. Lactic acid has a bactericidal effect in its diluted solution, and is a substance that is used in pharmaceutical applications, demineralization of tanned leather, soft drinks, synthetic sake, etc., and has high industrial utility value. In recent years, a polymer made from lactic acid (polylactic acid) has attracted attention as a biodegradable polymer as a material having high environmental value.

【0009】また、前記のエイコサペンタエン酸(EP
A)は動脈硬化症、血栓病等の治療に、ドコサヘキサエ
ン酸(DHA)は、高脂血症、痴呆症、循環器系疾患等
の治療にも有用な物質でもある。また、この発明におい
ては、精製分離されない状態での油分(脂肪酸)は、洗
浄剤、界面活性剤等の合成原料として、また、燃料や食
用油として有用なものである。
The above eicosapentaenoic acid (EP)
A) is also a substance useful for the treatment of arteriosclerosis, thrombosis and the like, and docosahexaenoic acid (DHA) is also a substance useful for the treatment of hyperlipidemia, dementia, circulatory diseases and the like. Further, in the present invention, the oil component (fatty acid) in a state not purified and separated is useful as a synthetic raw material such as a detergent and a surfactant, and as a fuel and an edible oil.

【0010】廃棄有機物は、この発明の方法において
は、魚肉類のペーストや微粉末の状態とし、あるいは頭
部や背骨のついたままの魚肉や内臓を、水と混合し、加
熱加圧して超臨界あるいは亜臨界状態において処理す
る。この処理は、主として、加水分解として性格づけら
れるものであるから、これに類似、もしくは同伴する反
応が含まれてもよい。
[0010] In the method of the present invention, the waste organic matter is made into a paste or fine powder of fish meat, or fish meat or internal organs with the head or spine attached thereto is mixed with water, and heated and pressurized to obtain ultra-fine waste. Process in critical or subcritical state. Since this treatment is mainly characterized as hydrolysis, a reaction similar or accompanied by this may be included.

【0011】たとえば、図1は、魚あらの場合につい
て、この発明の方法を加水分解処理として示したのもで
ある。その特徴をより具体的に例示すると以下のとおり
である。 魚あらを亜臨界水加水分解することにより、5〜1
0分程度で有機質の部分が液化する。
For example, FIG. 1 shows the method of the present invention as a hydrolysis treatment in the case of fish. The features are more specifically exemplified as follows. By hydrolyzing fish ara in subcritical water, 5-1
The organic portion liquefies in about 0 minutes.

【0012】 骨は液体から簡単に分離(固液分離)
できる。骨の主成分はリン酸カルシウムであるため、魚
の骨から、リン酸を大量生産することが可能である。リ
ン鉱石は極めて近い将来枯渇するため、魚あらの骨から
リン酸を製造するプロセスを構築することは、地域産業
振興のみならず、国家的、地球的観点からもきわめて重
要である。
Bone is easily separated from liquid (solid-liquid separation)
it can. Since the main component of bone is calcium phosphate, it is possible to mass-produce phosphoric acid from fish bone. Since phosphate ore will be depleted in the near future, establishing a process to produce phosphoric acid from the bones of fish is extremely important not only from promoting local industry but also from a national and global perspective.

【0013】 固液分離された液体は油相と水相に分
かれる。 水相には高濃度の乳酸、アミノ酸、水溶性蛋白質、
リン酸などが生成する。 油相にはDHAやEPAなどの高価値物質が、高濃
度で含まれている。これらを分離した後の油は、燃料、
食用油、石鹸などの原料として利用できる。
The solid-liquid separated liquid is separated into an oil phase and an aqueous phase. The aqueous phase contains high concentrations of lactic acid, amino acids, water-soluble proteins,
Phosphoric acid and the like are produced. The oil phase contains high value substances such as DHA and EPA at high concentrations. After separating them, the oil, fuel,
It can be used as a raw material for edible oils and soaps.

【0014】 魚あら有機質物(含水率;約70%)
100トンから、たとえば生分解性プラスチック(ポリ
乳酸)の原料となる乳酸が、200℃、5分程度の分解
で約1トン、その後、270℃、7分の分解で油が約4
8m3 、アミノ酸5.2トン生成することができる。 以上のように、魚あらを処理することにより、全て付加
価値の高い資源に転換することができる。
[0014] Fish organic matter (water content: about 70%)
From 100 tons, for example, lactic acid, which is a raw material of biodegradable plastic (polylactic acid), is converted to about 1 ton at 200 ° C. for about 5 minutes and then about 4 tons at 270 ° C. for 7 minutes.
8 m 3 , 5.2 tons of amino acids can be produced. As described above, all of the fish can be converted into high value-added resources by processing them.

【0015】一般的には、超臨界水による処理は、 温度: 375℃以上 圧力: 22.1MPa以上 反応時間: 1〜10分 の範囲において行う。対象とする廃棄有機物の種類やそ
の状態、処理量等によっても異なるが、より適当には、
たとえば温度:375〜400℃、圧力:22.1〜2
4.0MPaとすることが考慮される。そして、廃棄有
機物の処理量と水との割合については、たとえば全有機
炭素質換算として、重量比が廃棄有機物/水=0.05
〜0.2の割合とすることが考慮される。
Generally, the treatment with supercritical water is carried out at a temperature of 375 ° C. or more, a pressure of 22.1 MPa or more, and a reaction time of 1 to 10 minutes. Although it differs depending on the type of waste organic matter to be targeted, its state, the amount of treatment, etc., more suitably,
For example, temperature: 375 to 400 ° C., pressure: 22.1 to 2
It is considered to be 4.0 MPa. The weight ratio of waste organic matter / water to waste organic matter / water is 0.05, for example, in terms of total organic carbonaceous matter.
A ratio of ~ 0.2 is considered.

【0016】亜臨界水による処理では、 温度:200〜300℃ 圧力:1.5〜15MPa 程度とすることが考慮される。より適当には、たとえば
温度230〜280℃、圧力1.9〜5.9MPaとす
る。また廃棄有機物の処理量と水との割合については、
全有機炭素換算として、重量比が、廃棄有機物/水=
0.05〜0.2の割合とすることが考慮される。
In the treatment with subcritical water, it is considered that the temperature is 200 to 300 ° C. and the pressure is about 1.5 to 15 MPa. More suitably, for example, the temperature is 230 to 280 ° C. and the pressure is 1.9 to 5.9 MPa. Regarding the amount of waste organic matter and water,
In terms of total organic carbon, the weight ratio is expressed as waste organic matter / water =
A ratio of 0.05 to 0.2 is considered.

【0017】処理後は、たとえば前記図1のように、濾
過により残存する骨等の固形分を分離し、液化した有機
物は、油分、脂肪酸、そして乳酸等として分離する。有
機物の分離に際しては、イオン交換法等により各成分に
分離してもよいし、塩基物質の添加によって塩としても
よいし、エステル化してもよいし、さらには直ちに他の
有機反応に原料物質として用いてもよい。
After the treatment, for example, as shown in FIG. 1, the remaining solids such as bones are separated by filtration, and the liquefied organic matter is separated as oils, fatty acids, lactic acid and the like. Upon separation of the organic substance, it may be separated into each component by an ion exchange method or the like, may be converted into a salt by addition of a basic substance, may be esterified, or immediately as a raw material for another organic reaction. May be used.

【0018】もちろん、この発明は、上記の例示に限ら
れることはなく、様々な有価資源化技術として構成する
ことが可能となる。以下、実施例を示し、さらに詳しく
この発明について説明する。
Of course, the present invention is not limited to the above-described example, but can be configured as various valuable resource technologies. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0019】[0019]

【実施例】(実施例1)図2は、水の相変化について示
した温度と圧力との相関図である。これに従って、圧力
3〜4MPa、温度200℃以上の条件において魚肉の
処理を行った。反応は、次の表1の手順に従った。
(Embodiment 1) FIG. 2 is a correlation diagram between temperature and pressure, showing a phase change of water. According to this, the fish meat was treated under the conditions of a pressure of 3 to 4 MPa and a temperature of 200 ° C. or more. The reaction followed the procedure in Table 1 below.

【0020】[0020]

【表1】 [Table 1]

【0021】図3は、3MPa(30気圧)の条件下
で、5分間反応処理した場合の、乳酸(A)と、酢酸、
ギ酸等の脂肪酸(B)の生成量と反応温度との関係を示
したものである。250℃ないしその近傍の温度におい
て、乳酸は、乾燥魚肉1g当り0.35g生成している
ことが確認される。また、図4は、250℃、3MPa
の条件下での処理において、反応時間と乳酸生成量との
関係を示している。短い反応時間において効率的に乳酸
が生成することがわかる。 (実施例2)ステンレス製反応管(内容積、約7cm3
に廃魚肉と水を混合した試料を入れ溶融塩浴(温度20
0〜400℃)中で所定時間処理した。亜臨界および超
臨界状態での処理である。生成物である有機酸は、高速
液体クロマトグラフィー(カラム:Shim-pack SCR-102
H、移動相:10mM過塩素酸、検出条件:Shimazu SPD-6AV
210nm )を用いて分析した。同時に、生成物の炭素濃
度をTOC分析器(Shimazu TOC-500 )により分析し
た。
FIG. 3 shows that lactic acid (A), acetic acid and lactic acid (A) were reacted for 5 minutes under the condition of 3 MPa (30 atm).
It shows the relationship between the production amount of fatty acid (B) such as formic acid and the reaction temperature. It is confirmed that lactic acid is produced at a temperature of 250 ° C. or close to 0.35 g per 1 g of dried fish meat. Also, FIG.
4 shows the relationship between the reaction time and the amount of lactic acid produced in the treatment under the conditions of (1) and (2). It can be seen that lactic acid is efficiently produced in a short reaction time. (Example 2) Stainless steel reaction tube (internal volume, about 7 cm 3 )
A sample prepared by mixing waste fish meat and water is put in a molten salt bath (temperature 20).
(0 to 400 ° C.) for a predetermined time. Processing in subcritical and supercritical states. The product organic acid was analyzed by high performance liquid chromatography (column: Shim-pack SCR-102
H, mobile phase: 10 mM perchloric acid, detection condition: Shimazu SPD-6AV
210 nm). At the same time, the carbon concentration of the product was analyzed by a TOC analyzer (Shimazu TOC-500).

【0022】図5は、亜臨界状態での処理における有機
酸収率と反応温度との関係を示したものである。収率
は、魚肉乾燥重量に対する生成された有機酸の重量とし
て定義している。圧力は水の飽和蒸気圧に相当する。収
率のピークは成分によって異なり、乳酸、クエン酸、こ
はく酸は240℃付近、酪酸は260℃付近に存在す
る。温度を240℃に設定することにより、乳酸を高収
率で得ることができることが判明した。
FIG. 5 shows the relationship between the organic acid yield and the reaction temperature in the treatment in the subcritical state. Yield is defined as the weight of organic acid produced relative to the dry weight of fish meat. The pressure corresponds to the saturated vapor pressure of water. The peak of the yield differs depending on the components. Lactic acid, citric acid and succinic acid are present at around 240 ° C., and butyric acid is present at around 260 ° C. It was found that lactic acid could be obtained in high yield by setting the temperature to 240 ° C.

【0023】図6は、240℃における有機酸の収率の
経時変化を示したものである。各種有機酸とも、反応速
度は大きく、乳酸、クエン酸、こはく酸は、7分で収率
がピークになることが判明した。 (実施例3)以下の手順によって魚肉の亜臨界状態下で
の加水分解を行った。 1)処理プロセス 魚肉(あじ)はワーリングブレンダー( Model 31 BL 9
2, Dynamic Corporation of America)を用いて最高回転
速度で5分間ホモジナイズした後に冷凍庫(253K)
で保存した。スウェジロック・キャップを装着したステ
ンレス管(SUS316、内径7mm、長さ150m
m、内容積7.0cm3 )を反応管として用いた。約
1.0gの魚肉(含水率69−73%)とミリQ水
(3.36cm3)を反応管の充填した。超臨界状態に
するためには3.06cm3 (653K)もしくは1.
76cm3 (673K)のミリQ水を加えた。試料中の
溶存酸素をアルゴンガスで置換した後に反応管を閉じ、
一定温度に予熱した硝酸カリウムと硝酸ナトリウムを含
む溶融塩浴(Thomas Kagaku Co.Ltd)に入れた。反応は4
73−673Kの範囲で行い、反応管中の圧力を、亜臨
界状態については水蒸気表から求め、超臨界状態につい
てはRedlich-Kwong 式から推算した。所定時間後(1か
ら30分)、反応管を水浴に入れ直ちに室温まで冷却し
た。 2)有機酸、アミノ酸のHPLCによる分析 イオン排除カラム(Shim-pack SCR-100H、内径8.0m
m×長さ300mm)を用いたHPLC(Shimadzu LC-6
A)を各有機酸濃度を求めるために使用した。移動相とし
て10mol/m3 の過塩素酸を333Kに維持された
カラムに0.8cm3 /min)の流量で流した。反応
生成物はミリQ水で500cm3 に希釈した後、ミリポ
ア膜(孔径0.22μm)で濾過して油滴や不溶性固体
を除去した。希釈したサンプル(0.020cm3 )を
注入して、乳酸、クエン酸、リンゴ酸、酢酸、蟻酸の濃
度は分光光度計(Shimadzu SPD-6AV)により測定した(波
長210nm)。各有機酸の保持時間は既知量の標準有
機酸を内部標準として試料に添加することによって確か
めた。アミノ酸濃度はHPLCシステム(ShimadzuLC-10
A 、SC-07/S 1504カラム)と蛍光光度計(Shimadzu RF-5
35) を用いてポストカラム法によって決定した。 3)水溶性生成物のTOC測定 反応生成物の全有機炭素(TOC)をTOC分析装置(S
himadzu TOC-500)によって測定した。標準的方法に従っ
て、0.01cm3 の水溶性生成物をTOC分析装置に
注入した。TOCは全炭素(TC)から無機炭素(I
C)を差し引いて求めた。測定した全ての試料において
ICの値はTCの10%以下であった。 4)原料および固体生成物の炭素、窒素および水素含有
量 原料魚肉と固体生成物の炭素、窒素および水素含有量を
CHN coder(Yanaco、MT-3) によって測定した。分析
の前に試料をオーブン(348K)で2日間乾燥した。
試料数mgをCHN coderに負荷して測定した。 5)結果 魚肉の亜臨界状態下での液化 473K、573Kおよび623Kでの反応生成物(反
応時間5分)については、473K(1.52MPa)
では反応生成物として水相と固相が得られた。573K
(8.40MPa)では固相の量が減少し、油相が形成
された。反応温度を623K(16.17MPa)にあ
げると固相が消失し、油相の量も減少した。二酸化炭
素、窒素などのガス状生成物は測定した反応条件下では
顕著に見られなかった。表2に示すように乾燥した原料
魚肉の炭素、窒素および水素含有量はそれぞれ58.7
4%、11.11%、8.66%であった。その他(2
1.48%)にはイオウや酸素原子が含まれている。固
体生成物の成分比は原料魚肉のものに近かった。図7は
固体の量が反応温度の上昇とともに減少していることを
示している。これらの結果は固体生成物が未反応魚肉で
あることを示唆している。図7では油相の容積が反応温
度とともに増加し、580K以上で減少することも示し
ている。油相は反応温度の上昇とともに固体の一部から
生成した。高い反応温度では油相は他の有機性化合物に
分解された。GC/MSを用いた分析では、油相はアラ
キドン酸、エイコサペンタエン酸(EPA)、ドコサヘ
キサエン酸(DHA)などの有用な脂肪酸を含んでいる
ことが確認された。これらの結果は魚肉は亜臨界加水分
解によって短時間に液化され、油相と水相に変換される
ことを示している。
FIG. 6 shows the change over time in the yield of organic acid at 240 ° C. It was found that the reaction rate was high for all kinds of organic acids, and the yield of lactic acid, citric acid, and succinic acid peaked in 7 minutes. (Example 3) Hydrolysis of fish meat under subcritical conditions was performed by the following procedure. 1) Processing process Fish meat (aji) is a waring blender (Model 31 BL 9)
2, Dynamic Corporation of America) and homogenize at the maximum rotation speed for 5 minutes, then freezer (253K)
Saved in. Stainless steel tube (SUS316, inner diameter 7mm, length 150m with Swagelok cap attached)
m, internal volume 7.0 cm 3 ) was used as a reaction tube. About 1.0 g of fish meat (water content 69-73%) and Milli-Q water (3.36 cm 3 ) were filled in the reaction tube. 3.06 cm 3 (653 K) or 1.
76 cm 3 (673 K) of Milli-Q water was added. After replacing the dissolved oxygen in the sample with argon gas, close the reaction tube,
It was placed in a molten salt bath (Thomas Kagaku Co. Ltd) containing potassium nitrate and sodium nitrate preheated to a constant temperature. Reaction 4
The pressure in the reaction tube was calculated from the steam table for the subcritical state, and estimated from the Redlich-Kwong equation for the supercritical state. After a predetermined time (1 to 30 minutes), the reaction tube was placed in a water bath and immediately cooled to room temperature. 2) Analysis of organic acids and amino acids by HPLC Ion exclusion column (Shim-pack SCR-100H, 8.0 m inner diameter)
HPLC (Shimadzu LC-6)
A) was used to determine each organic acid concentration. As a mobile phase, 10 mol / m 3 of perchloric acid was passed through the column maintained at 333 K at a flow rate of 0.8 cm 3 / min). The reaction product was diluted to 500 cm 3 with Milli-Q water and then filtered through a Millipore membrane (pore size 0.22 μm) to remove oil droplets and insoluble solids. The diluted sample (0.020 cm 3 ) was injected, and the concentrations of lactic acid, citric acid, malic acid, acetic acid and formic acid were measured with a spectrophotometer (Shimadzu SPD-6AV) (wavelength 210 nm). The retention time of each organic acid was ascertained by adding a known amount of a standard organic acid to the sample as an internal standard. Amino acid concentration is determined by HPLC system (Shimadzu LC-10
A, SC-07 / S 1504 column) and fluorometer (Shimadzu RF-5
35) was determined by the post-column method. 3) TOC measurement of water-soluble product Total organic carbon (TOC) of the reaction product was measured by TOC analyzer (S
himadzu TOC-500). According to standard methods, 0.01 cm 3 of the water-soluble product was injected into the TOC analyzer. TOC is converted from total carbon (TC) to inorganic carbon (I
C) was subtracted. In all the measured samples, the IC value was 10% or less of TC. 4) Carbon, nitrogen and hydrogen content of raw material and solid product Carbon, nitrogen and hydrogen content of raw fish meat and solid product were measured by CHN coder (Yanaco, MT-3). Samples were dried in an oven (348K) for 2 days before analysis.
A few mg of sample was loaded on the CHN coder and measured. 5) Results Liquefaction of fish meat under subcritical conditions Regarding the reaction products at 473K, 573K and 623K (reaction time 5 minutes), 473K (1.52 MPa)
As a result, an aqueous phase and a solid phase were obtained as reaction products. 573K
At (8.40 MPa), the amount of solid phase decreased and an oil phase was formed. When the reaction temperature was raised to 623K (16.17 MPa), the solid phase disappeared, and the amount of the oil phase also decreased. Gaseous products such as carbon dioxide and nitrogen were not significantly observed under the measured reaction conditions. As shown in Table 2, the carbon, nitrogen and hydrogen contents of the dried raw fish meat were 58.7, respectively.
4%, 11.11% and 8.66%. Other (2
(1.48%) contains sulfur and oxygen atoms. The component ratio of the solid product was close to that of the raw fish meat. FIG. 7 shows that the amount of solids decreases with increasing reaction temperature. These results suggest that the solid product is unreacted fish meat. FIG. 7 also shows that the volume of the oil phase increases with reaction temperature and decreases above 580K. The oil phase formed from some of the solids with increasing reaction temperature. At higher reaction temperatures, the oil phase decomposed into other organic compounds. The analysis using GC / MS confirmed that the oil phase contained useful fatty acids such as arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). These results indicate that fish meat is liquefied in a short time by subcritical hydrolysis and is converted into an oil phase and an aqueous phase.

【0024】[0024]

【表2】 [Table 2]

【0025】水相の全有機炭素(TOC) 水相のTOCの乾燥した原料魚肉のTOCに対する比を
反応温度に対して図8にプロットした。水相のTOCは
473Kでの0.3(kgC/kgC)から徐々に増加
し573K以上では一定値(0.65kgC/kgC)
に達したが、これは65%の原料魚肉の有機炭素が水相
に回収されることを示している。TOCは超臨界条件下
では減少した(673K,30.0MPa)。TOCの
反応温度の上昇にともなう増加は図7で示された反応温
度の上昇に伴う固体の減少によってよく説明できる。5
13Kでの水相のTOCの経時変化は図9に示されてい
る。TOCは時間とともに急激に増加し10分までに一
定値に達したが、これは亜臨界状態下での加水分解反応
が非常に速いこと、この条件下では二酸化炭素が生成さ
れないことを示唆している。次に水相の有機酸とアミノ
酸をHPLCシステムで分析した。
Total Organic Carbon (TOC) in the Aqueous Phase The ratio of the TOC in the aqueous phase to the TOC of the dried raw fish meat is plotted against the reaction temperature in FIG. The TOC of the aqueous phase gradually increases from 0.3 (kgC / kgC) at 473K, and becomes a constant value (0.65kgC / kgC) above 573K.
Which indicates that 65% of the raw fish meat organic carbon is recovered in the aqueous phase. TOC decreased under supercritical conditions (673 K, 30.0 MPa). The increase in TOC with increasing reaction temperature can be well explained by the decrease in solids with increasing reaction temperature shown in FIG. 5
The time course of the TOC of the aqueous phase at 13K is shown in FIG. The TOC increased rapidly with time and reached a certain value by 10 minutes, suggesting that the hydrolysis reaction under subcritical conditions was very fast and that no carbon dioxide was produced under these conditions. I have. Next, the organic acids and amino acids in the aqueous phase were analyzed with an HPLC system.

【0026】水相での有機酸生産 図10に水相に生産される有機酸収率(反応時間5分)
を反応温度にプロットした。収率は乾燥魚肉1kgから
生産される有機酸重量(kg)として定義した。乳酸は
原料魚肉に0.027kg/kg−dry meat含まれては
いたが、513K(3.35MPa)で5分間の反応で
0.03kg/kg−dry meatの乳酸がみられた。超臨
界状態下では(653Kと673K、30.0MP
a)、ほとんどの乳酸は5分以内に分解されていた。一
方、酢酸は530K以上で生産され、最大収率は653
K(30.0MPa)の条件下で0.01kg/kg−
dry meatであった。図11は513Kでの有機酸収率に
及ぼす反応時間の影響を示している。乳酸はこの条件下
で徐々に分解した。これらの結果は魚肉中に含まれる乳
酸は513Kまではかなり安定であることを示してい
る。亜臨界状態下での遠い魚肉の液化は魚肉からの乳酸
回収に有利である。この結果に基づくと、大阪府で毎日
排出される廃魚(320トン)から2.9トンの乳酸が
生産できることになる。この乳酸は生分解性ポリマーの
有用な原料となる。
Production of Organic Acid in Aqueous Phase FIG. 10 shows the yield of organic acid produced in the aqueous phase (reaction time: 5 minutes)
Was plotted against the reaction temperature. The yield was defined as the weight (kg) of organic acid produced from 1 kg of dried fish meat. Lactic acid contained 0.027 kg / kg-dry meat in the raw fish meat, but 0.03 kg / kg-dry meat of lactic acid was observed in a reaction at 513 K (3.35 MPa) for 5 minutes. Under supercritical conditions (653K and 673K, 30.0MP
a), most lactic acid was decomposed within 5 minutes. On the other hand, acetic acid is produced at 530K or more, and the maximum yield is 653K.
0.01 kg / kg under the condition of K (30.0 MPa)
It was dry meat. FIG. 11 shows the effect of reaction time on organic acid yield at 513K. Lactic acid gradually decomposed under these conditions. These results indicate that lactic acid contained in fish meat is quite stable up to 513K. Liquefaction of distant fish meat under subcritical conditions is advantageous for lactic acid recovery from fish meat. Based on this result, 2.9 tons of lactic acid can be produced from waste fish (320 tons) discharged daily in Osaka Prefecture. This lactic acid is a useful raw material for biodegradable polymers.

【0027】水相でのアミノ酸の生産 図12は反応時間5分におけるアミノ酸収率の反応温度
の影響を示している。シスチン、アラニン、グリシン、
ロイシンが反応温度513Kから623Kの範囲で生産
された。ヒスチジン収率は反応温度の増加とともに減少
した。反応温度513K(3.35MPa)で30分間
の間に生産されたシスチン、アラニン、グリシン、ロイ
シンの量はれぞれ0.029、0.015、0.01、
0.006kg/kg−dry meatであった。例えば、大
阪府で排出される廃魚肉320トンから約2.7トンの
シスチンが生産できる。
Production of Amino Acids in Aqueous Phase FIG. 12 shows the effect of reaction temperature on amino acid yield at a reaction time of 5 minutes. Cystine, alanine, glycine,
Leucine was produced at a reaction temperature in the range of 513K to 623K. Histidine yield decreased with increasing reaction temperature. The amounts of cystine, alanine, glycine, and leucine produced during the 30 minutes at a reaction temperature of 513 K (3.35 MPa) were 0.029, 0.015, 0.01,
It was 0.006 kg / kg-dry meat. For example, about 2.7 tons of cystine can be produced from 320 tons of waste fish meat discharged in Osaka Prefecture.

【0028】513Kでのアミノ酸生産の経時変化が図
13に示されている。シスチン、アラニン、グリシン、
ロイシンの収率は時間とともにほぼ直線的に増加した。
一方、ヒスチジンの収率は時間とともに減少した。この
ように、亜臨界加水分解は廃魚肉から有用物質を回収す
る効率的なプロセスであることが示された。各種有機
酸、アミノ酸、DHA、EPA等が魚肉から生産される
ことになる。そして、以上の結果は反応温度がこれらの
物質の収率に大きな影響を与えることを示している。こ
れは多段の反応が効率的プロセスに有利であることを意
味している。例えば、低温(513K)の第1段反応で
乳酸を回収し、高温(540K)の第2段反応でアミノ
酸や脂肪酸を生産できることになる。排水処理施設から
のスラッジや多くの産業からの有機性廃棄物もこのプロ
セスの出発原料となりうる。
The time course of amino acid production at 513K is shown in FIG. Cystine, alanine, glycine,
Leucine yield increased almost linearly with time.
On the other hand, the histidine yield decreased with time. Thus, subcritical hydrolysis was shown to be an efficient process for recovering useful substances from waste fish meat. Various organic acids, amino acids, DHA, EPA, etc. are produced from fish meat. The above results show that the reaction temperature has a great influence on the yield of these substances. This means that a multi-stage reaction is advantageous for an efficient process. For example, lactic acid can be recovered by a low-temperature (513K) first-stage reaction, and amino acids and fatty acids can be produced by a high-temperature (540K) second-stage reaction. Sludge from wastewater treatment facilities and organic waste from many industries can also be starting materials for this process.

【0029】[0029]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、魚のあら等の廃棄有機物より、効率的
に、乳酸、脂肪酸、アミノ酸、EPA、DHA等の有機
酸からなる有価資源の製造が可能とされる。
As described above in detail, according to the invention of this application, it is possible to efficiently produce valuable resources composed of organic acids such as lactic acid, fatty acids, amino acids, EPA and DHA from waste organic substances such as fish ash. It is said.

【図面の簡単な説明】[Brief description of the drawings]

【図1】魚あらの処理プロセスを例示した図である。FIG. 1 is a diagram exemplifying a processing process of a fish;

【図2】水の相変化を示した温度−圧力相関図である。FIG. 2 is a temperature-pressure correlation diagram showing a phase change of water.

【図3】実施例としての反応温度と乳酸等の生成量との
関係を示した図である。
FIG. 3 is a diagram showing a relationship between a reaction temperature and an amount of lactic acid or the like as an example.

【図4】実施例としての反応時間と乳酸の生成量との関
係を示した図である。
FIG. 4 is a diagram showing a relationship between a reaction time and an amount of lactic acid produced as an example.

【図5】実施例としての反応温度と有機酸収率との関係
を示した図である。
FIG. 5 is a diagram showing a relationship between a reaction temperature and an organic acid yield as an example.

【図6】実施例としての反応時間と有機酸収率との関係
を示した図である。
FIG. 6 is a diagram showing a relationship between a reaction time and an organic acid yield as an example.

【図7】固体と油相の量の反応温度との関係を例示した
図である。
FIG. 7 is a diagram illustrating the relationship between the reaction temperature of the amount of a solid and an oil phase.

【図8】水相TOCの反応温度との関係を例示した図で
ある。
FIG. 8 is a diagram exemplifying a relationship between a reaction temperature of an aqueous TOC and a reaction temperature thereof.

【図9】水相TOCの反応時間との関係を例示した図で
ある。
FIG. 9 is a diagram exemplifying a relationship with a reaction time of an aqueous phase TOC.

【図10】有機酸収量の反応温度との関係を例示した図
である。
FIG. 10 is a diagram illustrating the relationship between the yield of an organic acid and the reaction temperature.

【図11】有機酸収量の反応時間との関係を例示した図
である。
FIG. 11 is a diagram illustrating the relationship between the yield of an organic acid and the reaction time.

【図12】アミノ酸収量の反応温度との関係を例示した
図である。
FIG. 12 is a diagram illustrating the relationship between the yield of amino acids and the reaction temperature.

【図13】アミノ酸収量の反応時間との関係を例示した
図である。
FIG. 13 is a diagram illustrating the relationship between amino acid yield and reaction time.

【手続補正書】[Procedure amendment]

【提出日】平成11年4月30日[Submission date] April 30, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】図6は、240℃における有機酸の収率の
経時変化を示したものである。各種有機酸とも、反応速
度は大きく、乳酸、クエン酸、こはく酸は、7分で収率
がピークになることが判明した。 (実施例3)以下の手順によって魚肉の亜臨界状態下で
の加水分解を行った。 1)処理プロセス 魚肉(あじ)はワーリングブレンダー( Model 31 BL 9
2, Dynamic Corporation of America)を用いて最高回転
速度で5分間ホモジナイズした後に冷凍庫(253K)
で保存した。スウェジロック・キャップを装着したステ
ンレス管(SUS316、内径7mm、長さ150m
m、内容積7.0cm3 )を反応管として用いた。約
1.0gの魚肉(含水率69−73%)とミリQ水
(3.36cm3)を反応管の充填した。超臨界状態に
するためには3.06cm3 (653K)もしくは1.
76cm3 (673K)のミリQ水を加えた。試料中の
溶存酸素をアルゴンガスで置換した後に反応管を閉じ、
一定温度に予熱した硝酸カリウムと硝酸ナトリウムを
含む溶融塩浴(Thomas Kagaku Co.Ltd)に入れた。反応は
473−673Kの範囲で行い、反応管中の圧力を、亜
臨界状態については水蒸気表から求め、超臨界状態につ
いてはRedlich-Kwong 式から推算した。所定時間後(1
から30分)、反応管を水浴に入れ直ちに室温まで冷却
した。 2)有機酸、アミノ酸のHPLCによる分析 イオン排除カラム(Shim-pack SCR-100H、内径8.0m
m×長さ300mm)を用いたHPLC(Shimadzu LC-6
A)を各有機酸濃度を求めるために使用した。移動相とし
て10mol/m3 の過塩素酸を333Kに維持された
カラムに0.8cm3 /min)の流量で流した。反応
生成物はミリQ水で500cm3 に希釈した後、ミリポ
ア膜(孔径0.22μm)で濾過して油滴や不溶性固体
を除去した。希釈したサンプル(0.020cm3 )を
注入して、乳酸、クエン酸、リンゴ酸、酢酸、蟻酸の濃
度は分光光度計(Shimadzu SPD-6AV)により測定した(波
長210nm)。各有機酸の保持時間は既知量の標準有
機酸を内部標準として試料に添加することによって確か
めた。アミノ酸濃度はHPLCシステム(ShimadzuLC-10
A 、SC-07/S 1504カラム)と蛍光光度計(Shimadzu RF-5
35) を用いてポストカラム法によって決定した。 3)水溶性生成物のTOC測定 反応生成物の全有機炭素(TOC)をTOC分析装置(S
himadzu TOC-500)によって測定した。標準的方法に従っ
て、0.01cm3 の水溶性生成物をTOC分析装置に
注入した。TOCは全炭素(TC)から無機炭素(I
C)を差し引いて求めた。測定した全ての試料において
ICの値はTCの10%以下であった。 4)原料および固体生成物の炭素、窒素および水素含有
量 原料魚肉と固体生成物の炭素、窒素および水素含有量を
CHN coder(Yanaco、MT-3) によって測定した。分析
の前に試料をオーブン(348K)で2日間乾燥した。
試料数mgをCHN coderに負荷して測定した。 5)結果 魚肉の亜臨界状態下での液化 473K、573Kおよび623Kでの反応生成物(反
応時間5分)については、473K(1.52MPa)
では反応生成物として水相と固相が得られた。573K
(8.40MPa)では固相の量が減少し、油相が形成
された。反応温度を623K(16.17MPa)にあ
げると固相が消失し、油相の量も減少した。二酸化炭
素、窒素などのガス状生成物は測定した反応条件下では
顕著に見られなかった。表2に示すように乾燥した原料
魚肉の炭素、窒素および水素含有量はそれぞれ58.7
4%、11.11%、8.66%であった。その他(2
1.48%)にはイオウや酸素原子が含まれている。固
体生成物の成分比は原料魚肉のものに近かった。図7は
固体の量が反応温度の上昇とともに減少していることを
示している。これらの結果は固体生成物が未反応魚肉で
あることを示唆している。図7では油相の容積が反応温
度とともに増加し、580K以上で減少することも示し
ている。油相は反応温度の上昇とともに固体の一部から
生成した。高い反応温度では油相は他の有機性化合物に
分解された。GC/MSを用いた分析では、油相はアラ
キドン酸、エイコサペンタエン酸(EPA)、ドコサヘ
キサエン酸(DHA)などの有用な脂肪酸を含んでいる
ことが確認された。これらの結果は魚肉は亜臨界加水分
解によって短時間に液化され、油相と水相に変換される
ことを示している。
FIG. 6 shows the change over time in the yield of organic acid at 240 ° C. It was found that the reaction rate was high for all kinds of organic acids, and the yield of lactic acid, citric acid, and succinic acid peaked in 7 minutes. (Example 3) Hydrolysis of fish meat under subcritical conditions was performed by the following procedure. 1) Processing process Fish meat (aji) is a waring blender (Model 31 BL 9)
2, Dynamic Corporation of America) and homogenize at the maximum rotation speed for 5 minutes, then freezer (253K)
Saved in. Stainless steel tube (SUS316, inner diameter 7mm, length 150m with Swagelok cap attached)
m, internal volume 7.0 cm 3 ) was used as a reaction tube. About 1.0 g of fish meat (water content 69-73%) and Milli-Q water (3.36 cm 3 ) were filled in the reaction tube. 3.06 cm 3 (653 K) or 1.
76 cm 3 (673 K) of Milli-Q water was added. After replacing the dissolved oxygen in the sample with argon gas, close the reaction tube,
It was placed in a molten salt bath (Thomas Kagaku Co.Ltd) containing potassium nitrate and sodium nitrite which was preheated to a constant temperature. The reaction was performed in the range of 473 to 673K, and the pressure in the reaction tube was calculated from the steam table for the subcritical state, and estimated from the Redlich-Kwong equation for the supercritical state. After a predetermined time (1
), The reaction tube was placed in a water bath and immediately cooled to room temperature. 2) Analysis of organic acids and amino acids by HPLC Ion exclusion column (Shim-pack SCR-100H, 8.0 m inner diameter)
HPLC (Shimadzu LC-6)
A) was used to determine each organic acid concentration. As a mobile phase, 10 mol / m 3 of perchloric acid was passed through the column maintained at 333 K at a flow rate of 0.8 cm 3 / min). The reaction product was diluted to 500 cm 3 with Milli-Q water and then filtered through a Millipore membrane (pore size 0.22 μm) to remove oil droplets and insoluble solids. The diluted sample (0.020 cm 3 ) was injected, and the concentrations of lactic acid, citric acid, malic acid, acetic acid and formic acid were measured with a spectrophotometer (Shimadzu SPD-6AV) (wavelength 210 nm). The retention time of each organic acid was ascertained by adding a known amount of a standard organic acid to the sample as an internal standard. Amino acid concentration is determined by HPLC system (Shimadzu LC-10
A, SC-07 / S 1504 column) and fluorometer (Shimadzu RF-5
35) was determined by the post-column method. 3) TOC measurement of water-soluble product Total organic carbon (TOC) of the reaction product was measured by TOC analyzer (S
himadzu TOC-500). According to standard methods, 0.01 cm 3 of the water-soluble product was injected into the TOC analyzer. TOC is converted from total carbon (TC) to inorganic carbon (I
C) was subtracted. In all the measured samples, the IC value was 10% or less of TC. 4) Carbon, nitrogen and hydrogen content of raw material and solid product Carbon, nitrogen and hydrogen content of raw fish meat and solid product were measured by CHN coder (Yanaco, MT-3). Samples were dried in an oven (348K) for 2 days before analysis.
A few mg of sample was loaded on the CHN coder and measured. 5) Results Liquefaction of fish meat under subcritical conditions Regarding the reaction products at 473K, 573K and 623K (reaction time 5 minutes), 473K (1.52 MPa)
As a result, an aqueous phase and a solid phase were obtained as reaction products. 573K
At (8.40 MPa), the amount of solid phase decreased and an oil phase was formed. When the reaction temperature was raised to 623K (16.17 MPa), the solid phase disappeared, and the amount of the oil phase also decreased. Gaseous products such as carbon dioxide and nitrogen were not significantly observed under the measured reaction conditions. As shown in Table 2, the carbon, nitrogen and hydrogen contents of the dried raw fish meat were 58.7, respectively.
4%, 11.11% and 8.66%. Other (2
(1.48%) contains sulfur and oxygen atoms. The component ratio of the solid product was close to that of the raw fish meat. FIG. 7 shows that the amount of solids decreases with increasing reaction temperature. These results suggest that the solid product is unreacted fish meat. FIG. 7 also shows that the volume of the oil phase increases with reaction temperature and decreases above 580K. The oil phase formed from some of the solids with increasing reaction temperature. At higher reaction temperatures, the oil phase decomposed into other organic compounds. The analysis using GC / MS confirmed that the oil phase contained useful fatty acids such as arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). These results indicate that fish meat is liquefied in a short time by subcritical hydrolysis and is converted into an oil phase and an aqueous phase.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】水相での有機酸生産 図10に水相に生産される有機酸収率(反応時間5分)
を反応温度にプロットした。収率は乾燥魚肉1kgから
生産される有機酸重量(kg)として定義した。乳酸は
原料魚肉に0.027kg/kg−dry meat含まれては
いたが、513K(3.35MPa)で5分間の反応で
0.03kg/kg−dry meatの乳酸がみられた。超臨
界状態下では(653Kと673K、30.0MP
a)、ほとんどの乳酸は5分以内に分解されていた。一
方、酢酸は530K以上で生産され、最大収率は653
K(30.0MPa)の条件下で0.01kg/kg−
dry meatであった。ピログルタミン酸は、220℃前後
から生成が始まり、270℃付近で最大値(約0.04
kg/kg−dry meat)を示し400℃付近で消失し
た。このことから、ピログルタミン酸は魚肉中の蛋白質
の加水分解により生成したものと考えられる。図11
は、ピログルタミン酸の生成量が最大値となる温度27
0℃で有機酸収率に及ぼす反応時間の影響を示してい
る。乳酸およびリン酸は反応時間によってほとんど影響
を受けておらず、この温度までは安定していることを示
している。一方、ピログルタミン酸は、約30分で最大
値0.1kg/kg−dry meatとなっている。この結果
に基づくと、まず、200℃で亜臨界水加水分解を行
い、乳酸およびリン酸を回収した後、270℃で亜臨界
水加水分解を行い、大量のピログルタミン酸を回収する
プロセスの構築が可能である。大阪府で毎日排出される
廃魚(320トン)から、2.9トンの乳酸および9.
6トンのピログルタミン酸が生産できることになる。乳
酸は生分解性ポリマーの有用な原料となる。また、ピロ
グルタミン酸は、常温で苛性ソーダ溶液と接触させると
容易にグルタミン酸ソーダになるため、調味料の有望な
供給源となる。
Production of Organic Acid in Aqueous Phase FIG. 10 shows the yield of organic acid produced in the aqueous phase (reaction time: 5 minutes)
Was plotted against the reaction temperature. The yield was defined as the weight (kg) of organic acid produced from 1 kg of dried fish meat. Lactic acid contained 0.027 kg / kg-dry meat in the raw fish meat, but 0.03 kg / kg-dry meat of lactic acid was observed in a reaction at 513 K (3.35 MPa) for 5 minutes. Under supercritical conditions (653K and 673K, 30.0MP
a), most lactic acid was decomposed within 5 minutes. On the other hand, acetic acid is produced at 530K or more, and the maximum yield is 653K.
0.01 kg / kg under the condition of K (30.0 MPa)
It was dry meat. Pyroglutamic acid is around 220 ° C
Starts at about 270 ° C. (about 0.04
kg / kg-dry meat) and disappears around 400 ° C.
Was. From this, pyroglutamic acid is a protein in fish meat
It is considered to be produced by the hydrolysis of FIG.
Is the temperature at which the amount of pyroglutamic acid produced reaches the maximum value.
The effect of reaction time on organic acid yield at 0 ° C is shown.
You. Lactic acid and phosphoric acid are mostly affected by reaction time
Has not been received, indicating that it is stable up to this temperature.
doing. On the other hand, pyroglutamic acid reaches its maximum in about 30 minutes.
The value is 0.1 kg / kg-dry meat. As a result
First, subcritical water hydrolysis was carried out at 200 ° C.
After recovering lactic acid and phosphoric acid, it is subcritical at 270 ° C
Perform water hydrolysis to recover a large amount of pyroglutamic acid
Process construction is possible. Emitted daily in Osaka Prefecture
From waste fish (320 tons), 2.9 tons of lactic acid and 9.
6 tons of pyroglutamic acid can be produced. milk
Acids are useful raw materials for biodegradable polymers. Also, Piro
Glutamic acid, when contacted with caustic soda solution at room temperature
It is a promising seasoning because it easily becomes sodium glutamate.
Supply source.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】513Kでのアミノ酸生産の経時変化が図
13に示されている。シスチン、アラニン、グリシン、
ロイシンの収率は時間とともにほぼ直線的に増加した。
一方、ヒスチジンの収率は時間とともに減少した。この
ように、亜臨界加水分解は廃魚肉から有用物質を回収す
る効率的なプロセスであることが示された。各種有機
酸、アミノ酸、DHA、EPA等が魚肉から生産される
ことになる。そして、以上の結果は反応温度がこれらの
物質の収率に大きな影響を与えることを示している。こ
れは多段の反応が効率的プロセスに有利であることを意
味している。例えば、低温(200℃)の第1段反応で
乳酸を回収し、高温(270℃)の第2段反応でアミノ
酸や脂肪酸を生産できることになる。排水処理施設から
のスラッジや多くの産業からの有機性廃棄物もこのプロ
セスの出発原料となりうる。
The time course of amino acid production at 513K is shown in FIG. Cystine, alanine, glycine,
Leucine yield increased almost linearly with time.
On the other hand, the histidine yield decreased with time. Thus, subcritical hydrolysis was shown to be an efficient process for recovering useful substances from waste fish meat. Various organic acids, amino acids, DHA, EPA, etc. are produced from fish meat. The above results show that the reaction temperature has a great influence on the yield of these substances. This means that a multi-stage reaction is advantageous for an efficient process. For example, lactic acid can be recovered in a low-temperature ( 200 ° C. ) first-stage reaction, and amino acids and fatty acids can be produced in a high-temperature ( 270 ° C. ) second-stage reaction. Sludge from wastewater treatment facilities and organic waste from many industries can also be starting materials for this process.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図10[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図10】 FIG. 10

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図11[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図11】 FIG. 11

フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 53/08 C07C 55/10 55/10 59/08 59/08 59/265 59/265 229/00 229/00 C11B 13/00 C11B 13/00 B09B 3/00 ZAB Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 53/08 C07C 55/10 55/10 59/08 59/08 59/265 59/265 229/00 229/00 C11B 13/00 C11B 13 / 00 B09B 3/00 ZAB

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 廃棄有機物を超臨界水もしくは亜臨界水
により処理して有機酸を製造することを特徴とする廃棄
有機物からの有機酸の製造方法。
1. A method for producing an organic acid from waste organic matter, comprising treating the waste organic matter with supercritical water or subcritical water to produce an organic acid.
【請求項2】 廃棄有機物が水産廃棄物もしくは水産加
工品である請求項1の製造方法。
2. The method according to claim 1, wherein the waste organic matter is marine waste or processed marine products.
【請求項3】 有機酸としてカルボン酸、ヒドロキシカ
ルボン酸およびアミノ酸のうちの少なくとも1種のもの
を製造する請求項1または2の製造方法。
3. The method according to claim 1, wherein at least one of a carboxylic acid, a hydroxycarboxylic acid and an amino acid is produced as the organic acid.
【請求項4】 カルボン酸としてエイコサペントエン酸
およびドコサヘキサエン酸の少くとも1種のものを製造
する請求項3の製造方法。
4. The process according to claim 3, wherein at least one of eicosapentenoic acid and docosahexaenoic acid is produced as the carboxylic acid.
JP9032899A 1998-03-30 1999-03-30 Method for producing organic acid from waste organic matter Expired - Fee Related JP3644842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9032899A JP3644842B2 (en) 1998-03-30 1999-03-30 Method for producing organic acid from waste organic matter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-83154 1998-03-30
JP8315498 1998-03-30
JP9032899A JP3644842B2 (en) 1998-03-30 1999-03-30 Method for producing organic acid from waste organic matter

Publications (2)

Publication Number Publication Date
JPH11342379A true JPH11342379A (en) 1999-12-14
JP3644842B2 JP3644842B2 (en) 2005-05-11

Family

ID=26424212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9032899A Expired - Fee Related JP3644842B2 (en) 1998-03-30 1999-03-30 Method for producing organic acid from waste organic matter

Country Status (1)

Country Link
JP (1) JP3644842B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086099A (en) * 2000-09-12 2002-03-26 Sadaaki Murakami Method and apparatus for treating organism-origin organic waste
JP2002102897A (en) * 2000-09-28 2002-04-09 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic food waste such as waste yeast or wheat stained less
WO2004037731A1 (en) * 2002-10-22 2004-05-06 Osaka Industrial Promotion Organization Method for producing methane gas
JP2004262899A (en) * 2003-03-04 2004-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for recovering amino acid
US7022863B2 (en) 2001-07-19 2006-04-04 Ajinomoto Co., Inc. Production method of pyrrolidone carboxylic acid and salt thereof
JP2006213641A (en) * 2005-02-03 2006-08-17 Osaka Industrial Promotion Organization Method for insolubilizing protein, method for producing protein-derived resin, protein-derived resin, and protein-derived biodegradable plastic
JP2006212617A (en) * 2005-02-04 2006-08-17 Hiroyuki Yoshida Separation and recovery method of phosphoric acid, organic acid, and amino acid, and treatment method of organic materials
JP2007090289A (en) * 2005-09-30 2007-04-12 Onomori:Kk Method and apparatus for extracting effective component from food waste and method and apparatus for reducing volume of waste
JP2008222570A (en) * 2007-03-08 2008-09-25 Osaka Prefecture Univ Method for producing amino acid or organic acid
EP1778826A4 (en) * 2004-07-23 2010-09-08 David Kenneth Pinches Process and apparatus for treating waste material incorporating lipid containing material to recover the lipid
US7829740B2 (en) 2005-06-29 2010-11-09 Heiji Enomoto Process for production of lactic acid and equipment for the production
CN102307840A (en) * 2009-02-12 2012-01-04 株式会社日立工业设备技术 Reaction process utilizing critical
CN103627759A (en) * 2013-09-12 2014-03-12 郑州市中食农产品加工研究院 Method for extracting and preparing active ingredients of fish roes
CN104971935A (en) * 2015-07-14 2015-10-14 厦门康浩科技有限公司 Technological method for innocent treatment of animals dying from diseases through subcritical water
JP2015231345A (en) * 2014-06-09 2015-12-24 国立大学法人京都大学 Method for making seafood suitable food material and production method of food material made from seafood
JP2021019502A (en) * 2019-07-24 2021-02-18 G−8 International Trading 株式会社 Production method of meat dismantled residual soup

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889286B2 (en) * 2005-11-18 2012-03-07 日本ハム株式会社 Low molecular weight protein and feed material or food material containing the same
EP2342347A1 (en) * 2008-09-23 2011-07-13 Livefuels, Inc Systems and methods for producing biofuels from algae
WO2010121094A1 (en) 2009-04-17 2010-10-21 Livefuels. Inc. Systems and methods for culturing algae with bivalves
US20120284165A1 (en) * 2011-05-06 2012-11-08 LiveFuels, Inc. Method for removing carbon dioxide from ocean water and quantifying the carbon dioxide so removed
US9487716B2 (en) 2011-05-06 2016-11-08 LiveFuels, Inc. Sourcing phosphorus and other nutrients from the ocean via ocean thermal energy conversion systems
CN108300565A (en) * 2017-12-20 2018-07-20 湖北工业大学 A method of it is mixed fatty acid extracted from the wet algal gel of microalgae using subcritical water

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086099A (en) * 2000-09-12 2002-03-26 Sadaaki Murakami Method and apparatus for treating organism-origin organic waste
JP2002102897A (en) * 2000-09-28 2002-04-09 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic food waste such as waste yeast or wheat stained less
US7022863B2 (en) 2001-07-19 2006-04-04 Ajinomoto Co., Inc. Production method of pyrrolidone carboxylic acid and salt thereof
US7736510B2 (en) 2002-10-22 2010-06-15 Osaka Industrial Promotion Organization Method for producing methane gas
JP4590613B2 (en) * 2002-10-22 2010-12-01 財団法人大阪産業振興機構 Method for producing methane gas
JPWO2004037731A1 (en) * 2002-10-22 2006-02-23 財団法人大阪産業振興機構 Methane gas manufacturing method
WO2004037731A1 (en) * 2002-10-22 2004-05-06 Osaka Industrial Promotion Organization Method for producing methane gas
JP2004262899A (en) * 2003-03-04 2004-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for recovering amino acid
EP1778826A4 (en) * 2004-07-23 2010-09-08 David Kenneth Pinches Process and apparatus for treating waste material incorporating lipid containing material to recover the lipid
JP2006213641A (en) * 2005-02-03 2006-08-17 Osaka Industrial Promotion Organization Method for insolubilizing protein, method for producing protein-derived resin, protein-derived resin, and protein-derived biodegradable plastic
JP4613326B2 (en) * 2005-02-03 2011-01-19 財団法人大阪産業振興機構 Protein insolubilization method, protein-derived resin production method, protein-derived resin and biodegradable plastic
JP2006212617A (en) * 2005-02-04 2006-08-17 Hiroyuki Yoshida Separation and recovery method of phosphoric acid, organic acid, and amino acid, and treatment method of organic materials
US7829740B2 (en) 2005-06-29 2010-11-09 Heiji Enomoto Process for production of lactic acid and equipment for the production
JP2007090289A (en) * 2005-09-30 2007-04-12 Onomori:Kk Method and apparatus for extracting effective component from food waste and method and apparatus for reducing volume of waste
JP2008222570A (en) * 2007-03-08 2008-09-25 Osaka Prefecture Univ Method for producing amino acid or organic acid
CN102307840A (en) * 2009-02-12 2012-01-04 株式会社日立工业设备技术 Reaction process utilizing critical
CN103627759A (en) * 2013-09-12 2014-03-12 郑州市中食农产品加工研究院 Method for extracting and preparing active ingredients of fish roes
JP2015231345A (en) * 2014-06-09 2015-12-24 国立大学法人京都大学 Method for making seafood suitable food material and production method of food material made from seafood
CN104971935A (en) * 2015-07-14 2015-10-14 厦门康浩科技有限公司 Technological method for innocent treatment of animals dying from diseases through subcritical water
JP2021019502A (en) * 2019-07-24 2021-02-18 G−8 International Trading 株式会社 Production method of meat dismantled residual soup

Also Published As

Publication number Publication date
JP3644842B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JPH11342379A (en) Production of organic acid from organic waste
Rogalinski et al. Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis
Quitain et al. Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes
Kang et al. Optimization of amino acids production from waste fish entrails by hydrolysis in sub and supercritical water
Tavakoli et al. Conversion of scallop viscera wastes to valuable compounds using sub-critical water
Daimon et al. Development of marine waste recycling technologies using sub-and supercritical water
JPS58152498A (en) Production of low-molecular peptide mixture
Saetia et al. Evaporation cycle experiments—a simulation of salt-induced peptide synthesis under possible prebiotic conditions
JP2006217876A (en) Method for producing gelatin or collagen peptide derived from fish scale
FR2559773A1 (en) Process for the production of alpha -L-aspartyl-L-phenylalanine methyl ester or its halohydrate
FR2483187A1 (en) TROPHIC AGENT BASED ON OLIGOPEPTIDES
US4240904A (en) Process for biological purification of waste water
Kang et al. Behavior of hydrothermal decomposition of silk fibroin to amino acids in near-critical water
SU1836326A3 (en) Method for separating lactic acid from aqueous medium containing this acid
JP3554821B2 (en) Method for synthesizing taurine from protein-containing substance using high-temperature high-pressure water
JP2003252896A (en) Method of synthesis for cyclic peptide utilizing high- temperature and high-pressure water
JP2005210944A (en) Method for deodorizing/sterilizing oyster extract, and marine product extract and method for producing marine product extract
JP5829844B2 (en) Method for producing water-soluble elastin peptide
EP4179878A1 (en) Method for processing a protein-rich residue and uses thereof
JP3530927B2 (en) Oligopeptide synthesis method
Seniman et al. Biochemical properties and proximate composition of catfish enzymatic protein hydrolysates made using subtilisin
Lüpke et al. Gas chromatographic evaluation of amino acid epimerisation in the course of gelatin manufacturing and processing
Hui et al. Kinetics of protein extraction from excess sludge by thermal alkaline treatment
JP2004345998A (en) Method for rapidly producing amino acid
JP3530928B2 (en) New oligopeptide synthesis method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees