JPH1134231A - Composite laminated dielectric ceramic part - Google Patents
Composite laminated dielectric ceramic partInfo
- Publication number
- JPH1134231A JPH1134231A JP19812497A JP19812497A JPH1134231A JP H1134231 A JPH1134231 A JP H1134231A JP 19812497 A JP19812497 A JP 19812497A JP 19812497 A JP19812497 A JP 19812497A JP H1134231 A JPH1134231 A JP H1134231A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- conductor
- composite laminated
- composite
- dielectric layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Insulating Materials (AREA)
- Non-Insulated Conductors (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Laminated Bodies (AREA)
- Ceramic Capacitors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は高周波領域で使用さ
れる各種フィルタや共振器などに適用される複合積層誘
電体磁器部品に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite laminated dielectric ceramic component applied to various filters and resonators used in a high frequency range.
【0002】[0002]
【従来の技術】近年、携帯電話、衛星放送など、マイク
ロ波領域の電磁波を利用する通信の進展にともない、端
末機器の小型化への要求がますます強くなっている。端
末機器を小型化するためには、機器を構成する個々の部
品を小型化する必要がある。誘電体磁器はこれらの機器
において、各種フィルタや共振器として組み込まれてい
る。これらの共振デバイスの大きさは同じ共振モードを
利用する場合、使用する誘電体材料の持つ比誘電率(ε
r)の平方根に逆比例するため、小型の共振デバイスを
作製するには、高い比誘電率を有する材料が必要であ
る。また、誘電体磁器用の誘電体材料に求められる他の
特性は、マイクロ波領域で低損失、すなわちQ値が高い
こと、さらに共振周波数の温度係数(τf)が小さいこ
とである。ここでQ値とは、誘電損失tanδの逆数を
いう。2. Description of the Related Art In recent years, with the development of communication using electromagnetic waves in the microwave region such as mobile phones and satellite broadcasting, demands for miniaturization of terminal equipment have been increasing. In order to reduce the size of a terminal device, it is necessary to reduce the size of individual components constituting the device. In these devices, dielectric porcelain is incorporated as various filters and resonators. When using the same resonance mode, the size of these resonance devices is the relative dielectric constant (ε) of the dielectric material used.
Since it is inversely proportional to the square root of r), a material having a high relative dielectric constant is required to produce a small-sized resonant device. Further, other characteristics required for the dielectric material for the dielectric porcelain are a low loss in the microwave region, that is, a high Q value, and a small temperature coefficient (τf) of the resonance frequency. Here, the Q value refers to the reciprocal of the dielectric loss tan δ.
【0003】また、導体と誘電体磁器を積層構造にし、
共振デバイスを小型、高機能化しようとする試みが行な
われている。導体は、マイクロ波のような高周波領域で
使用する場合、導電率が高い必要があるため、Cu,A
g、またはそれらの合金を使用する必要がある。また、
誘電体磁器は積層構造にする場合、導体の金属と同時に
焼成する必要があるため、導体金属が溶解せず、かつ酸
化しない焼成条件で緻密に焼結しなければならない。In addition, a conductor and a dielectric porcelain have a laminated structure,
Attempts have been made to make the resonance device smaller and more sophisticated. When the conductor is used in a high frequency region such as a microwave, the conductor needs to have high conductivity.
g or their alloys. Also,
When the dielectric porcelain has a laminated structure, it must be fired at the same time as the conductor metal, and therefore must be densely sintered under firing conditions in which the conductor metal does not melt and oxidize.
【0004】すなわち、用いる導体金属の融点(Cuの
場合1083℃、Agの場合961℃)以下の低温で、
かつCuを電極に用いる場合は低い酸素分圧での焼成が
必要となる。低温で焼結できるマイクロ波誘電体磁器と
しては、Bi2O3−Nb2O5系が特開平5−74225
号公報に、Bi2O3−CaO−Nb2O5系が特開平5−
242728号公報に、Bi2O3−CaO−ZnO−C
uO−Nb2O5系が特開平6−196020号公報に提
案されている。現在これらの誘電体磁器を用い、銀を導
体とするストリップライン内蔵の小型積層共振デバイス
が実現され、携帯電話の高周波共振デバイスとして用い
られている。That is, at a low temperature below the melting point (1083 ° C. for Cu, 961 ° C. for Ag) of the conductive metal used,
Further, when Cu is used for the electrode, firing at a low oxygen partial pressure is required. The microwave dielectric ceramic that can be sintered at a low temperature, Bi 2 O 3 -Nb 2 O 5 system Hei 5-74225
In JP, Bi 2 O 3 -CaO-Nb 2 O 5 system Hei 5-
No. 242728 discloses Bi 2 O 3 —CaO—ZnO—C.
uO-Nb 2 O 5 system is proposed in JP-A-6-196020. At present, using these dielectric porcelains, a small laminated resonance device with a built-in strip line using silver as a conductor has been realized and used as a high-frequency resonance device for mobile phones.
【0005】ところで携帯電話の送受信システムは、世
界はともかく日本国内においても様々なシステムが存在
する。近年、一つの端末で複数のシステムを送受信でき
る携帯電話が開発されつつある。この場合、それぞれの
システムで使用する送受信周波数が異なるため、高周波
共振デハイスの数が必然的に増え、携帯端末の体積、重
量が大きくなってしまう。そこで、1つのデバイスで複
数の送受信周波数を扱うことができる、小型の複合高周
波共振デバイスが求められている。[0005] By the way, there are various transmission / reception systems for portable telephones in Japan regardless of the world. In recent years, mobile phones capable of transmitting and receiving a plurality of systems with one terminal have been developed. In this case, since the transmission and reception frequencies used in each system are different, the number of high-frequency resonance heights inevitably increases, and the volume and weight of the mobile terminal increase. Therefore, there is a need for a small composite high-frequency resonance device that can handle a plurality of transmission and reception frequencies with one device.
【0006】[0006]
【発明が解決しようとする課題】ところが、単体の誘電
体に複数の周波数に対応する積層共振デバイスを形成す
ると、共振周波数は誘電体の比誘電率とストリップライ
ンの長さと形状で決定されるため、対応可能な共振周波
数は限られたものとなる。However, when a laminated resonance device corresponding to a plurality of frequencies is formed on a single dielectric, the resonance frequency is determined by the relative permittivity of the dielectric and the length and shape of the strip line. However, the available resonance frequencies are limited.
【0007】そこで、比誘電率の異なる誘電体層を複数
積層し、それぞれの層にストリップラインを形成すれ
ば、1つのデバイスで広範囲にわたる複数の共振周波数
を有する小型の高周波共振デバイスを作製することがで
きる。Therefore, by laminating a plurality of dielectric layers having different relative dielectric constants and forming a strip line on each layer, a small high-frequency resonance device having a plurality of resonance frequencies over a wide range can be manufactured by one device. Can be.
【0008】しかし、一般的に、異なる組成系の誘電体
磁器を積層し焼成した場合、それぞれの焼成収縮挙動や
熱膨張率が大きく異なるため、焼成過程において層間剥
離や反り、クラック等の欠陥が発生しやすい。したがっ
て、それぞれの層を形成する誘電体磁器は同じ組成系列
であることが望ましい。すなわち、同じ組成系列であり
ながら、組成比率の違いによって比誘電率を大きく変化
させることができる誘電体磁器が望ましい。However, in general, when dielectric ceramics having different compositions are stacked and fired, the firing shrinkage behavior and the coefficient of thermal expansion are greatly different from each other, so that defects such as delamination, warpage, and cracks occur during the firing process. Likely to happen. Therefore, it is desirable that the dielectric ceramics forming the respective layers have the same composition series. That is, it is desirable to use a dielectric porcelain in which the relative permittivity can be largely changed by a difference in the composition ratio even though the composition series is the same.
【0009】また、高性能の複合高周波共振デバイスを
実現するためには、それぞれの層の誘電体磁器が、優れ
た電気的特性、すなわち大きなQ値、小さいτfを有し
ていることが必要である。Further, in order to realize a high-performance composite high-frequency resonance device, it is necessary that the dielectric ceramic of each layer has excellent electric characteristics, that is, a large Q value and a small τf. is there.
【0010】また、導電率の高い銀あるいは銅を主成分
とする導体層と同時焼成するためには、導体金属が溶解
せず、かつ酸化しない焼成条件で緻密に焼結しなければ
ならない。特に純度100%の銀を電極に用いる場合
は、銀の融点が961℃であることから950℃以下の
低温で、また銅を電極に用いる場合は低い酸素分圧での
焼成が必要となる。Further, in order to simultaneously sinter with a conductor layer having silver or copper as a main component having high conductivity, it is necessary to sinter densely under sintering conditions in which the conductor metal is not dissolved and oxidized. In particular, when silver having a purity of 100% is used for an electrode, the melting point of silver is 961 ° C., so that firing must be performed at a low temperature of 950 ° C. or less, and when copper is used for an electrode, firing must be performed at a low oxygen partial pressure.
【0011】本発明は、複数の周波数を扱う複合高周波
積層デバイスを実現できる、小型、高性能、高信頼性の
高周波用複合積層磁器部品を提供することを目的として
いる。An object of the present invention is to provide a compact, high-performance, high-reliability composite laminated porcelain component for high frequencies that can realize a composite high-frequency laminated device that handles a plurality of frequencies.
【0012】[0012]
【課題を解決するための手段】本発明は、酸化ビスマ
ス、酸化ニオブを主成分とする誘電体磁器組成物から構
成され、かつ比誘電率の異なる2層以上の誘電体層と、
銀あるいは銅を主成分とする導体層を積層した複合積層
誘電体磁器部品である。この複合積層誘電体磁器部品を
構成する誘電体磁器組成物は、構成元素および組成比率
を変化させることにより、Qおよびτfを大きく損なう
ことなく比誘電率εrを比較的容易に変化させることが
可能である。したがって、比誘電率が異なるそれぞれの
誘電体層に共振回路を形成すれば、1つの素子で広範囲
な周波数帯域に対応する複合高周波積層デバイスが実現
できる。またこの誘電体磁器組成物は組成比率の違いに
よる収縮挙動、熱膨張係数の差異が小さく、一体焼成に
よる層間剥離や反り、クラック等の欠陥の発生を抑える
ことができる。According to the present invention, there is provided a dielectric ceramic composition comprising bismuth oxide and niobium oxide as main components and having at least two dielectric layers having different relative dielectric constants.
It is a composite laminated dielectric porcelain part in which conductor layers mainly composed of silver or copper are laminated. By changing the constituent elements and the composition ratio of the dielectric ceramic composition constituting the composite laminated dielectric ceramic part, the relative dielectric constant εr can be relatively easily changed without significantly impairing Q and τf. It is. Therefore, if a resonance circuit is formed in each of the dielectric layers having different relative dielectric constants, a composite high-frequency multilayer device that can handle a wide frequency band can be realized with one element. In addition, this dielectric ceramic composition has a small difference in shrinkage behavior and thermal expansion coefficient due to a difference in composition ratio, and can suppress generation of defects such as delamination, warpage, and cracks due to integral firing.
【0013】[0013]
【発明の実施の形態】本発明の請求項1に記載の発明
は、酸化ビスマス、酸化ニオブを主成分とする誘電体磁
器組成物から構成され、かつ比誘電率の異なる2層以上
の誘電体層と、銀あるいは銅を主成分とする導体層を積
層して構成したものである。この構成により、比誘電率
εrの異なる誘電体層を2層以上と、導電率の高い銀を
主成分とする導体層を含む複合積層誘電体磁器部品を、
一体焼成で層間剥離や各誘電体層にクラック等の欠陥を
発生することなく得ることができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a dielectric ceramic composition composed of a dielectric ceramic composition containing bismuth oxide and niobium oxide as main components and having different dielectric constants. And a conductor layer mainly composed of silver or copper. With this configuration, a composite laminated dielectric porcelain component including two or more dielectric layers having different relative dielectric constants εr and a conductive layer containing silver having high conductivity as a main component is provided.
It can be obtained without delamination or defects such as cracks in each dielectric layer by integral firing.
【0014】本発明の請求項2に記載の発明は、全ての
誘電体層を構成する誘電体磁器組成物の比誘電率εrが
35以上、Qf積が1000GHz以上、共振周波数の温
度係数の絶対値|τf|が50ppm/℃以下と限定し
たものであり、これにより小型で高性能の複合積層磁器
部品を得ることができる。According to a second aspect of the present invention, the dielectric ceramic composition constituting all the dielectric layers has a relative dielectric constant εr of 35 or more, a Qf product of 1000 GHz or more, and an absolute temperature coefficient of the resonance frequency. The value | τf | is limited to 50 ppm / ° C. or less, whereby a small-sized and high-performance composite laminated ceramic part can be obtained.
【0015】以下、本発明の一実施の形態における複合
積層磁器部品について詳細に説明する。Hereinafter, a composite laminated ceramic component according to an embodiment of the present invention will be described in detail.
【0016】出発原料には化学的に高純度であるBi2
O3、Nb2O5、CaCO3、ZnO、V2O5およびCu
Oを用いた。原料の純度補正を行なったのち、組成を
(表1)の組成の欄に示した種々の値になるように秤量
した。なお添加物のV、Cu成分の添加量は、それぞれ
主成分のBi、Nb、Ca、Zn成分に対するモル比V
/(Bi+Nb+Ca+Zn)、Cu/(Bi+Nb+
Ca+Zn)で表している。The starting material is Bi 2 which is chemically high in purity.
O 3 , Nb 2 O 5 , CaCO 3 , ZnO, V 2 O 5 and Cu
O was used. After the purity of the raw material was corrected, the composition was weighed so as to have various values shown in the column of composition in (Table 1). The addition amounts of the additive V and Cu components are determined by the molar ratio V to the main component Bi, Nb, Ca and Zn components, respectively.
/ (Bi + Nb + Ca + Zn), Cu / (Bi + Nb +
Ca + Zn).
【0017】[0017]
【表1】 [Table 1]
【0018】これらの粉体を、ポリエチレン製のボール
ミルに入れ、安定化ジルコニアの玉石と純水を加え、1
7時間混合した。混合後、スラリーを乾燥し、アルミナ
製の坩堝に入れ、750〜950℃で2〜5時間仮焼し
た。仮焼体をライカイ機で解砕した後、前述したボール
ミルで17時間粉砕し、乾燥させ原料粉体とした。この
粉体にバインダとしてポリビニルアルコールの5%水溶
液を6重量%加えて混合後、32メッシュのふるいを通
して造粒し、100MPaで直径13mm、厚み約5mmの
円柱状にプレス成形した。成形体を600℃で2時間加
熱してバインダを焼却後、マグネシアの容器に入れ、蓋
をし、空気中850〜1100℃で2〜4時間保持して
焼成した。密度が最高になる温度で焼成した焼結体につ
いてマイクロ波での誘電特性を測定した。共振周波数と
Q値は誘電体共振器法により求めた。焼結体の寸法と共
振周波数より比誘電率εrを算出した。共振周波数は、
2〜5GHzであった。また−25℃、20℃及び85℃
における共振周波数を測定し、最小二乗法により、その
温度係数τfを算出した。またそれぞれの焼結体の熱膨
張係数αをTMAにより測定した。結果を(表2)に示
す。These powders are put into a polyethylene ball mill, and a ball of stabilized zirconia and pure water are added.
Mix for 7 hours. After mixing, the slurry was dried, placed in an alumina crucible, and calcined at 750 to 950 ° C for 2 to 5 hours. After the calcined body was crushed by a raikai machine, it was crushed by the above-mentioned ball mill for 17 hours and dried to obtain a raw material powder. 6% by weight of a 5% aqueous solution of polyvinyl alcohol as a binder was added to the powder, mixed, and then granulated through a 32 mesh sieve, and pressed at 100 MPa into a column having a diameter of 13 mm and a thickness of about 5 mm. The molded body was heated at 600 ° C. for 2 hours to incinerate the binder, placed in a magnesia container, covered, and fired at 850 to 1100 ° C. in air for 2 to 4 hours. The dielectric properties of the sintered body fired at the temperature at which the density was maximized were measured by microwave. The resonance frequency and the Q value were obtained by a dielectric resonator method. The relative permittivity εr was calculated from the dimensions of the sintered body and the resonance frequency. The resonance frequency is
It was 2-5 GHz. -25 ° C, 20 ° C and 85 ° C
Was measured, and its temperature coefficient τf was calculated by the least squares method. The coefficient of thermal expansion α of each sintered body was measured by TMA. The results are shown in (Table 2).
【0019】[0019]
【表2】 [Table 2]
【0020】(表2)に示したように、いずれの誘電体
磁器組成物も925℃以下の低温で緻密に焼結し、測定
周波数fとQ値の積であるfQ値が1800以上、かつ
τfの絶対値が30ppm/℃以下と優れた特性を示
し、比誘電率は組成比率により43〜101の間で変化
する。また熱膨張係数は組成の違いによる差異は小さ
く、いずれも76〜92×10-7/℃であった。なお窒
素中焼成においても、焼成温度および特性にほとんど変
化は見られなかった。As shown in Table 2, each of the dielectric ceramic compositions is densely sintered at a low temperature of 925 ° C. or less, and the product of the measurement frequency f and the Q value is 1800 or more, and It shows excellent characteristics when the absolute value of τf is 30 ppm / ° C. or less, and the relative dielectric constant varies between 43 and 101 depending on the composition ratio. In addition, the coefficient of thermal expansion was small depending on the difference in composition, and in each case was 76 to 92 × 10 −7 / ° C. It should be noted that there was almost no change in firing temperature and characteristics even in firing in nitrogen.
【0021】次に(表1)から数点の組成を選択し、
(表3)に示した組み合わせで複合積層体を作製し評価
した。Next, several compositions are selected from (Table 1),
Composite laminates were prepared in the combinations shown in Table 3 and evaluated.
【0022】[0022]
【表3】 [Table 3]
【0023】複合積層型のマイクロ波デバイスとして、
2層の組成比率の異なる誘電体層1、2にストリップラ
イン導体とシールド導体を内蔵した構造をもつ誘電体共
振器を作製した。シールド導体は、共振器の上下端部だ
けでなく、2層の誘電体層1、2の界面にも設けた。そ
の断面図を図1に示す。以下その作製法について述べ
る。As a composite laminated microwave device,
A dielectric resonator having a structure in which a stripline conductor and a shield conductor were built in two dielectric layers 1 and 2 having different composition ratios was manufactured. The shield conductor was provided not only at the upper and lower ends of the resonator but also at the interface between the two dielectric layers 1 and 2. FIG. 1 shows a cross-sectional view thereof. Hereinafter, the manufacturing method will be described.
【0024】まず(表2)に示したそれぞれの組成物の
原料粉体に有機バインダとしてポリビニルブチラール樹
脂、可塑剤としてジブチルフタレート、溶剤として酢酸
ブチルを加えボールミルで混合して得たスラリーを、ド
クターブレード法によりグリーンシート化した。導体金
属はビヒクルと混練しペースト化した。なお導体がCu
のときはCuOペーストを用いた。図2に素子の導体印
刷パターンを示す。なお図2(a)の3のストリップラ
インの長さは13mmである。First, a slurry obtained by adding a polyvinyl butyral resin as an organic binder, dibutyl phthalate as a plasticizer, and butyl acetate as a solvent to the raw material powders of the respective compositions shown in (Table 2), and mixing the resulting mixture with a ball mill, was used as a doctor. Green sheets were formed by the blade method. The conductive metal was kneaded with the vehicle to form a paste. The conductor is Cu
In this case, a CuO paste was used. FIG. 2 shows a conductor printing pattern of the element. The length of the strip line 3 in FIG. 2A is 13 mm.
【0025】次に印刷・積層工程を説明する。まず組成
Aのグリーンシートを所望の厚みに積層して、図2
(a)のシールド導体パターン3を、AgあるいはCu
Oペーストにより周知のスクリーン印刷法で印刷し乾燥
する。さらに、その上面に組成Aのシートを複数枚積層
し、次は図2(b)のストリップライン導体パターン4
を印刷する。Next, the printing / lamination process will be described. First, a green sheet of composition A is laminated to a desired thickness, and FIG.
The shield conductor pattern 3 of FIG.
Printing is performed by a well-known screen printing method using an O paste and drying is performed. Further, a plurality of sheets of the composition A are laminated on the upper surface, and next, the strip line conductor pattern 4 shown in FIG.
Print.
【0026】同様の工程で、組成Aのシート、シールド
導体3、組成Bのシート、ストリップライン導体4、組
成Bのシート、シールド導体3、組成Bのシートの順で
積層・印刷し、図1の断面図に示すような積層体を作製
した。80℃で熱圧着し、個々の素子に切断後、大気中
400℃で熱処理して有機物を飛散させた。CuOペー
ストを用いた場合、水素中で熱処理してCu金属に還元
した後窒素中で焼成した。Ag導体の場合、空気中で焼
成した。そして外部電極5、6として市販のCuペース
トを窒素中で600℃で焼き付け、複合積層共振器を得
た。In the same process, the sheet of composition A, the shield conductor 3, the sheet of composition B, the stripline conductor 4, the sheet of composition B, the shield conductor 3, and the sheet of composition B are laminated and printed in this order, and FIG. A laminated body as shown in the cross-sectional view of was prepared. After thermocompression bonding at 80 ° C. and cutting into individual elements, heat treatment was performed at 400 ° C. in the air to disperse organic substances. When a CuO paste was used, it was heat-treated in hydrogen, reduced to Cu metal, and fired in nitrogen. In the case of an Ag conductor, it was fired in air. Then, a commercially available Cu paste was baked at 600 ° C. in nitrogen as the external electrodes 5 and 6 to obtain a composite laminated resonator.
【0027】それぞれの誘電体層に形成したストリップ
ライン導体4に、チップ型積層コンデンサを外部電極6
を介して直列に接続し、インピーダンスが50Ωとなる
よう整合した後、ネットワークアナライザーによりそれ
ぞれの誘電体層に形成した共振器の共振周波数とQ値と
温度係数τfを測定した結果を(表4)に示す。なおス
トリップライン長はいずれも約9.0mm、各誘電体層の
シールド間の長さはいずれも約1.0mmであった。A chip-type multilayer capacitor is connected to the strip electrode conductor 4 formed on each dielectric layer by an external electrode 6.
After connecting them in series via a cable and matching them so that the impedance becomes 50Ω, the results of measuring the resonance frequency, the Q value, and the temperature coefficient τf of the resonators formed on the respective dielectric layers by a network analyzer are shown in Table 4. Shown in The length of the strip line was about 9.0 mm, and the length between the shields of each dielectric layer was about 1.0 mm.
【0028】[0028]
【表4】 [Table 4]
【0029】(表4)に示したように、共振周波数はそ
れぞれの誘電体層の比誘電率に対応したものとなる。例
えば試料番号b−1の各層の共振周波数は、A層(εr
=43)で1.28GHz、B層(εr=43)で0.8
4GHzとなった。これらの測定値はストリップライン長
と比誘電率から計算される共振周波数の計算値(f=c
/(4×L×√εr)、f:共振周波数、L:ストリッ
プライン長、εr:比誘電率、c:光速)とほぼ合致し
た。また導体層に銀、銅のいずれの導体を用いてもQ値
は100以上と高く、優れたものであった。またいずれ
の組み合わせにおいても、それぞれの誘電体層の熱膨張
係数や焼結収縮挙動の差異によって発生する可能性があ
る界面剥離や反り、クラック等の欠陥は確認されなかっ
た。As shown in (Table 4), the resonance frequency corresponds to the relative dielectric constant of each dielectric layer. For example, the resonance frequency of each layer of the sample number b-1 is the A layer (εr
= 43) and 0.8 in the B layer (εr = 43).
It became 4 GHz. These measured values are calculated values of the resonance frequency calculated from the strip line length and the relative permittivity (f = c
/ (4 × L × √εr), f: resonance frequency, L: strip line length, εr: relative permittivity, c: speed of light). The Q value was as high as 100 or more, which was excellent, regardless of whether silver or copper was used for the conductor layer. In each of the combinations, defects such as interfacial peeling, warpage, and cracks, which may occur due to differences in the thermal expansion coefficient and sintering shrinkage behavior of each dielectric layer, were not confirmed.
【0030】したがって本発明の複合積層誘電体磁器部
品は、複数の送受信周波数を扱うことができる複合高周
波共振デバイスとして用いることができる。なお、この
複合積層誘電体磁器部品は、上記目的以外にも応用が可
能であることは言うまでもない。Therefore, the composite laminated dielectric porcelain component of the present invention can be used as a composite high-frequency resonance device that can handle a plurality of transmission / reception frequencies. It is needless to say that the composite laminated dielectric porcelain part can be applied for purposes other than the above.
【0031】[0031]
【発明の効果】以上述べたことから明らかなように本発
明は、一体焼成により層間剥離や反り、クラック等が発
生することなく、かつ、全ての誘電体層においてQが大
きく、小さいτfを持つ複合積層誘電体磁器部品であ
り、小型、高性能の複合高周波共振デバイスを作製する
ことが可能である。As is apparent from the above description, the present invention does not cause delamination, warpage, cracks or the like by integral firing, and has a large Q and a small τf in all the dielectric layers. It is a composite laminated dielectric porcelain part, and it is possible to manufacture a small, high-performance composite high-frequency resonance device.
【図1】本発明の一実施の形態における複合積層誘電体
共振器の断面図FIG. 1 is a cross-sectional view of a composite laminated dielectric resonator according to an embodiment of the present invention.
【図2】同共振器の内装導体の印刷パターン図FIG. 2 is a printed pattern diagram of an internal conductor of the resonator.
1 誘電体層A 2 誘電体層B 3 シールド導体 4 ストリップライン導体 5,6 外部電極 DESCRIPTION OF SYMBOLS 1 Dielectric layer A 2 Dielectric layer B 3 Shield conductor 4 Strip line conductor 5, 6 External electrode
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H01P 7/08 H01P 7/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // H01P 7/08 H01P 7/08
Claims (2)
る誘電体磁器組成物から構成され、かつ比誘電率の異な
る2層以上の誘電体層と、銀あるいは銅を主成分とする
導体層を積層して構成されることを特徴とする複合積層
誘電体磁器部品。1. A dielectric ceramic composition comprising bismuth oxide and niobium oxide as main components, two or more dielectric layers having different relative dielectric constants, and a conductor layer mainly containing silver or copper. A composite laminated dielectric porcelain part characterized by being laminated.
成物の比誘電率εrが35以上、Qf積が1000GHz
以上、共振周波数の温度係数の絶対値|τf|が50p
pm/℃以下であることを特徴とする請求項1の複合積
層誘電体磁器部品。2. The dielectric ceramic composition constituting all the dielectric layers has a relative dielectric constant εr of 35 or more and a Qf product of 1000 GHz.
As described above, the absolute value of the temperature coefficient of the resonance frequency | τf |
2. The composite laminated dielectric ceramic component according to claim 1, wherein the component is not more than pm / ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19812497A JPH1134231A (en) | 1997-07-24 | 1997-07-24 | Composite laminated dielectric ceramic part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19812497A JPH1134231A (en) | 1997-07-24 | 1997-07-24 | Composite laminated dielectric ceramic part |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1134231A true JPH1134231A (en) | 1999-02-09 |
Family
ID=16385860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19812497A Pending JPH1134231A (en) | 1997-07-24 | 1997-07-24 | Composite laminated dielectric ceramic part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1134231A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002052591A3 (en) * | 2000-12-22 | 2007-11-15 | Epcos Ag | Electric multilayer component and arrangement with this component |
-
1997
- 1997-07-24 JP JP19812497A patent/JPH1134231A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002052591A3 (en) * | 2000-12-22 | 2007-11-15 | Epcos Ag | Electric multilayer component and arrangement with this component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0926107B1 (en) | Dielectric ceramic composition and ceramic electronic parts using the same | |
JP3223199B2 (en) | Method of manufacturing multilayer ceramic component and multilayer ceramic component | |
EP1978004A1 (en) | Dielectric ceramic composition, complex electronic device and multilayer ceramic capacitor | |
JPH11310455A (en) | Dielectric porcelain composition and ceramic electronic part using the same | |
JP2798105B2 (en) | Dielectric ceramic composition and laminated microwave device | |
JP2007250728A (en) | Ceramic laminated device and its fabrication process | |
EP1505043A2 (en) | Dielectric ceramic composition and ceramic electronic component employing the same | |
JP2003063861A (en) | Composite laminated ceramic electronic part and method for producing the same | |
JPH1134231A (en) | Composite laminated dielectric ceramic part | |
JP3375450B2 (en) | Dielectric porcelain composition | |
EP0558319B1 (en) | Dielectric ceramic compositions and microwave devices using the same | |
JP3329014B2 (en) | Dielectric porcelain composition | |
JP3978689B2 (en) | Low-temperature fired porcelain composition and microwave component using the same | |
JP2798106B2 (en) | Dielectric porcelain composition, method for producing laminate using the dielectric porcelain composition, and laminate of dielectric porcelain composition | |
JP4174668B2 (en) | DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT | |
JPH11209172A (en) | Dielectric porcelain composition and composite dielectric porcelain composition | |
JP3193157B2 (en) | Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them | |
JP3321980B2 (en) | Dielectric porcelain composition and laminated dielectric component using this dielectric porcelain composition | |
JP2003306377A (en) | Dielectric porcelain composition and ceramic electronic component | |
JP2003026472A (en) | Method for producing multilayer ceramic electronic parts, multilayer ceramic electronic parts and raw composite multilayer body for producing multilayer ceramic electronic parts | |
JP2837016B2 (en) | Laminated microwave device and method of manufacturing the same | |
JP3597244B2 (en) | Dielectric porcelain composition | |
JPH0757540A (en) | Dielectric porcelain composition and laminated dielectric part therewith | |
JPH06237106A (en) | Lamination type element for microwave | |
JPH0574224A (en) | Dielectric porcelain composition and microwave electronic device |