JPH0757540A - Dielectric porcelain composition and laminated dielectric part therewith - Google Patents

Dielectric porcelain composition and laminated dielectric part therewith

Info

Publication number
JPH0757540A
JPH0757540A JP5162130A JP16213093A JPH0757540A JP H0757540 A JPH0757540 A JP H0757540A JP 5162130 A JP5162130 A JP 5162130A JP 16213093 A JP16213093 A JP 16213093A JP H0757540 A JPH0757540 A JP H0757540A
Authority
JP
Japan
Prior art keywords
dielectric
laminated
value
laminated body
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5162130A
Other languages
Japanese (ja)
Inventor
Yuichi Yamada
裕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5162130A priority Critical patent/JPH0757540A/en
Publication of JPH0757540A publication Critical patent/JPH0757540A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a laminated dielectric part having a high dielectric constant and a high no-load Q value by overlapping multiple sheet dielectric porcelain compositions made of oxides of Bi, Ca, Mg, Nb at specific ratios and multiple internal conductors in turn, and providing input/output electrodes on this laminated body. CONSTITUTION:This dielectric porcelain composition is expressed by the formula xBiO3/2-y(Ca1-wMgw)O-zNbO5/2, where 0.44<=x<=0.55, 0.16<=y<=0.24, 0.29<=z<=0.36, 0<=w<=1.0, and x+y+z=1.0. Multiple sheet dielectric substances made of this dielectric porcelain composition and multiple internal conductors are overlapped in turn to form a laminated body constituted of dielectric layers 1 and internal conductor layers 2, 3, 4, and input/output electrodes 5 are provided on this laminated body. A laminated dielectric part is obtained which has the relative dielectric constant of about 50 or above, the no-load Q value of about 300 or above, and the absolute value of the temperature coefficient of the resonance frequency of about 100ppm/ deg.C or below and can be baked at about 1050 deg.C or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波やミリ波等
の高周波領域で使用される誘電体磁器組成物とそれを用
いた積層型誘電体部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition used in a high frequency region such as a microwave and a millimeter wave, and a laminated dielectric component using the same.

【0002】[0002]

【従来の技術】近年、自動車電話、携帯電話、衛星放送
等、マイクロ波領域の電磁波を利用する通信の増加に伴
い、機器や機器を構成する例えばフィルタ素子や共振器
等の誘電体部品の小型化が求められている。
2. Description of the Related Art In recent years, along with the increase in communication using electromagnetic waves in the microwave region such as car phones, mobile phones, satellite broadcasting, etc., miniaturization of dielectric parts such as filter elements and resonators that compose the equipment Is required.

【0003】このような誘電体部品を小型化するには比
誘電率が高く、マイクロ波領域で低損失であること、す
なわち無負荷Q値が高いこと、及び共振周波数の温度変
化が小さいこと、すなわち誘電率の温度変化が小さいこ
とが重要となる。
In order to miniaturize such a dielectric component, the relative permittivity is high and the loss is low in the microwave region, that is, the no-load Q value is high and the temperature change of the resonance frequency is small. That is, it is important that the change in dielectric constant with temperature is small.

【0004】一方、導体と誘電体磁器組成物よりなるシ
ート状誘電体を積層構造にすることによって、共振器等
の部品を小型化、高機能化しようとする試みが行われて
いる。しかし、マイクロ波のような高周波領域で使用す
る場合、高い導電率を持つ導体が必要で、Cu,Au,
Ag、あるいはそれらの合金を使用する必要がある。し
かも、積層構造にする場合には、誘電体材料と導体の金
属とを同時に焼成する必要があるため、導体金属が融解
せず、かつ酸化しない焼成条件、すなわち1050℃以
下の低温で緻密に焼結する誘電体磁器組成物が必要とな
る。さらに、Cuを電極に用いる場合は低い酸素分圧で
緻密に焼成することも必要となる。
On the other hand, attempts have been made to miniaturize and enhance the functions of parts such as resonators by forming a laminated structure of a sheet-shaped dielectric material composed of a conductor and a dielectric ceramic composition. However, when used in a high frequency region such as microwave, a conductor having high conductivity is required, and Cu, Au,
It is necessary to use Ag or alloys thereof. Moreover, in the case of forming a laminated structure, it is necessary to fire the dielectric material and the conductor metal at the same time, so that the conductor metal is not melted and is not oxidized, that is, the firing is performed densely at a low temperature of 1050 ° C. or less. A dielectric porcelain composition to be bound is required. Furthermore, when Cu is used for the electrode, it is also necessary to sinter densely with a low oxygen partial pressure.

【0005】無負荷Q値の高い材料としては、BaO−
TiO2−Sm23系が特開昭57−15309号公報
に開示されている。この材料は80程度の比誘電率と、
2〜4GHzで2000〜3000程度の高い無負荷Q
値、及び−400〜400ppm/℃程度の共振周波数の
温度係数を有している。また、低温で焼成できる材料と
してはBi23−ZnO−Nb25系が特開平4−28
5046号公報に開示されている。この材料は850〜
1000℃で焼結し、80以上の比誘電率と、2〜4G
Hzで100以上の無負荷Q値、及び−150ppm/℃以
上の共振周波数の温度係数を有している。
As a material having a high unloaded Q value, BaO--
The TiO 2 —Sm 2 O 3 system is disclosed in JP-A-57-15309. This material has a relative dielectric constant of about 80,
High unloaded Q of about 2000 to 3000 at 2 to 4 GHz
And a temperature coefficient of the resonance frequency of about −400 to 400 ppm / ° C. Further, as a material that can be fired at a low temperature, Bi 2 O 3 —ZnO—Nb 2 O 5 system is disclosed in JP-A-4-28.
It is disclosed in Japanese Patent No. 5046. This material is 850
Sintered at 1000 ℃, relative dielectric constant of 80 or more, 2-4G
It has an unloaded Q value of 100 or more at Hz and a temperature coefficient of resonance frequency of -150 ppm / ° C or more.

【0006】[0006]

【発明が解決しようとする課題】上記従来の材料のう
ち、BaO−TiO2−Sm23系材料は焼成温度が1
300℃程度と高いため高導電率電極と同時焼成ができ
ないという問題点を有していた。また、Bi23−Zn
O−Nb25系材料は無負荷Q値が低いという問題があ
った。
Among the above conventional materials [0005], the BaO-TiO 2 -Sm 2 O 3 based material firing temperature 1
Since it is as high as about 300 ° C., there is a problem that it cannot be co-fired with the high conductivity electrode. In addition, Bi 2 O 3 -Zn
The O—Nb 2 O 5 based material has a problem that the unloaded Q value is low.

【0007】本発明はこのような問題点を解決し、比誘
電率、無負荷Q値が共に高く、共振周波数の温度係数が
小さく、その上低温焼結が可能な誘電体磁器組成物を提
供することを目的とするものである。
The present invention solves such problems and provides a dielectric ceramic composition having a high relative permittivity and a high unloaded Q value, a low temperature coefficient of resonance frequency, and a low temperature sintering property. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明の誘電体磁器組成物は(化3)で表されるも
のを用いる。
In order to achieve this object, the dielectric ceramic composition of the present invention is represented by (Chemical Formula 3).

【0009】[0009]

【化3】 [Chemical 3]

【0010】[0010]

【作用】上記構成により、比誘電率が50以上で、無負
荷Q値が300以上、そして共振周波数の温度係数の絶
対値が100ppm/℃以下で、その上1050℃以下で
焼成可能となる。
With the above structure, the relative permittivity is 50 or more, the unloaded Q value is 300 or more, and the absolute value of the temperature coefficient of the resonance frequency is 100 ppm / ° C. or less, and further firing can be performed at 1050 ° C. or less.

【0011】[0011]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について詳細
に説明する。
(Embodiment 1) Hereinafter, the first embodiment of the present invention will be described in detail.

【0012】出発原料として高純度のBi23、CaC
3、Nb23及びMgCO3を用い、(表1)に示した
組成になるように秤量した。これらの粉末を、ポリエチ
レン製のボールミルに入れ、安定化ジルコニア製の玉石
及び純水を加え、5〜20時間湿式混合した。得られた
混合粉を、アルミナ製の容器に入れ700〜850℃で
1〜3時間仮焼した。仮焼粉を前記ボールミルに入れ、
安定化ジルコニア製の玉石及び純水を加え、5〜20時
間湿式で粉砕し、原料粉体とした。この原料粉体に、バ
インダとしてポリビニルアルコールの5%水溶液を5〜
10wt%加えて造粒し、30メッシュのふるいを通し
て整粒した後、100MPaで直径13mm、厚み5〜7
mmの円柱状に成形した。得られた成形体をマグネシア製
の容器に入れ、600〜650℃で1〜3時間加熱して
バインダを焼却した後、850〜1050℃で1〜4時
間焼成して焼結体を得た。得られた焼結体のうち密度が
最高になる温度で焼成した焼結体について両面を研磨
し、マイクロ波での誘電特性を測定した。測定は誘電体
共振法によって行い、比誘電率(以下εrと記す)、無負
荷Q値(以下Q値と記す)、共振周波数の温度係数(以
下τfと記す)を算出した。εr及びQ値の測定におい
て、共振周波数は3〜5GHzであった。τfは−25〜
85℃の範囲で測定した。測定試料は各々5個作製して
特性評価した。
High purity Bi 2 O 3 and CaC as starting materials
O 3 , Nb 2 O 3 and MgCO 3 were used and weighed so as to have the composition shown in (Table 1). These powders were placed in a polyethylene ball mill, stabilized zirconia boulders and pure water were added, and wet-mixed for 5 to 20 hours. The obtained mixed powder was put in an alumina container and calcined at 700 to 850 ° C. for 1 to 3 hours. Put the calcined powder in the ball mill,
Stabilized zirconia boulders and pure water were added and wet-milled for 5 to 20 hours to obtain a raw material powder. To this raw material powder, a 5% aqueous solution of polyvinyl alcohol is added as a binder.
After adding 10 wt% to granulate and sieving through a 30-mesh sieve, the diameter is 13 mm and the thickness is 5 to 7 at 100 MPa.
It was molded into a cylindrical shape of mm. The obtained molded body was placed in a magnesia container, heated at 600 to 650 ° C. for 1 to 3 hours to incinerate the binder, and then fired at 850 to 1050 ° C. for 1 to 4 hours to obtain a sintered body. Of the obtained sintered bodies, both surfaces of the sintered body that was fired at a temperature at which the density was the highest were polished, and the dielectric characteristics with microwaves were measured. The measurement was performed by a dielectric resonance method, and a relative permittivity (hereinafter referred to as ε r ), a no-load Q value (hereinafter referred to as Q value), and a temperature coefficient of resonance frequency (hereinafter referred to as τ f ) were calculated. In the measurement of ε r and Q value, the resonance frequency was 3 to 5 GHz. τ f is -25
It was measured in the range of 85 ° C. Five measurement samples were prepared and the characteristics were evaluated.

【0013】結果の平均値を(表1)に示す。The average values of the results are shown in (Table 1).

【0014】[0014]

【表1】 [Table 1]

【0015】(表1)において、*印を付したものは本
発明の請求の範囲外の比較例である。BiO3/2(x)
が0.55より大きくなるか、またはCa1-wMg
w(y)が0.24より大きくなるか、またはNbO5/2
(z)が0.36より大きくなるとQ値は300より低
下する。また、BiO3/2(x)が0.44より小さく
なるか、またはCa1-wMgw(y)が0.16より小さ
くなるか、またはNbO5/ 2(z)が0.29より小さ
くなるとやはりQ値は300より低下してしまう。この
ような無負荷Q値の低下の原因は、限定される組成範囲
外では無負荷Q値の低い他相が多く生成してくるためと
思われる。またCaの一部をSrで置換することによ
り、焼成温度をさらに低下させることができる。Srは
Caと同じアルカリ土類金属でイオンの性質は似てお
り、置換しても誘電特性にはあまり影響しない。しか
し、SrOはCaOに比べて融点が低く、本組成物系全
体の焼結温度を下げる効果があるものと思われる。この
ような理由で本発明の請求の範囲が限定されるものであ
る。
In Table 1, those marked with * are comparative examples outside the claims of the present invention. BiO 3/2 (x)
Is greater than 0.55, or Ca 1-w Mg
w (y) is greater than 0.24, or NbO 5/2
When (z) is larger than 0.36, the Q value is lower than 300. Further, either BiO 3/2 (x) is less than 0.44, or Ca 1-w Mg or w (y) is less than 0.16, or more NbO 5/2 (z) is 0.29 When it becomes smaller, the Q value also becomes lower than 300. The reason for such a decrease in the unloaded Q value is considered to be that many other phases having a low unloaded Q value are generated outside the limited composition range. Further, by substituting a part of Ca with Sr, the firing temperature can be further lowered. Sr is the same alkaline earth metal as Ca and has similar ionic properties, and even if it is replaced, Sr does not significantly affect the dielectric properties. However, SrO has a lower melting point than CaO, and is considered to have the effect of lowering the sintering temperature of the entire composition system. For this reason, the scope of the present invention is limited.

【0016】以上のことから明らかなように、本実施例
による誘電体磁器組成物は、請求の範囲に含まれる組成
領域内で、1050℃以下の低温で緻密に焼結し、50
以上のεrと、300以上のQ値と絶対値が100ppm/
℃以下のτfという点で優れた特性が得られる。また、
Cuを電極として用いるために窒素中で焼成しても、焼
成温度及び特性にはほとんど変化は見られないものであ
った。
As is clear from the above, the dielectric ceramic composition according to the present embodiment is densely sintered at a low temperature of 1050 ° C. or less within the composition range included in the claims, and
Above ε r , Q value above 300 and absolute value is 100 ppm /
Excellent characteristics are obtained in terms of τ f below ℃. Also,
Since Cu was used as an electrode, even if it was fired in nitrogen, almost no change was observed in firing temperature and characteristics.

【0017】(実施例2)以下、本発明の第2の実施例
について詳細に説明する。
(Second Embodiment) The second embodiment of the present invention will be described in detail below.

【0018】出発原料として高純度のBi23,CaC
3,Nb23,MgCO3及びCuOを用い、(表2)
に示した組成になるように秤量した。焼結体の作製及び
特性評価方法は実施例1と同様の方法により行った。結
果を(表2)に示す。
High-purity Bi 2 O 3 , CaC as a starting material
Using O 3 , Nb 2 O 3 , MgCO 3 and CuO, (Table 2)
The composition was weighed so as to obtain the composition shown in. The method for producing the sintered body and the method for evaluating the characteristics were the same as in Example 1. The results are shown in (Table 2).

【0019】[0019]

【表2】 [Table 2]

【0020】(表2)において、*印を付したものは本
発明の請求の範囲外の比較例である。この(表2)から
明らかなように、本実施例による誘電体磁器組成物は、
Cu成分の添加によって、誘電体磁器のマイクロ波特性
を大きく低下させること無く、焼成温度を下げるという
点で優れた効果が得られる。この原因は、CuがBi等
と低融点化合物を作りやすいため、より低温で焼成が可
能になることによるものと思われる。ただし、Cu成分
の添加とともに徐々にQ値が低下してくるため、Cu/
(Bi+Ca+Mg+Nb)>0.04の組成範囲では
Q値が300未満になってしまう。このような理由で本
発明の請求の範囲が限定されるものである。
In Table 2, those marked with * are comparative examples outside the claims of the present invention. As is clear from this (Table 2), the dielectric ceramic composition according to the present example is
By adding the Cu component, an excellent effect can be obtained in that the firing temperature is lowered without largely deteriorating the microwave characteristics of the dielectric ceramic. It is considered that this is because Cu easily forms a low melting point compound with Bi or the like, so that firing can be performed at a lower temperature. However, since the Q value gradually decreases with the addition of the Cu component, Cu /
In the composition range of (Bi + Ca + Mg + Nb)> 0.04, the Q value is less than 300. For this reason, the scope of the present invention is limited.

【0021】以上のことから明らかなように、本実施例
による誘電体磁器組成物は、請求の範囲に含まれる組成
領域内で、1050℃以下の低温で緻密に焼結し、50
以上のεrと、300以上のQ値と絶対値が100ppm/
℃以下のτfという点で優れた特性が得られ、しかもわ
ずかにCuを添加することによりさらに焼成温度を低下
させることができる。また、実施例1と同様に窒素中焼
成においても、焼成温度及び特性にはほとんど変化は見
られないものであった。
As is clear from the above, the dielectric ceramic composition according to the present embodiment is densely sintered at a low temperature of 1050 ° C. or lower within the composition range included in the claims, and
Above ε r , Q value above 300 and absolute value is 100 ppm /
Excellent characteristics can be obtained in terms of τ f of not higher than ° C, and the firing temperature can be further lowered by adding a small amount of Cu. Further, as in Example 1, even when firing in nitrogen, there was almost no change in firing temperature and characteristics.

【0022】(実施例3)以下、本発明の第3の実施例
について図面を参照しながら説明する。
(Embodiment 3) A third embodiment of the present invention will be described below with reference to the drawings.

【0023】図1は本実施例の積層型誘電体共振器の正
面断面図、図2は本実施例の積層型誘電体共振器の側面
断面図、図3は本実施例の積層型誘電体共振器の斜視図
である。
FIG. 1 is a front sectional view of the laminated dielectric resonator of this embodiment, FIG. 2 is a side sectional view of the laminated dielectric resonator of this embodiment, and FIG. 3 is a laminated dielectric of this embodiment. It is a perspective view of a resonator.

【0024】図中の1は誘電体層、2,3,4は内部導
体層、5は外部電極である。出発原料として高純度のB
23,CaCO3,Nb23,MgCO3及びCuOを
用い、(表2)中の試料番号26に示した組成になるよ
うに秤量した。原料粉体の作製は実施例1と同様の方法
により行った。得られた原料粉体に、有機バインダ、溶
剤及び可塑剤を加えて混合し、ドクターブレード法によ
り誘電体シートに成形した。導体電極としては、(表
3)に示した金属を選び、ビヒクルと混練してペースト
化した。ただし、導体電極としてCuを用いる場合はC
uOペーストを用いた。
In the figure, 1 is a dielectric layer, 2, 3 and 4 are internal conductor layers, and 5 is an external electrode. High-purity B as a starting material
i 2 O 3 , CaCO 3 , Nb 2 O 3 , MgCO 3 and CuO were used and weighed so as to have the composition shown in Sample No. 26 in (Table 2). The raw material powder was produced in the same manner as in Example 1. An organic binder, a solvent and a plasticizer were added to and mixed with the obtained raw material powder, and a dielectric sheet was formed by a doctor blade method. As the conductor electrode, the metal shown in (Table 3) was selected and kneaded with the vehicle to form a paste. However, when Cu is used as the conductor electrode, C
uO paste was used.

【0025】[0025]

【表3】 [Table 3]

【0026】図4は本実施例における積層型誘電体部品
の分解図である。まず、成形した誘電体シート複数枚か
ら成る誘電体層1の上に、内部導体層2をスクリーン印
刷した。その上に、誘電体層1を設け、その上に内部導
体層3をスクリーン印刷した。ストリップラインとなる
内部導体層3の長さは、13mmとした。さらにその上
に、誘電体層1を設け、内部導体層4をスクリーン印刷
した。最後に、誘電体層1を設け、熱プレスで圧着し、
空気中で熱処理してバインダを焼却した。その後、Cu
Oペーストを用いた場合は、水素中で熱処理して導体電
極Cuに還元した後、導体電極が酸化しないように窒素
中で、その他の導体電極の場合は空気中で、それぞれ9
00℃で焼成した。最後に、外部電極5としてCu電極
を窒素雰囲気中で焼き付けて積層型誘電体共振器を得
た。焼成後のストリップラインとなる内部導体層3の長
さは11.4から11.5mmであった。測定試料は各々
10個作製して特性評価した。結果の平均値を(表3)
に示す。
FIG. 4 is an exploded view of the laminated dielectric component in this embodiment. First, the inner conductor layer 2 was screen-printed on the dielectric layer 1 composed of a plurality of molded dielectric sheets. The dielectric layer 1 was provided thereon, and the internal conductor layer 3 was screen-printed on the dielectric layer 1. The length of the inner conductor layer 3 to be the strip line was 13 mm. Further, the dielectric layer 1 was provided thereon, and the inner conductor layer 4 was screen-printed. Finally, the dielectric layer 1 is provided and pressed by hot pressing,
The binder was incinerated by heat treatment in air. Then Cu
When the O paste is used, it is heat treated in hydrogen to reduce it to the conductor electrode Cu, then in nitrogen so as not to oxidize the conductor electrode, and in the case of other conductor electrodes, in air, respectively.
It was baked at 00 ° C. Finally, a Cu electrode as the external electrode 5 was baked in a nitrogen atmosphere to obtain a laminated dielectric resonator. The length of the internal conductor layer 3 to be the strip line after firing was 11.4 to 11.5 mm. Ten measurement samples were prepared and the characteristics were evaluated. The average value of the results (Table 3)
Shown in.

【0027】この(表3)から明らかなように、本実施
例による積層型誘電体共振器は、共振周波数がいずれも
850MHz前後、Q値は100以上と高く優れたもので
ある。
As is clear from this (Table 3), the laminated dielectric resonators according to this example are excellent in that the resonance frequencies are all around 850 MHz and the Q value is 100 or more.

【0028】また、この積層型誘電体共振器を構成する
誘電体磁器組成物の比誘電率は約60と高い。
The relative dielectric constant of the dielectric ceramic composition constituting this laminated dielectric resonator is as high as about 60.

【0029】しかし、従来の低温焼成基板材料の比誘電
率は8程度であるため、本実施例の共振器と同一の構造
で同一の共振周波数を得るためには31.5mmのストリ
ップライン長が必要であった。このように本実施例の共
振器のストリップライン長は11.5mmと短く、850
MHzの共振器としては非常に小型のものが得られた。
However, since the relative dielectric constant of the conventional low temperature firing substrate material is about 8, a strip line length of 31.5 mm is required to obtain the same resonance frequency with the same structure as the resonator of this embodiment. Was needed. Thus, the stripline length of the resonator of this embodiment is as short as 11.5 mm,
A very small resonator was obtained at MHZ.

【0030】なお、ストリップラインを曲線状や、積層
状にすることでより小型の共振器を得ることも可能であ
る。また、これらとキャパシタとを組み合わせることに
より、バンドパスフィルタ等を構成することも可能であ
る。
It is also possible to obtain a smaller resonator by forming the strip line into a curved shape or a laminated shape. It is also possible to configure a bandpass filter or the like by combining these with a capacitor.

【0031】[0031]

【発明の効果】以上のように本発明の誘電体磁器組成物
は(化1)で表されるものを用いることにより、比誘電
率と無負荷Q値が共に高く、共振周波数の温度係数が小
さく、その上、低温焼成が可能となる。
As described above, by using the dielectric ceramic composition of the present invention represented by (Chemical formula 1), both the relative dielectric constant and the unloaded Q value are high, and the temperature coefficient of the resonance frequency is high. The size is small, and low temperature firing is possible.

【0032】そしてこの誘電体磁器組成物を用いた積層
型誘電体部品は、高誘電率の導体なのでマイクロ波等の
高周波領域でも十分使用可能となる。さらに小型の共振
器系を構成できるので自動車電話や携帯電話等のマイク
ロ波領域の電磁波を利用する通信機器の小型化に大いに
寄与する。
Since the laminated type dielectric part using this dielectric ceramic composition is a conductor having a high dielectric constant, it can be sufficiently used even in a high frequency region such as microwaves. Furthermore, since a compact resonator system can be constructed, it greatly contributes to the miniaturization of communication devices such as car phones and mobile phones that use electromagnetic waves in the microwave range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における積層型誘電体共振器
の正面断面図
FIG. 1 is a front sectional view of a laminated dielectric resonator according to an embodiment of the present invention.

【図2】本発明の一実施例における積層型誘電体共振器
の側面断面図
FIG. 2 is a side sectional view of a laminated dielectric resonator according to an embodiment of the present invention.

【図3】本発明の一実施例における積層型誘電体共振器
の斜視図
FIG. 3 is a perspective view of a laminated dielectric resonator according to an embodiment of the present invention.

【図4】本発明の一実施例における積層型誘電体共振器
を分解した図
FIG. 4 is an exploded view of a laminated dielectric resonator according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 誘電体層 2 内部導体層 3 内部導体層 4 内部導体層 5 外部電極 1 Dielectric Layer 2 Inner Conductor Layer 3 Inner Conductor Layer 4 Inner Conductor Layer 5 External Electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (化1)で表される誘電体磁器組成物。 【化1】 1. A dielectric ceramic composition represented by the chemical formula 1. [Chemical 1] 【請求項2】 Cu/(Bi+Ca+Mg+Nb)≦
0.04の組成となるようにCuを添加した請求項1記
載の誘電体磁器組成物。
2. Cu / (Bi + Ca + Mg + Nb) ≦
The dielectric ceramic composition according to claim 1, wherein Cu is added so as to have a composition of 0.04.
【請求項3】 複数のシート状誘電体と複数の内部導体
とを交互に重ねた積層体と、この積層体に設けた入、出
力電極とを備え、前記誘電体が(化2)で表される誘電
体磁器組成物よりなる積層型誘電体部品。 【化2】
3. A laminated body in which a plurality of sheet-shaped dielectrics and a plurality of internal conductors are alternately stacked, and input / output electrodes provided in the laminated body, wherein the dielectric is represented by the following chemical formula. Laminated dielectric part made of the above-mentioned dielectric ceramic composition. [Chemical 2]
【請求項4】 誘電体は、Cu/(Bi+Ca+Mg+
Nb)≦0.04の組成となるCuを含有した請求項3
記載の積層型誘電体部品。
4. The dielectric is Cu / (Bi + Ca + Mg +)
Nb) containing Cu having a composition of 0.04.
The laminated dielectric component described.
JP5162130A 1993-06-30 1993-06-30 Dielectric porcelain composition and laminated dielectric part therewith Pending JPH0757540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5162130A JPH0757540A (en) 1993-06-30 1993-06-30 Dielectric porcelain composition and laminated dielectric part therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5162130A JPH0757540A (en) 1993-06-30 1993-06-30 Dielectric porcelain composition and laminated dielectric part therewith

Publications (1)

Publication Number Publication Date
JPH0757540A true JPH0757540A (en) 1995-03-03

Family

ID=15748614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5162130A Pending JPH0757540A (en) 1993-06-30 1993-06-30 Dielectric porcelain composition and laminated dielectric part therewith

Country Status (1)

Country Link
JP (1) JPH0757540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505043A2 (en) * 2003-08-07 2005-02-09 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and ceramic electronic component employing the same
US7060784B2 (en) 2003-06-25 2006-06-13 Shin-Etsu Chemical Co., Ltd. Polyimide precursor resin solution composition sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060784B2 (en) 2003-06-25 2006-06-13 Shin-Etsu Chemical Co., Ltd. Polyimide precursor resin solution composition sheet
EP1505043A2 (en) * 2003-08-07 2005-02-09 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and ceramic electronic component employing the same
US7098160B2 (en) * 2003-08-07 2006-08-29 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and ceramic electronic component employing the same
EP1505043A3 (en) * 2003-08-07 2009-05-06 Panasonic Corporation Dielectric ceramic composition and ceramic electronic component employing the same

Similar Documents

Publication Publication Date Title
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP2798105B2 (en) Dielectric ceramic composition and laminated microwave device
WO2005085154A1 (en) Dielectric particle aggregate, low temperature sinterable dielectric ceramic composition using same, low temperature sintered dielectric ceramic produced by using same
US5629252A (en) Method for manufacturing a dielectric ceramic composition dielectric ceramic and multilayer high frequency device
JP2003119076A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JPH0757540A (en) Dielectric porcelain composition and laminated dielectric part therewith
JP3375450B2 (en) Dielectric porcelain composition
JPH0757539A (en) Dielectric porcelain composition and laminated dielectric part therewith
JP3321980B2 (en) Dielectric porcelain composition and laminated dielectric component using this dielectric porcelain composition
JPH0757538A (en) Dielectric porcelain composition and laminated dielectric part therewith
JP3329014B2 (en) Dielectric porcelain composition
JPH07201224A (en) Dielectric porcelain composite, and lamination type dielectric part
JP3597244B2 (en) Dielectric porcelain composition
JPH07296638A (en) Dielectric porcelain composition and layer built dielectric part using this dielectric porcelain composition
JP2992197B2 (en) Dielectric porcelain material and method of manufacturing the same
JPH08310864A (en) Production of dielectric porcelain and production of laminated dielectric part
JP2798106B2 (en) Dielectric porcelain composition, method for producing laminate using the dielectric porcelain composition, and laminate of dielectric porcelain composition
JPH11209172A (en) Dielectric porcelain composition and composite dielectric porcelain composition
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JPH08310863A (en) Production of dielectric porcelain and production of laminated dielectric part
JPH08161934A (en) Manufacture of dielectric porcelain composition and manufacture of stacked dielectric parts
JPH07169331A (en) Dielectric ceramic comopsition and multilayer microwave device
JPH09153710A (en) Production of ceramic electronic parts
JP3215012B2 (en) Dielectric porcelain composition
EP0869514A1 (en) A method for manufacturing a dielectric ceramic composition, dielectric ceramic and multilayer high frequency device