JPH11340385A - Resin-sealed semiconductor device - Google Patents

Resin-sealed semiconductor device

Info

Publication number
JPH11340385A
JPH11340385A JP14560298A JP14560298A JPH11340385A JP H11340385 A JPH11340385 A JP H11340385A JP 14560298 A JP14560298 A JP 14560298A JP 14560298 A JP14560298 A JP 14560298A JP H11340385 A JPH11340385 A JP H11340385A
Authority
JP
Japan
Prior art keywords
resin
semiconductor device
metal member
heat spreader
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14560298A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
章二 志賀
Akira Hideno
晃 秀野
Junji Ninomiya
淳司 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14560298A priority Critical patent/JPH11340385A/en
Publication of JPH11340385A publication Critical patent/JPH11340385A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To improve the matching of the adhesion and thermal expansion coefficient with a resin by making a metal member contacted or near to a semiconductor element, of Al containing specified vol. of hard inorganic grains. SOLUTION: In a resin seal type semiconductor device having a package structure sealed with a semiconductor element sealed with a resin, the main component of a metal member contacted or near to the semiconductor element is Al containing hard inorganic grains 10-30 vol.%, the hard inorganic grain is of one or more of SiC, Al2 O3 , AlN, BN, WC and SiN, and an alumite film is preferably formed on at least a part of the metal member surface whereby the thermal expansion coefficient difference between the metal member and general seal resin can be suppressed to about 3-4 ppm and the mechanical strength and Young's modulus can be improved, compared with an Al-made metal member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ICやLSI等の
半導体装置について、特に、パッケージング構造として
樹脂封止型を採用した半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as an IC or an LSI, and more particularly to a semiconductor device employing a resin-sealing type as a packaging structure.

【0002】[0002]

【従来の技術】通常、Si,Ge,GaAs等からなる
半導体素子の多くは、プリント回路基板などへの実装の
ためのパッケージ形態の一つとして、例えばリードフレ
ームに搭載された状態でワイヤーボンディング等による
内部配線を施されてから樹脂で封止されている。この樹
脂封止型は、半導体パッケージ構造において、初期のメ
タル封止型やセラミック封止型に比べて、より安価で量
産性に勝る点から、採用が増えてきている。
2. Description of the Related Art Normally, most of semiconductor devices made of Si, Ge, GaAs, etc. are used as one of package forms for mounting on a printed circuit board or the like, for example, wire bonding while being mounted on a lead frame. And then sealed with resin. This resin-encapsulated type has been increasingly used in semiconductor package structures because it is cheaper and superior to mass production as compared with the earlier metal-sealed and ceramic-sealed types.

【0003】例えば、Cu合金やNiFe合金製のリー
ドフレームに半導体素子を搭載してエポキシ樹脂等で封
止するパッケージとして、DIP(デュアル・インライ
ン・パッケージ)、SOP(スモール・アウトライン・
パッケージ)、QFP(クワッド・フラット・パッケー
ジ)などが代表的なものとして挙げられる。
For example, as a package in which a semiconductor element is mounted on a lead frame made of a Cu alloy or a NiFe alloy and sealed with an epoxy resin or the like, DIP (dual in-line package) and SOP (small outline package) are used.
Package), QFP (quad flat package) and the like.

【0004】また、パッケージのより小型化、高密度化
を求めた、リジット樹脂回路基板、フレキシブルテープ
回路基板、LOC(リード・オン・チップ)型リードフ
レーム等を用いたBGA(ボール・グリッド・アレイ)
として、OMPAC(オーバーモールド・パッド・グリ
ッド・キャリア)、テープBGA、μBGA等も用いら
れている。また、複数素子を基板に搭載して一つのパッ
ケージに封止したMCM(マルチチップ・モジュール)
も一部で普及している。
In addition, a BGA (ball grid array) using a rigid resin circuit board, a flexible tape circuit board, a LOC (lead-on-chip) type lead frame, or the like, which is required to make the package smaller and higher in density. )
As such, OMPAC (overmold pad grid carrier), tape BGA, μBGA and the like are also used. MCM (multi-chip module) with multiple elements mounted on a substrate and sealed in one package
Are also prevalent in some areas.

【0005】一方、半導体素子の高集積化、大型化に伴
って、半導体素子の所要電力が増大し、従って発熱量も
増大する傾向にある。特に樹脂封止型において、温度上
昇を抑える放熱性の問題が注目されている。さらに、近
年、コストダウンのために従来のセラミック製パッケー
ジから樹脂封止型への移行傾向が盛んなことからも樹脂
封止型パッケージの放熱対策が急がれている。
[0005] On the other hand, as the integration and size of semiconductor elements increase, the required power of the semiconductor elements tends to increase, and the amount of heat generated tends to increase. In particular, in a resin-sealed type, the problem of heat radiation that suppresses a rise in temperature has attracted attention. Further, in recent years, there has been an increasing tendency to shift from a conventional ceramic package to a resin-encapsulated type in order to reduce costs.

【0006】そこで、半導体素子に近接して熱伝導性の
高いCuやAlからなる金属部材を、ヒートスプレッ
ダ、ヒートシング等の放熱板として配置することが広く
実施されている。
Therefore, it is widely practiced to dispose a metal member made of Cu or Al having high thermal conductivity close to the semiconductor element as a heat radiating plate for a heat spreader, a heat sink or the like.

【0007】[0007]

【発明が解決しようとする課題】従来の放熱板では、半
導体素子が直接的に金属板上に接着剤等で固定される場
合が多く、それに伴って半導体パッケージの機械的強度
をこの放熱板に依存している例が多く見られる。従っ
て、放熱板としての金属板に基板としての機能を期待す
る場合も増えている。
In a conventional heat sink, a semiconductor element is often directly fixed on a metal plate with an adhesive or the like, and accordingly, the mechanical strength of the semiconductor package is reduced to the heat sink. There are many examples that depend on it. Therefore, there are increasing cases where a metal plate as a heat sink is expected to function as a substrate.

【0008】しかしながら、Cu製の金属部材では樹脂
との密着性に乏しく、且つ腐食変色し易いので、黒化処
理やNiメッキ処理、さらには機械的な嵌合を得るため
に端部を段差状等の特殊な形状に加工するなどの余分な
工程を必要としていた。
However, Cu metal members have poor adhesion to resin and are liable to be corroded and discolored. Therefore, the ends are stepped to obtain blackening treatment, Ni plating treatment, and mechanical fitting. Extra steps such as processing into a special shape such as are required.

【0009】このようなCu製のものは、熱伝導性に優
れるが、比重が重く、必ずしも最適な材料とは言い難
い。一方、機械的強度を高めるために合金化すると、熱
伝導性が低下してしまうという問題もあった。
Such a material made of Cu is excellent in thermal conductivity, but has a high specific gravity, and is not necessarily an optimum material. On the other hand, when alloying to increase mechanical strength, there is a problem that thermal conductivity is reduced.

【0010】これに対して、Al製では、軽量であると
同時に、アルマイト処理や黒色着色処理を容易に施せる
ので、電気絶縁性や樹脂との密着性の点で優れている。
しかしながら熱膨張率が22〜25ppmと大きく、且
つ機械的強度やヤング率が小さいので、特に部材の大型
化に応じて熱歪みの発生も大きくなり、又機械的ストレ
スに弱いという欠点があった。
[0010] On the other hand, Al is lightweight, and at the same time, can be easily subjected to an alumite treatment or a black coloring treatment, so that it is excellent in electrical insulation and adhesion to a resin.
However, since the coefficient of thermal expansion is as large as 22 to 25 ppm, and the mechanical strength and Young's modulus are small, there is a disadvantage that the occurrence of thermal distortion increases particularly as the size of the member increases, and that it is weak against mechanical stress.

【0011】またAlの改良例として、一部の半導体装
置ではSiC焼結体にAlを含浸させた複合材を使用す
るものが特開平5−144963号公報に開示されてい
るが、これは、SiCが50〜75%を占める多孔連続
体であり、熱膨張率が5〜8ppmと過剰に低下してお
り、一般的な封止樹脂の熱膨張率との差が大きい。ま
た、半導体素子の搭載部にSiC繊維とAlの複合材を
使用したものが特開昭61−7637号公報に開示され
ているが、これは熱膨張率マッチングを目的としたもの
で5〜10ppmの熱膨張率である。いずれにしてもこ
れら改良例の複合材は、複雑な工程により製造されてお
り、コスト高は避けられず、実用に適していない。
As an improved example of Al, a semiconductor device using a composite material in which Al is impregnated in a SiC sintered body is disclosed in Japanese Patent Application Laid-Open No. 5-149663. It is a porous continuum in which SiC accounts for 50 to 75%, the coefficient of thermal expansion is excessively reduced to 5 to 8 ppm, and the difference from the coefficient of thermal expansion of a general sealing resin is large. Japanese Unexamined Patent Publication (Kokai) No. 61-7637 discloses a semiconductor device in which a composite material of SiC fiber and Al is used for the mounting portion of the semiconductor element. Is the coefficient of thermal expansion. In any case, the composite materials of these improved examples are manufactured by complicated processes, so that high costs cannot be avoided and are not suitable for practical use.

【0012】以上のように、半導体素子の樹脂封止型パ
ッケージに放熱板や基板として使用される金属部材に
は、安価で経済的でありながらも樹脂との密着接合性や
熱膨張率マッチング、機械的強度および適正なヤング
率、また軽量性等が望まれるが、これら全てを充分満た
すものは未だ得られていない。
As described above, a metal member used as a heat sink or a substrate in a resin-sealed package of a semiconductor element is inexpensive and economical, but has a close bonding property with resin and a matching coefficient of thermal expansion. Although mechanical strength, proper Young's modulus, lightness, and the like are desired, a material that sufficiently satisfies all of them has not yet been obtained.

【0013】本発明は、上記問題点に鑑み、安価で、放
熱板や基板としての機能を発揮する金属部材として、樹
脂との密着接合性や熱膨張率マッチング、機械的強度お
よび適正なヤング率、また軽量性に優れた特性を持つも
のを備えることによって、軽量で熱歪みのない高品位な
樹脂封止型半導体装置の提供を目的とする。
In view of the above problems, the present invention provides an inexpensive metal member which functions as a radiator plate or a substrate, and has an excellent bonding strength with resin, matching of thermal expansion coefficient, mechanical strength and proper Young's modulus. Another object of the present invention is to provide a high-quality resin-encapsulated semiconductor device that is lightweight and has no thermal distortion by providing a device having excellent characteristics of lightness.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明に係る樹脂封止型半導体装置
では、半導体素子を樹脂で封止したパッケージ構造を有
する樹脂封止型半導体装置において、半導体素子に接触
もしくは近接配置された金属部材を備え、前記金属部材
が、10Vol%以上、30Vol%以下の範囲内で硬
質無機粒子を含有するAlを主な構成成分とするもので
ある。
According to a first aspect of the present invention, there is provided a resin-sealed semiconductor device having a package structure in which a semiconductor element is sealed with a resin. In the apparatus, a metal member is provided in contact with or close to the semiconductor element, and the metal member is mainly composed of Al containing hard inorganic particles in a range of 10% by volume or more and 30% by volume or less. .

【0015】また、請求項2に記載の発明に係る樹脂封
止型半導体装置では、請求項1に記載の樹脂封止型半導
体装置において、前記硬質無機粒子は、SiC、Al
、AlN、BN、WC、SiN、のうちの一つ以上
である。
According to a second aspect of the present invention, in the resin-encapsulated semiconductor device according to the first aspect, the hard inorganic particles are made of SiC, Al 2 O 3.
One or more of O 3 , AlN, BN, WC, and SiN.

【0016】また、請求項3に記載の発明に係る樹脂封
止型半導体装置では、請求項1に記載の樹脂封止型半導
体装置において、前記金属部材の表面の少なくとも一部
にアルマイト処理被膜が形成されているものである。
According to a third aspect of the present invention, there is provided the resin-sealed semiconductor device according to the first aspect, wherein at least a part of the surface of the metal member is provided with an alumite-treated coating. It has been formed.

【0017】また、請求項4に記載の発明に係る樹脂封
止型半導体装置では、請求項1に記載の樹脂封止型半導
体装置において、前記金属部材が半導体素子からの熱を
逃すためのヒートスプレッダとして配置されているもの
である。
According to a fourth aspect of the present invention, there is provided a resin-sealed semiconductor device according to the first aspect, wherein the metal member releases heat from a semiconductor element. It is arranged as.

【0018】本発明は、本発明者らの種々検討の結果、
ある特定の範囲内の含有率で硬質無機粒子を含むAlか
らなる金属部材は、その熱膨張率を、一般的な封止樹脂
の熱膨張率との差が3〜4ppm程度となる範囲内に抑
えることが可能であるだけでなく、単なるAl製金属部
材よりも機械的強度およびヤング率を大きく改善できる
ことを見出し、本発明に至ったものである。
According to the present invention, as a result of various studies by the present inventors,
A metal member made of Al containing hard inorganic particles with a content in a specific range has a coefficient of thermal expansion within a range where a difference from a coefficient of thermal expansion of a general sealing resin is about 3 to 4 ppm. The present invention has been found not only to be able to suppress, but also to be able to greatly improve the mechanical strength and the Young's modulus as compared with a mere Al-made metal member, leading to the present invention.

【0019】即ち、金属部材を構成するAlに含有され
る硬質無機粒子を10Vol%以上、30Vol%以下
の範囲内とすることによって、まず、その部材の熱膨張
率を14〜20ppmの範囲内に制御することができ
る。この熱膨張率の範囲内であれば、一般的な封止樹脂
であるエポキシ樹脂等の熱膨張率との差を3〜4ppm
という僅差に抑えられる。従って、樹脂封止体内で生じ
る熱歪みは非常に小さく抑えられ、装置の大型化にも対
応できる。
That is, by setting the hard inorganic particles contained in Al constituting the metal member to be in the range of 10% by volume or more and 30% by volume or less, first, the coefficient of thermal expansion of the member is set within the range of 14 to 20 ppm. Can be controlled. Within this range of the coefficient of thermal expansion, the difference from the coefficient of thermal expansion of a general sealing resin such as epoxy resin is 3 to 4 ppm.
It can be suppressed to a small difference. Therefore, thermal distortion generated in the resin sealing body is suppressed to be very small, and it is possible to cope with an increase in the size of the device.

【0020】さらに、上記特定の範囲内で硬質無機粒子
を含有するAlで構成される金属部材は、熱伝導率が1
00〜200W/m・Kであり、ヤング率が800〜1
200Kg/mmと単なるAl金属体のヤング率68
00〜7000Kg/mmの2倍近い値を示すもので
あり、機械的、熱的応力に対して変形を小さく抑えるこ
とができる。
Further, the metal member made of Al containing hard inorganic particles within the above specific range has a thermal conductivity of 1
100 to 200 W / mK, Young's modulus is 800 to 1
200 kg / mm 2 and a mere Young's modulus of Al metal body of 68
The value is almost twice the value of 00 to 7000 Kg / mm 2 , and the deformation can be suppressed to a small value with respect to mechanical and thermal stress.

【0021】前記硬質無機粒子の含有率が30Vol%
を越えると、熱膨張率が過剰に低くなり易く、逆に封止
樹脂の熱膨張率との差が広がってしまうだけでなく、無
機セラミックの特性が過剰に発現して機械加工や塑性加
工、後述のアルマイト処理やメッキ処理加工等が困難と
なり、さらに電気・熱伝導度が低下してしまうため実用
的に不適当となる。一方、10Vol%より小さくなる
と、粒子分散効果が充分に得られず、上記特性の改善は
見られない。
The content of the hard inorganic particles is 30% by volume.
If it exceeds, the coefficient of thermal expansion tends to be excessively low, and conversely, the difference with the coefficient of thermal expansion of the sealing resin is not only widened, but also the properties of inorganic ceramics are excessively expressed, and machining and plastic processing are performed. It becomes difficult to perform alumite treatment, plating treatment, and the like, which will be described later, and furthermore, the electrical and thermal conductivity is reduced, which is not practically suitable. On the other hand, if it is less than 10% by volume, the effect of dispersing particles cannot be sufficiently obtained, and the above-mentioned characteristics are not improved.

【0022】また、本願発明による金属部材は、前述し
た従来のAl改良品である複合体と異なり、通常の金属
製造工程に準じた製造加工工程で得られるため、経済的
である。例えば、Al溶湯に硬質無機粒子を上記含有率
範囲内で攪拌分散した状態で凝固した後にインゴットを
押出し、圧延する、という簡便な工程で得られる。
Further, the metal member according to the present invention is economical because it is obtained by a manufacturing process similar to a normal metal manufacturing process, unlike the above-described composite which is a conventional Al-improved product. For example, it can be obtained by a simple process of extruding and rolling an ingot after solidifying hard inorganic particles in an Al melt while stirring and dispersing within the above content range.

【0023】以上のように、本願発明よる上記特定の範
囲内で硬質無機粒子を含有するAlから構成された金属
部材では、Al本来の優れた特性である軽量性や熱伝導
性をに加え、熱膨張率マッチングやヤング率と強度につ
いても大幅に改善されるため、この金属部材を備えるこ
とによって、放熱性、機械的強度に優れた軽量な樹脂封
止型半導体装置を安価に得られる。
As described above, in the metal member made of Al containing hard inorganic particles within the above-mentioned specific range according to the present invention, in addition to the excellent characteristics inherent in Al, such as light weight and thermal conductivity, Since the thermal expansion coefficient matching and the Young's modulus and strength are greatly improved, a lightweight resin-encapsulated semiconductor device having excellent heat dissipation and mechanical strength can be obtained at low cost by providing this metal member.

【0024】なお、本発明における硬質無機粒子とは、
例えば、請求項2に記載した如く、SiC、Al
、AlN、BN、WC、SiN、のうちから一
つ、あるいは複数を選択したものである。特に、分散粒
子としてSiCまたはAlを用いた場合において
上記機械的及び熱的応力に対する変形を小さく抑えられ
る特性がより有利に実現できる。また、Alマトリック
スとしては、熱伝導率や機械的強度の観点から、600
0系あるいは1000系の合金の利用が好ましい。
The hard inorganic particles in the present invention are:
For example, as described in claim 2, SiC, Al
One or a plurality are selected from 2 O 3 , AlN, BN, WC, and SiN. In particular, when SiC or Al 2 O 3 is used as the dispersed particles, the characteristic of suppressing the deformation due to the mechanical and thermal stresses can be more advantageously realized. Further, as the Al matrix, from the viewpoint of thermal conductivity and mechanical strength, 600
It is preferable to use a 0-series or 1000-series alloy.

【0025】また、前記金属部材は、主にAlから構成
されるものであるため、アルマイト処理が容易に行え
る、従って、請求項3に記載した如く、金属部材の表面
の少なくとも一部にアルマイト処理による酸化被膜を形
成しておくことによって、電気的絶縁性やより優れた樹
脂密着性が得られる。
Further, since the metal member is mainly composed of Al, the alumite treatment can be easily performed. Therefore, at least a part of the surface of the metal member is subjected to the alumite treatment. By forming an oxide film by the above, electrical insulation and better resin adhesion can be obtained.

【0026】また、本願発明による金属部材は、半導体
装置パッケージへの機械的強度の付与効果だけでなく、
少なくともその一部が封止樹脂内で半導体素子近傍に接
触ましくは近接状態で配置されていれば、優れた放熱
板、即ちヒートスプレッダとしての機能を発揮できる。
The metal member according to the present invention not only has an effect of imparting mechanical strength to a semiconductor device package, but also has
If at least a part thereof is disposed in contact with or close to the semiconductor element in the sealing resin, the function as an excellent heat sink, that is, a heat spreader can be exhibited.

【0027】[0027]

【発明の実施の形態】(実施形態1)以下に、本発明の
第1の実施の形態として、Al及びSiCの硬質
無機粒子を含有するAl合金からなる金属部材を、放熱
板(ヒートスプレッダ)およびダイパット代わりとして
備えた樹脂封止型QFPを図1の概略断面図に示す。
DETAILED DESCRIPTION OF THE INVENTION (Embodiment 1) Hereinafter, a first embodiment of the present invention, a metal member made of Al alloy containing Al 2 0 3 and the hard inorganic particles in SiC, the heat radiating plate ( FIG. 1 is a schematic sectional view showing a resin-sealed QFP provided as a heat spreader) and a die pad.

【0028】まず、6061合金に12%Al
び10%SiCを含有して成る28mm×28mm,厚
さ0.55mmのAl合金板に、黒色アルマイト処理を
施すことによって、表面に厚さ約15μmのアルマイト
酸化被膜2が形成されたヒートスプレッダ1を得る。
First, a 28 mm × 28 mm, 0.55 mm thick Al alloy plate containing 12% Al 2 O 3 and 10% SiC in the 6061 alloy is subjected to black alumite treatment to make the surface thick. The heat spreader 1 on which the alumite oxide film 2 of about 15 μm is formed is obtained.

【0029】このヒートスプレッダ1を、208ピンの
銅合金(厚さ0.150mm:EFTEC64T)リー
ドフレーム3の裏面側にポリイミド系熱可塑性接着剤テ
ープ4を介して接着する。さらにリードフレーム3のデ
バイスホールに露出するヒートスプレッダ1をダイパッ
ド代わりとしてその表面上に半導体素子5をペースト材
6を介してダイボンディングにより搭載し、ワイヤ7を
ボンディング配線した後、金型を用いたトランスファ・
モールド工程でエポキシモールド樹脂9により封止を行
い、樹脂封止型半導体装置(QFP)を得た。
The heat spreader 1 is adhered to the back surface of a 208-pin copper alloy (0.150 mm thick: EFTEC64T) lead frame 3 via a polyimide thermoplastic adhesive tape 4. Further, the semiconductor element 5 is mounted on the surface of the heat spreader 1 exposed to the device hole of the lead frame 3 by die bonding via a paste material 6 instead of a die pad, and the wire 7 is bonded and wired.・
In the molding step, sealing was performed with an epoxy mold resin 9 to obtain a resin-sealed semiconductor device (QFP).

【0030】以上の工程で得られた樹脂封止半導体装置
について、加熱実験による変形を観測した。この際、従
来と同様の構成を持つ対照例として、硬質無機粒子を含
有しない6061合金に本実施形態のヒートスプレッダ
1と同様の黒色アルマイト処理を施したもの(比較例1
−a)をヒートスプレッダとして用いて上記実施形態と
同様の半導体素子搭載、モールド樹脂封止を行ったもの
と、Alに代えてタフピッチCu板に厚さ5μmのNi
被膜を形成したもの(比較例1−b)を用いて上記実施
形態と同様の半導体素子搭載、モールド樹脂封止を行っ
たものについても、各々観測を行った。
With respect to the resin-encapsulated semiconductor device obtained in the above steps, deformation due to a heating experiment was observed. At this time, as a comparative example having the same configuration as the conventional one, a 6061 alloy containing no hard inorganic particles was subjected to the same black alumite treatment as the heat spreader 1 of the present embodiment (Comparative Example 1).
−a) as a heat spreader, the same semiconductor element mounting and molding resin sealing as in the above embodiment, and a 5 μm thick Ni on a tough pitch Cu plate in place of Al
Observations were also made on the semiconductor device mounted and molded resin-sealed in the same manner as in the above-described embodiment using the film-formed one (Comparative Example 1-b).

【0031】即ち、上記本実施形態によるもの(実施形
態1と記す)および比較例1−a,比較例1−bの各樹
脂封止半導体装置について、それぞれリフロー半田付け
炉の加熱条件下で260℃に加熱した後、各半導体装置
表面の反りを観測したところ、実施形態1による半導体
装置では、反りは観測限界値(0.01mm)以下で観
測できなかった。また、定格電流(7.5W)を流した
時のそれぞれの熱抵抗はいずれも4℃/Wで差はなかっ
た。
That is, the semiconductor device according to the present embodiment (hereinafter referred to as Embodiment 1) and the resin-encapsulated semiconductor devices of Comparative Examples 1-a and 1-b were each heated under a heating condition of a reflow soldering furnace. After heating to ° C., the warpage of each semiconductor device surface was observed. In the semiconductor device according to the first embodiment, the warpage could not be observed below the observation limit value (0.01 mm). In addition, each of the thermal resistances when a rated current (7.5 W) was applied was 4 ° C./W, and there was no difference.

【0032】これに対して、比較例1−aの半導体装置
は表面が明らかに樹脂側(リードフレームに対してヒー
トスプレッタの反対側)に反って湾曲しているのが観測
された。また、比較例1−bの半導体装置では、本実施
形態と同様に表面の反りは観測されなかったが、その重
量は、4.6gと重く、実施形態1による半導体装置の
2倍となった。
On the other hand, it was observed that the surface of the semiconductor device of Comparative Example 1-a was clearly curved toward the resin side (the side opposite to the heat spreader with respect to the lead frame). Also, in the semiconductor device of Comparative Example 1-b, no warpage of the surface was observed as in the present embodiment, but the weight was as heavy as 4.6 g, which was twice that of the semiconductor device according to the first embodiment. .

【0033】これら各半導体装置の加熱実験における結
果の違いは、以下の表1に示すような、各ヒートスプレ
ッダの材料特性の違いに起因するもの考えられる。即
ち、比較例1−aのヒートスプレッダの熱膨張率は、エ
ポキシ系のモールド樹脂9の熱膨張率およびリードフレ
ーム3の熱膨張率との差が大きいため、ヒートスブレッ
タとモールド樹脂9との間に生じる熱歪みも大きくな
る。
The difference in the results of the heating experiments of these semiconductor devices is considered to be due to the difference in the material properties of each heat spreader as shown in Table 1 below. That is, the thermal expansion coefficient of the heat spreader of Comparative Example 1-a is large, because the difference between the thermal expansion coefficient of the epoxy-based mold resin 9 and the thermal expansion coefficient of the lead frame 3 is large. The thermal strain that occurs during the process also increases.

【0034】[0034]

【表1】 [Table 1]

【0035】しかしながら、本実施形態1によるヒート
スプレッダ1は、軽量で熱膨張率はリードフレーム3及
びモールド樹脂9の熱膨張率と極めて近いものであると
共に、同等の熱伝導率であり、且つ、安価で、樹脂との
良好な密着接合性等の優れた特性を示す。従って、この
ようなヒートスプレッダ1を備えることにより従来より
高品質な樹脂封止型半導体装置の提供を可能とする。
However, the heat spreader 1 according to the first embodiment is lightweight, has a coefficient of thermal expansion very close to the coefficient of thermal expansion of the lead frame 3 and the molding resin 9, has the same thermal conductivity, and is inexpensive. And excellent properties such as good adhesion to resin. Therefore, by providing such a heat spreader 1, it is possible to provide a resin-encapsulated semiconductor device with higher quality than before.

【0036】(実施形態2)次に、本発明の第2の実施
形態として、SiCの硬質無機粒子を含有するAl合金
からなる金属部材を、放熱板(ヒートスプレッダ)およ
びダイパット代わりとして備えた樹脂封止型QFPを図
2の概略断面図に示す。
(Embodiment 2) Next, as a second embodiment of the present invention, a resin member provided with a metal member made of an Al alloy containing hard inorganic particles of SiC as a heat sink (heat spreader) and a die pad is used. The stop QFP is shown in the schematic sectional view of FIG.

【0037】まず、6063合金に12%SiCを含有
して成る32mm×32mm,厚さ0.4mmのAl合
金板を、第1の実施形態と同様に黒色アルマイト処理を
施すことによって、表面に厚さ約15μmのアルマイト
酸化被膜12が形成されたヒートスプレッダ11を得
る。
First, a 32 mm × 32 mm, 0.4 mm thick Al alloy plate containing 12% SiC in the 6063 alloy is subjected to black alumite treatment in the same manner as in the first embodiment, so that the thickness of the surface is increased. The heat spreader 11 on which the alumite oxide film 12 having a thickness of about 15 μm is obtained.

【0038】このヒートスプレッダ11を、第1の実施
形態で用いたものと同じ銅合金リードフレーム13の裏
面側にポリイミド系熱可塑性接着剤テープ14を介して
接着する。さらにリードフレーム13のデバイスホール
に露出するヒートスプレッダ11をダイパット代わりと
してその表面上に半導体素子15をポリイミド系接着材
16を介してダイボンディングにより接着搭載し、ワイ
ヤ17をボンディング配線した後、エポキシ系モールド
樹脂19により樹脂封止し、樹脂封止型半導体装置を得
た。
The heat spreader 11 is bonded to the back surface of the same copper alloy lead frame 13 as used in the first embodiment via a polyimide thermoplastic adhesive tape 14. Further, the heat spreader 11 exposed in the device hole of the lead frame 13 is used as a die pad, a semiconductor element 15 is bonded and mounted on the surface of the heat spreader 11 by die bonding via a polyimide adhesive 16, and a wire 17 is bonded and wired. Resin sealing was performed with resin 19 to obtain a resin-sealed semiconductor device.

【0039】ここでは、ヒートスプレッダ11は半導体
素子15を搭載するための基板的機能を持つと共にモー
ルド樹脂19の液漏れ防止板として作用する。従って、
このヒートスプレッダ11の液漏れ防止作用とリードフ
レーム13上のヒートスプレッダ11外周に相当する周
上に配されたダムポリマ18によって、金型を用いるこ
となく容易に樹脂封止工程で半導体素子15側を封止す
ることができる。
Here, the heat spreader 11 has a function as a substrate for mounting the semiconductor element 15 and also functions as a liquid leakage preventing plate for the mold resin 19. Therefore,
The semiconductor element 15 side is easily sealed in a resin sealing step without using a mold by the liquid leakage preventing action of the heat spreader 11 and the dam polymer 18 disposed on the circumference corresponding to the outer circumference of the heat spreader 11 on the lead frame 13. can do.

【0040】本実施形態2によるヒートスプレッダ11
は、熱膨張率が19.8ppm、熱伝導率167W/(m・
K)であり、モールド樹脂19の熱膨張率16.8ppm
と近接した熱膨張率を有しており、第1実施形態と同様
の加熱実験を行った結果、半導体装置に反りは観測され
ず、また、定格電流(7.5W)を流した時の熱抵抗は
3℃/Wと低く、良好な放熱性が見られた。
The heat spreader 11 according to the second embodiment
Has a thermal expansion coefficient of 19.8 ppm and a thermal conductivity of 167 W / (m ·
K) and the coefficient of thermal expansion of the mold resin 19 is 16.8 ppm
As a result of conducting a heating experiment similar to that of the first embodiment, no warpage was observed in the semiconductor device, and the heat generated when a rated current (7.5 W) was passed. The resistance was as low as 3 ° C./W, and good heat dissipation was observed.

【0041】(実施形態3)次に、本発明の第3の実施
形態として、SiCの硬質無機粒子を含有するAl合金
からなる金属部材を、放熱板(ヒートスプレッダ)およ
びダイパッド代わりとして備えた樹脂封止型QFPを図
3の概略断面図に示す。
Embodiment 3 Next, as a third embodiment of the present invention, a resin member provided with a metal member made of an Al alloy containing hard inorganic particles of SiC as a heat sink (heat spreader) and a die pad is used. The stop QFP is shown in the schematic sectional view of FIG.

【0042】まず、6061合金に25%SiCを含有
して成る28mm×28mm,厚さ0.45mmのAl
合金板を、黒色アルマイト処理を施すことによって、表
面に厚さ約5μmのアルマイト酸化被膜22が形成され
たヒートスプレッダ21を得る。
First, an Al having a size of 28 mm × 28 mm and a thickness of 0.45 mm made of a 6061 alloy containing 25% SiC was used.
By subjecting the alloy plate to a black alumite treatment, a heat spreader 21 having an alumite oxide film 22 having a thickness of about 5 μm on the surface is obtained.

【0043】このヒートスプレッダ21を、第1の実施
形態で用いたものと同様のリードフレーム23のインナ
ーリード先端部に裏面側からにポリイミド系熱可塑性接
着剤テープ24を介して接着固定する。さらにリードフ
レーム23のデバイスホールに露出するヒートスプレッ
タ21をダイパッド代わりとしてその表面上に半導体素
子25を接着材26を介してダイボンディングにより搭
載し、ワイヤ27をボンディング配線した後、金型を用
いたトランスファ・モールド工程でエポキシ系モールド
樹脂29により封止を行い、樹脂封止型半導体装置を得
た。
This heat spreader 21 is bonded and fixed to the tip of the inner lead of the lead frame 23 similar to that used in the first embodiment from the back side via a polyimide-based thermoplastic adhesive tape 24. Further, the semiconductor element 25 is mounted on the surface of the heat spreader 21 exposed to the device hole of the lead frame 23 as a die pad by die bonding via an adhesive 26, and a wire 27 is bonded and wired. In the molding step, sealing was performed with an epoxy-based mold resin 29 to obtain a resin-sealed semiconductor device.

【0044】本実施形態3によるヒートスプレッダ21
は、熱膨張率が16.7ppm、熱伝導率196W/(m・
K)、ヤング率118KN/mm2 であり、モールド樹脂19
の熱膨張率16.6ppmと近接した熱膨張率を有して
おり、第1実施形態と同様の加熱実験を行った結果、半
導体装置に反りは観測されず、また、定格電流(7.5
W)を流した時の熱抵抗は3℃/Wと低く、良好な放熱性
が見られた。
The heat spreader 21 according to the third embodiment
Has a thermal expansion coefficient of 16.7 ppm and a thermal conductivity of 196 W / (m ·
K), the Young's modulus is 118 KN / mm 2 ,
Has a coefficient of thermal expansion close to 16.6 ppm, and as a result of conducting a heating experiment similar to that of the first embodiment, no warpage is observed in the semiconductor device, and the rated current (7.5
The heat resistance when flowing W) was as low as 3 ° C./W, and good heat dissipation was observed.

【0045】なお、ここでは、比較例として、ヒートス
プレッダを用いないで、半導体素子搭載用のダイパッド
を備えた本実施形態3と同サイズのQFPリードフレー
ムを用いて、半導体素子を搭載し、本実施形態3と同様
のモールド封止を行ったものについても熱抵抗を測定し
た。その結果、比較例では8℃/Wを越える高い値であ
り、ヒートスプレッダ21を備えた本実施形態によれ
ば、半導体装置の放熱性が大幅に改善されたことが明ら
かである。
Here, as a comparative example, a semiconductor device was mounted using a QFP lead frame having the same size as that of the third embodiment having a die pad for mounting a semiconductor device without using a heat spreader. The thermal resistance was also measured for the one subjected to the same mold sealing as in Embodiment 3. As a result, the comparative example has a high value exceeding 8 ° C./W, and it is clear that according to the present embodiment including the heat spreader 21, the heat dissipation of the semiconductor device has been greatly improved.

【0046】(実施形態4)次に、本発明の第4の実施
の形態として、Al硬質無機粒子を含有するAl
合金からなる金属部材を、放熱板(ヒートスプレッダ)
として備えた、2層回路ガラス樹脂基板を用いたプラス
チックBGAを図4の概略断面図に示す。
Next (Embodiment 4), as a fourth embodiment of the present invention, Al containing Al 2 0 3 hard inorganic particles
Heat dissipating plate (heat spreader)
FIG. 4 is a schematic cross-sectional view showing a plastic BGA using a two-layer circuit glass resin substrate provided as an example.

【0047】まず、6061合金に22%Al
含有して成る22mm×22mm,厚さ0.65mmの
Al合金板を、黒色アルマイト処理を施すことによっ
て、表面に厚さ約25μmのアルマイト酸化被膜32が
形成されたヒートスプレッダ31を得る。
First, a 22 mm × 22 mm, 0.65 mm thick Al alloy plate containing 22% Al 2 O 3 in the 6061 alloy was subjected to black alumite treatment to form an alumite having a thickness of about 25 μm on the surface. The heat spreader 31 on which the oxide film 32 is formed is obtained.

【0048】このヒートスプレッダ31を、同サイズ
の、両面に銅箔回路36を有するガラス樹脂基板33に
絶縁性接着剤34を介して接着固定する。さらに基板3
3のデバイスホールに露出するヒートスプレッタ31の
表面上に半導体素子35を絶縁性接着剤34を介して接
着、搭載し、ワイヤ37をボンディング配線した後、ダ
ムポリマ38を用いてモールド樹脂39により封止を行
った。その後、外部端子の半田ボール30を回路36上
に付けた。
The heat spreader 31 is adhered and fixed to a glass resin substrate 33 having the same size and having copper foil circuits 36 on both sides via an insulating adhesive 34. Further, substrate 3
A semiconductor element 35 is bonded and mounted on the surface of the heat spreader 31 exposed in the device hole 3 through an insulating adhesive 34, and after bonding and wiring of a wire 37, sealing is performed with a mold resin 39 using a dam polymer 38. went. Thereafter, the solder balls 30 as external terminals were mounted on the circuit 36.

【0049】本実施形態4によるヒートスプレッダ31
は、熱膨張率が17.1ppm、熱伝導率166W/(m・
K)、ヤング率112KN/mm2 であった。また、第1の実
施形態と同様の加熱実験の結果、反りは観測されなかっ
た。
The heat spreader 31 according to the fourth embodiment
Has a thermal expansion coefficient of 17.1 ppm and a thermal conductivity of 166 W / (m ·
K) and the Young's modulus were 112 KN / mm 2 . As a result of the same heating experiment as in the first embodiment, no warpage was observed.

【0050】ここで、比較例として、Al合金板に代え
て0.3%Snおよび0.0025%P含有のCu合金
板(22mm×22mm,厚さ0.45mm)に黒色酸
化同処理を施して表面に厚さ約1μmの酸化被膜を形成
して成る比較用ヒートスプレッダを用い、本実施形態4
と同様に2層回路ガラス樹脂基板のプラスチックBGA
を得た。
Here, as a comparative example, instead of an Al alloy plate, a Cu alloy plate (22 mm × 22 mm, thickness 0.45 mm) containing 0.3% Sn and 0.0025% P was subjected to the same black oxidation treatment. Embodiment 4 using a comparative heat spreader having an oxide film having a thickness of about 1 μm
Plastic BGA with two-layer circuit glass resin substrate as in
I got

【0051】この、比較例によるプラスチックBGA
は、比較用ヒートスプレッダについては熱膨張率、熱伝
導率、ヤング率において本実施形態4によるヒートスプ
レッダ31と同程度の特性を示し、また、上記加熱実験
においても反りは観測され無かったが、そのBGA半導
体装置の重量は3.3gであり、本実施形態4によるB
GA半導体装置が1.5gであるのに対して1.5g以
上重いものであった。
The plastic BGA according to the comparative example
Shows that the heat spreader for comparison has the same thermal expansion coefficient, thermal conductivity, and Young's modulus as those of the heat spreader 31 according to the fourth embodiment, and no warpage was observed in the above heating experiment. The weight of the semiconductor device is 3.3 g.
The GA semiconductor device weighed 1.5 g and was 1.5 g or more.

【0052】以上の結果から、本実施形態4によれば、
優れた熱膨張率マッチングおよび機械的特性をもちなが
らもAlの軽量性という特性を生かしたヒートスプレッ
ダ31によって、高品質で軽量な樹脂封止半導体装置が
得られ、特に携帯機器や輸送機器等の軽量性が必要とさ
れる製品への用途に効果的である。
From the above results, according to the fourth embodiment,
By using the heat spreader 31, which has the characteristics of lightweight of Al while having excellent coefficient of thermal expansion matching and mechanical properties, a high-quality and light-weight resin-encapsulated semiconductor device can be obtained. It is effective for use in products where properties are required.

【0053】(実施形態5)次に、本発明の第5の実施
形態として、SiC及びAiNの硬質無機粒子を含有す
るAl合金からなる金属部材を、放熱板(ヒートスプレ
ッダ)として備えた、銅箔回路張りポリイミドフィルム
を用いたテープBGAを図5の概略断面図に示す。
Embodiment 5 Next, as a fifth embodiment of the present invention, a copper foil provided with a metal member made of an Al alloy containing hard inorganic particles of SiC and AiN as a heat spreader (heat spreader). FIG. 5 is a schematic cross-sectional view showing a tape BGA using a circuit-stretched polyimide film.

【0054】まず、6061合金に15%SiCおよび
5%AlNを含有して成る18mm×18mm,厚さ
0.50mmのAl合金板を、黒色アルマイト処理を施
すことによって、表面に厚さ約10μmのアルマイト酸
化被膜42が形成されたヒートスプレッダ41を得る。
ただし、このヒートスプレッダ41は、予め、後に貼り
合わせられる基板43のデバイスホール領域に相当する
部分が凹形状に成形されたものである。
First, an 18 mm × 18 mm, 0.50 mm thick Al alloy plate containing 15% SiC and 5% AlN in the 6061 alloy was subjected to black alumite treatment to obtain a surface having a thickness of about 10 μm. The heat spreader 41 on which the alumite oxide film 42 is formed is obtained.
However, in the heat spreader 41, a portion corresponding to a device hole region of the substrate 43 to be bonded later is formed in a concave shape in advance.

【0055】このヒートスプレッダ41を、厚さ18μ
mの銅箔回路46を有する厚さ25μmのポリイミドテ
ープ基板43に絶縁性接着剤44を介して接着固定す
る。さらに基板43のデバイスホールに露出する凹部上
のヒートスプレッタ41の表面上に半導体素子45を絶
縁性接着剤44を介して接着、搭載し、ワイヤ47をボ
ンディング配線した後、モールド樹脂49により封止を
行った。このとき、ヒートスプレッダ41の凹部がダム
ポリマの機能を発揮し、ダムポリマを配することなく簡
便に液漏れが防止できる。この樹脂封止後、外部端子の
半田ボール40を回路46上に付けた。
The heat spreader 41 is set to a thickness of 18 μm.
A 25 μm-thick polyimide tape substrate 43 having an m-copper circuit 46 is bonded and fixed via an insulating adhesive 44. Further, the semiconductor element 45 is bonded and mounted on the surface of the heat spreader 41 on the concave portion exposed in the device hole of the substrate 43 via the insulating adhesive 44, and the wire 47 is bonded and wired. went. At this time, the concave portion of the heat spreader 41 exerts the function of the dam polymer, and liquid leakage can be easily prevented without disposing the dam polymer. After this resin sealing, solder balls 40 as external terminals were mounted on the circuit 46.

【0056】本実施形態5によるヒートスプレッダ41
は、熱膨張率が17.0ppm、熱伝導率189W/(m・
K)、ヤング率108KN/mm2 であった。このヒートスプ
レッダ41は、もちろん半導体素子45の発熱を放散す
る作用を持つと共に、可撓性テープ基板43を補強し、
樹脂封止半導体装置に剛性を付与するスティフナの働き
をも有する。
The heat spreader 41 according to the fifth embodiment.
Has a thermal expansion coefficient of 17.0 ppm and a thermal conductivity of 189 W / (m ·
K) and the Young's modulus were 108 KN / mm 2 . The heat spreader 41 has a function of dissipating heat generated by the semiconductor element 45 and also reinforces the flexible tape substrate 43,
It also has a function of a stiffener for providing rigidity to the resin-sealed semiconductor device.

【0057】従来、スティフナにはSUS板を用いるこ
とが通例であるが、このSUS板の熱伝導率は、上記本
実施形態5によるヒートスプレッダ41の熱伝導率の約
1/15と非常に小さく、熱放散性が不十分であった。
そこで、特に放熱性を必要とする高密度の高速半導体素
子においてはCuとSUSとを組み合わせた2層のステ
ィフナが用いられていた。
Conventionally, a SUS plate is generally used for the stiffener. However, the thermal conductivity of this SUS plate is very small, about 1/15 of the thermal conductivity of the heat spreader 41 according to the fifth embodiment. Heat dissipation was insufficient.
Therefore, a two-layer stiffener combining Cu and SUS has been used particularly in a high-density high-speed semiconductor element requiring heat radiation.

【0058】これに対し、本実施形態5によれば、優れ
た熱方散性と基板補強機能を、一層の軽量なヒートスブ
レッダ41に半導体素子45を搭載するという簡便な構
成で容易に実現することができる。
On the other hand, according to the fifth embodiment, the excellent heat dissipation and the substrate reinforcing function can be easily realized by a simple configuration in which the semiconductor element 45 is mounted on the lighter heat spreader 41. can do.

【0059】[0059]

【発明の効果】以上説明したとおり、本発明によれば、
安価で、放熱板や基板としての優れた機能を発揮すると
共に、樹脂との密着接合性や熱膨張率マッチング、機械
的強度および適正なヤング率、また軽量性に優れた特性
を持つ金属部材を備えたものであるため、軽量でありな
がらも従来より高品質な樹脂封止型半導体装置の提供が
可能となるという効果がある。
As described above, according to the present invention,
Inexpensive metal parts that exhibit excellent functions as heat sinks and substrates, as well as excellent adhesion properties with resin, thermal expansion coefficient matching, mechanical strength, proper Young's modulus, and lightweight properties Since the semiconductor device is provided, there is an effect that it is possible to provide a resin-sealed semiconductor device which is lighter in quality but higher in quality than the conventional one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態による樹脂封止型半導
体装置(QFP)の概略断面図である。
FIG. 1 is a schematic sectional view of a resin-encapsulated semiconductor device (QFP) according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態による樹脂封止型半導
体装置(QFP)の概略断面図である。
FIG. 2 is a schematic sectional view of a resin-encapsulated semiconductor device (QFP) according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態による樹脂封止型半導
体装置(QFP)の概略断面図である。
FIG. 3 is a schematic sectional view of a resin-encapsulated semiconductor device (QFP) according to a third embodiment of the present invention.

【図4】本発明の第4の実施形態による樹脂封止型半導
体装置(BGA)の概略断面図である。
FIG. 4 is a schematic sectional view of a resin-encapsulated semiconductor device (BGA) according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施形態による樹脂封止型半導
体装置(BGA)の概略断面図である。
FIG. 5 is a schematic sectional view of a resin-sealed semiconductor device (BGA) according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11,21,31,41:ヒートスプレッダ 2,12,22,32,42:アルマイト酸化被膜 3,13,23:リードフレーム 33:ガラス樹脂基板 43:ポリイミドテープ基板 36,46:銅箔回路 4,14,24:ポリイミド系熱可塑性接着剤テープ 34,44:絶縁性接着剤 5,15,25,35,45:半導体素子 6:ペースト材 16,26:ポリイミド系接着剤 7,17,27,37,47:ワイヤ 18,38:ダムポリマ 9,19,29,39,49:エポキシ系モールド樹脂 30,40:半田ボール 1, 11, 21, 31, 41: heat spreader 2, 12, 22, 32, 42: alumite oxide film 3, 13, 23: lead frame 33: glass resin substrate 43: polyimide tape substrate 36, 46: copper foil circuit 4 , 14, 24: Polyimide thermoplastic adhesive tape 34, 44: Insulating adhesive 5, 15, 25, 35, 45: Semiconductor element 6: Paste material 16, 26: Polyimide adhesive 7, 17, 27, 37, 47: Wire 18, 38: Dam polymer 9, 19, 29, 39, 49: Epoxy mold resin 30, 40: Solder ball

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子を樹脂で封止したパッケージ
構造を有する樹脂封止型半導体装置において、 半導体素子に接触もしくは近接配置された金属部材を備
え、 前記金属部材が、10Vol%以上、30Vol%以下
の範囲内で硬質無機粒子を含有するAlを主な構成成分
とすることを特徴とする樹脂封止型半導体装置。
1. A resin-encapsulated semiconductor device having a package structure in which a semiconductor element is sealed with a resin, comprising: a metal member that is in contact with or close to the semiconductor element, wherein the metal member is 10% by volume or more and 30% by volume. A resin-encapsulated semiconductor device comprising, as a main component, Al containing hard inorganic particles within the following range.
【請求項2】 前記硬質無機粒子は、SiC、Al
、AlN、BN、WC、SiN、のうちの一つ以上で
あることを特徴とする請求項1に記載の樹脂封止型半導
体装置。
2. The hard inorganic particles are made of SiC, Al 2 O
3. The resin-encapsulated semiconductor device according to claim 1, wherein the semiconductor device is at least one of AlN, BN, WC, and SiN.
【請求項3】 前記金属部材の表面の少なくとも一部に
アルマイト処理被膜が形成されていることを特徴とする
請求項1に記載の樹脂封止型半導体装置。
3. The resin-encapsulated semiconductor device according to claim 1, wherein an alumite-treated film is formed on at least a part of the surface of the metal member.
【請求項4】 前記金属部材が半導体素子からの熱を逃
すためのヒートスプレッダとして配置されていることを
特徴とする請求項1に記載の樹脂封止型半導体装置。
4. The resin-encapsulated semiconductor device according to claim 1, wherein the metal member is disposed as a heat spreader for releasing heat from the semiconductor element.
JP14560298A 1998-05-27 1998-05-27 Resin-sealed semiconductor device Pending JPH11340385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14560298A JPH11340385A (en) 1998-05-27 1998-05-27 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14560298A JPH11340385A (en) 1998-05-27 1998-05-27 Resin-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH11340385A true JPH11340385A (en) 1999-12-10

Family

ID=15388858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14560298A Pending JPH11340385A (en) 1998-05-27 1998-05-27 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH11340385A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195810A1 (en) * 2000-03-15 2002-04-10 Sumitomo Electric Industries, Ltd. Aluminum-silicon carbide semiconductor substrate and method for producing the same
JP2002334975A (en) * 2001-05-08 2002-11-22 Nec Corp Support structure for semiconductor device, ccd semiconductor device, manufacturing method therefor and package for ccd semiconductor device
JP2002373956A (en) * 2001-06-14 2002-12-26 Nec Corp Semiconductor device
CN113809050A (en) * 2021-09-30 2021-12-17 重庆平创半导体研究院有限责任公司 Chip anti-irradiation packaging material and anti-irradiation packaging process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195810A1 (en) * 2000-03-15 2002-04-10 Sumitomo Electric Industries, Ltd. Aluminum-silicon carbide semiconductor substrate and method for producing the same
EP1195810A4 (en) * 2000-03-15 2007-10-10 Sumitomo Electric Industries Aluminum-silicon carbide semiconductor substrate and method for producing the same
JP2002334975A (en) * 2001-05-08 2002-11-22 Nec Corp Support structure for semiconductor device, ccd semiconductor device, manufacturing method therefor and package for ccd semiconductor device
JP2002373956A (en) * 2001-06-14 2002-12-26 Nec Corp Semiconductor device
CN113809050A (en) * 2021-09-30 2021-12-17 重庆平创半导体研究院有限责任公司 Chip anti-irradiation packaging material and anti-irradiation packaging process

Similar Documents

Publication Publication Date Title
US7476976B2 (en) Flip chip package with advanced electrical and thermal properties for high current designs
US6291274B1 (en) Resin molded semiconductor device and method for manufacturing the same
US5650663A (en) Electronic package with improved thermal properties
US6433420B1 (en) Semiconductor package with heat sink having air vent
US7944044B2 (en) Semiconductor package structure having enhanced thermal dissipation characteristics
US20060263944A1 (en) System and method for die attach using a backside heat spreader
US6376905B2 (en) Semiconductor package
US20220157700A1 (en) Two sided bondable lead frame
JPH11340385A (en) Resin-sealed semiconductor device
TWI757133B (en) Quad flat no-lead package structure
US6784536B1 (en) Symmetric stack up structure for organic BGA chip carriers
JP3493833B2 (en) Plastic package for mounting semiconductor element and method of manufacturing the same
JP2891426B2 (en) Semiconductor device
JP3125891B2 (en) Semiconductor device
KR100203932B1 (en) BGA package having thermal emissive substrate attached to chip
JP4277582B2 (en) Semiconductor device
JP2761995B2 (en) High heat dissipation integrated circuit package
JP3100833B2 (en) Plastic package
JP2001210769A (en) Semiconductor device
JP2001127195A (en) Terminal land frame, its manufacturing method, and method of manufacturing resin-sealed semiconductor device
KR20000001487A (en) Ball grid array package having super-heat emission characteristic
JPH05299571A (en) Manufacture of lead frame with heat spreader
JPH11330309A (en) Metal core board
JPH0321091B2 (en)
TW201820572A (en) Chip packaging structure and manufacturing method thereof by exposing heat dissipating substrate out of the upper surface of packaging structure to effectively dissipate waste heat generated by chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424