JPH11340104A - Electrochemical capacitor - Google Patents

Electrochemical capacitor

Info

Publication number
JPH11340104A
JPH11340104A JP10147571A JP14757198A JPH11340104A JP H11340104 A JPH11340104 A JP H11340104A JP 10147571 A JP10147571 A JP 10147571A JP 14757198 A JP14757198 A JP 14757198A JP H11340104 A JPH11340104 A JP H11340104A
Authority
JP
Japan
Prior art keywords
electrochemical capacitor
conductive polymer
current collector
separator
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10147571A
Other languages
Japanese (ja)
Inventor
Takuji Ono
卓爾 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electronic Components Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electronic Components Co Ltd, Sanyo Electric Co Ltd filed Critical Sanyo Electronic Components Co Ltd
Priority to JP10147571A priority Critical patent/JPH11340104A/en
Publication of JPH11340104A publication Critical patent/JPH11340104A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical capacitor having a larger capacitance and a lower internal resistance than the conventional one has by improving the structure of the polarizable electrodes of the capacitor. SOLUTION: In an electrochemical capacitor having a separator 13 and a pair of polarizable electrodes 11 and 12 faced to each other through the separator 13, at least one of the electrodes 11 and 12 is formed by forming a conductive polymer layer on the surface of a current collecting body composed of an intermetallic compound having a dendritic form. The electric collector is formed by crystallizing an intermetallic compound phase having the dendritic form in the mother phase of an alloy and etching off the mother phase portion of the alloy, or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学キャパシ
タにおける分極性電極の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a polarizable electrode in an electrochemical capacitor.

【0002】[0002]

【従来の技術】一般的な電気化学キャパシタの構成を、
図3に示す。この電気化学キャパシタ(100)は、一対の
分極性電極(101)(102)が、電子絶縁性且つイオン透過性
である多孔質のセパレータ(103)を挟持し、これを、電
子伝導性且つイオン不透過性である電極端子(104)(105)
と、電気絶縁性のガスケット(106)とによって取り囲
み、電解液を注入した後に封止したものである。
2. Description of the Related Art The structure of a general electrochemical capacitor is expressed as follows.
As shown in FIG. In this electrochemical capacitor (100), a pair of polarizable electrodes (101) and (102) sandwich a porous separator (103) that is electronically insulating and ion-permeable, and is connected to an electron-conductive and ion-conductive material. Electrode terminals that are impermeable (104) (105)
And an electrically insulating gasket (106), and sealed after injecting an electrolytic solution.

【0003】電気化学キャパシタは、分極性電極(101)
(102)と電解液との界面に生じる電気二重層が大きな静
電容量を有することを利用して充放電を行なうものであ
り、近時、ICやメモリのバックアップ電源として、或
いは小電力の直流電源として使用されている。
[0003] The electrochemical capacitor comprises a polarizable electrode (101).
The electric double layer generated at the interface between (102) and the electrolyte is charged and discharged by utilizing the large capacitance. Recently, it has been used as a backup power supply for ICs and memories, or a low-power DC power supply. Used as a power supply.

【0004】電気化学キャパシタは、電池に代わる電源
又はエネルギー蓄積デバイスとして、さらに多くの用途
に利用されるために、大容量化と内部抵抗の低減化が要
求されている。
[0004] Electrochemical capacitors are required to have a large capacity and a low internal resistance in order to be used as a power source or an energy storage device in place of a battery for more uses.

【0005】電気化学キャパシタの容量を増大させるに
は、分極性電極と電解液との接触面積を増大させればよ
い。このため、従来、分極性電極の材料として、活性炭
等のカーボンや、ポリアセン、ポリピロール等の導電性
ポリマーが使用されてきた。又、電気化学キャパシタの
容量をさらに増大させるために、カーボンと導電性ポリ
マーとを組み合わせた分極性電極が、特公平7−914
49号、特開平7−201676号、文献「Electroche
mical Society Proceeding Volume 96-25 (p.209)」等
に開示されている。
[0005] To increase the capacity of the electrochemical capacitor, the contact area between the polarizable electrode and the electrolyte may be increased. For this reason, conventionally, carbon such as activated carbon and conductive polymers such as polyacene and polypyrrole have been used as the material of the polarizable electrode. Further, in order to further increase the capacity of the electrochemical capacitor, a polarizable electrode combining carbon and a conductive polymer has been disclosed in Japanese Patent Publication No. 7-914.
49, JP-A-7-201676, and the document "Electroche
mical Society Proceeding Volume 96-25 (p.209) ”.

【0006】導電性ポリマーや炭素系材料の導電率は、
10〜1000S(ジーメンス)/cmの範囲にあり、金属合
金系材料の導電率は、10k〜100kS/cmの範囲にあ
る。従って、電気化学キャパシタの内部抵抗を低減する
には、導電性ポリマーや炭素系材料よりも、金属合金系
の材料を分極性電極として使用する方が効果的である。
The conductivity of a conductive polymer or a carbon-based material is as follows:
It is in the range of 10 to 1000 S (Siemens) / cm, and the conductivity of the metal alloy-based material is in the range of 10 k to 100 kS / cm. Therefore, in order to reduce the internal resistance of the electrochemical capacitor, it is more effective to use a metal alloy-based material as the polarizable electrode than a conductive polymer or a carbon-based material.

【0007】しかしながら、一般に、金属合金系の材料
は、導電性ポリマーや炭素系材料に比べて、比表面積が
著しく小さく、気孔径が著しく大きいため、容量を大き
くすることが困難である。現在市販されている金属合金
系の材料としては、ニッケルカドミウム電池等に使用さ
れているニッケル多孔質焼結体があり、住友電気工業株
式会社製のセルメットを例にすると、最も気孔率の大き
いものでも、比表面積が75cm2/cm3であり、活性炭
の1000〜2000m2/cm3に比べて著しく小さく、又、気
孔径の平均値が0.5mm程度であり、活性炭の1〜4n
mに比べて非常に大きい。
However, in general, a metal alloy-based material has a significantly smaller specific surface area and a significantly larger pore diameter than a conductive polymer or a carbon-based material, so that it is difficult to increase the capacity. Currently commercially available metal alloy-based materials include nickel porous sintered bodies used for nickel cadmium batteries and the like.For example, Celmet manufactured by Sumitomo Electric Industries, Ltd. has the largest porosity. But, a specific surface area of 75 cm 2 / cm 3, significantly smaller than the 1000 to 2000 2 / cm 3 of the activated carbon, and the average value of the pore diameter is about 0.5 mm, the activated carbon 1~4n
It is much larger than m.

【0008】[0008]

【発明が解決しようとする課題】本発明は、電気化学キ
ャパシタにおける分極性電極の構造を改良し、従来より
も容量が大きく且つ内部抵抗が小さい電気化学キャパシ
タを提供するものである。
SUMMARY OF THE INVENTION The present invention is to improve the structure of a polarizable electrode in an electrochemical capacitor, and to provide an electrochemical capacitor having a larger capacity and a smaller internal resistance than conventional ones.

【0009】[0009]

【課題を解決するための手段】本発明による電気化学キ
ャパシタは、セパレータ(13)と、該セパレータを介して
対向する一対の分極性電極(11)(12)とを具える電気化学
キャパシタにおいて、少なくとも一方の分極性電極が、
樹枝状形態を有する金属間化合物からなる集電体(1)の
表面に、導電性ポリマー層(2)が形成されてなることを
特徴とするものである。
According to the present invention, there is provided an electrochemical capacitor comprising a separator (13) and a pair of polarizable electrodes (11) and (12) opposed to each other via the separator. At least one polarizable electrode,
The present invention is characterized in that a conductive polymer layer (2) is formed on a surface of a current collector (1) made of an intermetallic compound having a dendritic morphology.

【0010】前記集電体(1)は、合金の母相中に樹枝状
形態を有する金属間化合物相を晶出させ、前記合金の母
相部分をエッチング除去すること等により形成される。
The current collector (1) is formed by crystallizing an intermetallic compound phase having a dendritic morphology in a parent phase of the alloy, and etching away the parent phase portion of the alloy.

【0011】[0011]

【発明の実施の形態】本発明の一実施形態に従った電気
化学キャパシタを、図1に示す。この電気化学キャパシ
タ(10)は、図3に示した従来の電気化学キャパシタに比
べて、分極性電極(11)(12)の構造に特徴を有するもので
あり、その他の点は従来と同じである。すなわち、この
電気化学キャパシタ(10)の分極性電極(11)(12)は、図2
に示すように、樹枝状形態(樹枝間隔0.1〜1μm)を
有する金属間化合物からなる集電体(1)の表面に、導電
性ポリマー層(2)が形成されてなるものである。
DETAILED DESCRIPTION OF THE INVENTION An electrochemical capacitor according to one embodiment of the present invention is shown in FIG. This electrochemical capacitor (10) is characterized by the structure of the polarizable electrodes (11) and (12) as compared with the conventional electrochemical capacitor shown in FIG. 3, and the other points are the same as the conventional one. is there. That is, the polarizable electrodes (11) and (12) of the electrochemical capacitor (10) are as shown in FIG.
As shown in FIG. 1, a conductive polymer layer (2) is formed on the surface of a current collector (1) made of an intermetallic compound having a dendritic morphology (dendritic interval of 0.1 to 1 μm).

【0012】前記集電体は、特開平6−53087号、
特開平6−267803号等に開示された技術の一部を
流用して製造される。すなわち、AlにZr或いはHf
を添加して高温で溶融させ、該溶湯を高速で回転する単
ロール上に噴射して急冷凝固させることにより、Al母
相中にAl3Zr或いはAl3Hfの樹枝状組織相を晶出
させる。そして、前記2相合金中のAl母相部分をエッ
チング除去することにより、樹枝状形態を有するAl3
Zr或いはAl3Hfの箔帯(厚さ数十〜数百μm)が
形成される。
The current collector is disclosed in JP-A-6-53087,
It is manufactured by diverting a part of the technology disclosed in JP-A-6-267803. That is, Zr or Hf is added to Al.
And melted at a high temperature, and the molten metal is sprayed onto a single roll rotating at a high speed and rapidly cooled and solidified to crystallize a dendritic phase phase of Al 3 Zr or Al 3 Hf in the Al matrix. . Then, the Al matrix phase portion in the two-phase alloy is removed by etching, whereby Al 3 having a dendritic form is formed.
A foil strip (thickness of several tens to several hundreds of μm) of Zr or Al 3 Hf is formed.

【0013】前記導電性ポリマー層は、前記集電体とな
る箔帯に、酸化重合により導電性ポリマーとなるモノマ
ーとしての3,4-エチレンジオキシチオフェンと、酸化
剤としてのパラトルエンスルホン酸鉄(III)と、希釈剤
としてのイソプロピルアルコールとを重量比1:1〜
4:2〜5で混合した化学重合液を滴下することにより
形成される。或いは、前記集電体となる箔帯を、前記化
学重合液に浸漬することにより形成される。
[0013] The conductive polymer layer is formed by forming 3,4-ethylenedioxythiophene as a monomer which becomes a conductive polymer by oxidative polymerization and iron para-toluenesulfonate as an oxidizing agent on the foil strip as a current collector. (III) and isopropyl alcohol as a diluent in a weight ratio of 1: 1 to 1
4: formed by dropping a chemical polymerization solution mixed in 2 to 5; Alternatively, it is formed by immersing the foil strip serving as the current collector in the chemical polymerization solution.

【0014】この時、導電性ポリマー層の結晶粒径を、
集電体を構成する樹枝状組織の気孔径よりも小さくする
ことにより、導電性ポリマー層が集電体の樹枝状組織を
埋包する如く形成される。導電性ポリマー層の結晶粒径
は、前記重合反応時の温度や、前記化学重合液の希釈剤
としてのイソプロピルアルコールの濃度等を加減するこ
とにより制御される。
At this time, the crystal grain size of the conductive polymer layer is
By making the pore diameter smaller than that of the dendritic tissue constituting the current collector, the conductive polymer layer is formed so as to embed the dendritic tissue of the current collector. The crystal grain size of the conductive polymer layer is controlled by adjusting the temperature at the time of the polymerization reaction or the concentration of isopropyl alcohol as a diluent for the chemical polymerization solution.

【0015】又、集電体を構成する樹枝状組織の表面に
対する導電性ポリマー層の付着性は、前記化学重合液に
γ-グリシドキシプロピル・トリメトキシシラン等を含む
シランカップリング剤を添加することにより、さらに向
上する。
The adhesion of the conductive polymer layer to the surface of the dendritic tissue constituting the current collector can be determined by adding a silane coupling agent containing γ-glycidoxypropyl / trimethoxysilane to the chemical polymerization solution. By doing so, it is further improved.

【0016】尚、ポリチオフェン系の導電性ポリマー層
は脆性を有するため、導電性ポリマー層形成後に、フッ
素系バインダ(例えば、ポリフッ化ビニレン10gをN-
メチルピロリドン100gに溶解したもの)を滴下、或い
は散布してもよい。
Since the polythiophene-based conductive polymer layer is brittle, a fluorine-based binder (for example, 10 g of polyvinylene fluoride is added to N-
(100 g of methylpyrrolidone) may be dropped or sprayed.

【0017】このようにして形成した分極性電極(11)(1
2)を、所定の形状に型で打ち抜いた後、セパレータ(13)
を挟んで一方の電極端子となる集電缶(15)に収納し、こ
れに電解液を注入した後、他方の電極端子(14)とガスケ
ット(16)にて封止することにより、図1に示すような電
気化学キャパシタ(10)が完成する。
The polarizable electrodes (11) (1) thus formed
2), after punching into a predetermined shape with a mold, separator (13)
Is placed in a current collector can (15) serving as one of the electrode terminals, and the electrolyte is injected into the current collector can. Thereafter, the other electrode terminal (14) and a gasket (16) are used to seal the battery. The electrochemical capacitor (10) as shown in FIG.

【0018】尚、セパレータは、電子絶縁性且つイオン
透過性の多孔体であり、具体的には、多孔性のポリプロ
ピレンフィルム又はポリエチレンフィルム、不織布等が
使用される。
The separator is an electronically insulating and ion-permeable porous body. Specifically, a porous polypropylene film or polyethylene film, a nonwoven fabric, or the like is used.

【0019】又、電解液は、溶質としてテトラエチルア
ンモニウムテトラフルオロボレートのような四級アンモ
ニウム塩を含み、溶媒としてプロピレンカーボネート、
γ−ブチロラクトン等を含むものが使用される。
The electrolytic solution contains a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate as a solute, propylene carbonate as a solvent,
Those containing γ-butyrolactone and the like are used.

【0020】[0020]

【発明の効果】本発明によれば、樹枝状形態を有する金
属間化合物からなる集電体の表面に導電性ポリマー層が
形成された分極性電極を用いることにより、集電体と導
電性ポリマー層との接触面積が増大すると共に集電体内
での電荷移動がスルーパスとなり、容量が大きくて内部
抵抗が小さい電気化学キャパシタが提供される。
According to the present invention, the current collector and the conductive polymer can be formed by using a polarizable electrode having a conductive polymer layer formed on the surface of a current collector made of an intermetallic compound having a dendritic morphology. As the contact area with the layer increases, the charge transfer in the current collector becomes a through path, and an electrochemical capacitor having a large capacity and a small internal resistance is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例による電気化学キャパシタの断面
図である。
FIG. 1 is a sectional view of an electrochemical capacitor according to an embodiment of the present invention.

【図2】本発明実施例による電気化学キャパシタにおけ
る分極性電極の断面拡大図である。
FIG. 2 is an enlarged cross-sectional view of a polarizable electrode in an electrochemical capacitor according to an embodiment of the present invention.

【図3】従来例による電気化学キャパシタの断面図であ
る。
FIG. 3 is a cross-sectional view of a conventional electrochemical capacitor.

【符号の説明】[Explanation of symbols]

1 集電体 2 導電性ポリマー層 11、12 分極性電極 13 セパレータ 14、15 電極端子 1 Current collector 2 Conductive polymer layer 11, 12-polarity electrode 13 Separator 14, 15 Electrode terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セパレータ(13)と、該セパレータ(13)を
介して対向する一対の分極性電極(11)(12)とを具える電
気化学キャパシタにおいて、 少なくとも一方の分極性電極は、樹枝状形態を有する金
属間化合物からなる集電体(1)の表面に、導電性ポリマ
ー層(2)が形成されてなることを特徴とする電気化学キ
ャパシタ。
1. An electrochemical capacitor comprising a separator (13) and a pair of polarizable electrodes (11) and (12) opposed to each other via the separator (13), wherein at least one of the polarizable electrodes is a dendritic tree. An electrochemical capacitor characterized in that a conductive polymer layer (2) is formed on a surface of a current collector (1) made of an intermetallic compound having a morphology.
【請求項2】 前記集電体(1)は、合金の母相中に樹枝
状形態を有する金属間化合物相を晶出させ、前記合金の
母相部分をエッチング除去することにより形成されたも
のであることを特徴とする請求項1記載の電気化学キャ
パシタ。
2. The current collector (1) is formed by crystallizing an intermetallic compound phase having a dendritic morphology in a parent phase of an alloy and etching away a parent phase portion of the alloy. The electrochemical capacitor according to claim 1, wherein
JP10147571A 1998-05-28 1998-05-28 Electrochemical capacitor Pending JPH11340104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10147571A JPH11340104A (en) 1998-05-28 1998-05-28 Electrochemical capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10147571A JPH11340104A (en) 1998-05-28 1998-05-28 Electrochemical capacitor

Publications (1)

Publication Number Publication Date
JPH11340104A true JPH11340104A (en) 1999-12-10

Family

ID=15433377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10147571A Pending JPH11340104A (en) 1998-05-28 1998-05-28 Electrochemical capacitor

Country Status (1)

Country Link
JP (1) JPH11340104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929047A (en) * 2008-02-28 2013-02-13 住友化学株式会社 Transparent thin-film electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929047A (en) * 2008-02-28 2013-02-13 住友化学株式会社 Transparent thin-film electrode
CN102929047B (en) * 2008-02-28 2015-05-20 住友化学株式会社 Transparent thin-film electrode

Similar Documents

Publication Publication Date Title
JP3496338B2 (en) Electric double layer capacitor
KR100863562B1 (en) Organic electrolytic capacitor
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
JP4535334B2 (en) Organic electrolyte capacitor
KR20050116795A (en) Electrical storage device and method for manufacturing electrical storage device
TWI457956B (en) Integration of energy storage devices onto substrates for microelectronics and mobile devices
US20110043967A1 (en) Super capacitor and method of fabricating the same
US20020089807A1 (en) Polymer electrochemical capacitors
JP2003526899A (en) Capacitor with double electric layer
CA2392702C (en) Films for electrochemical components and a method for production thereof
CN108400017A (en) A kind of energy storage device of internal series-connection technique
WO2014032404A1 (en) Electrode material and preparation method thereof as well as super-capacitor based on the same
US20140315084A1 (en) Method and apparatus for energy storage
JP3512423B2 (en) Electrochemical charge storage device with constant voltage discharge
JP2002237430A (en) Oxidation-reduction ultrahigh-capacitance capacitor and its manufacturing method
JP3540629B2 (en) Method for producing electrode for electrochemical device and electrochemical device
JPH11340104A (en) Electrochemical capacitor
CN115956304A (en) Low-resistance composite silicon-based electrode
Morimoto et al. Development and current status of electric double-layer capacitors
JPH11283886A (en) Electrochemical capacitor and manufacture thereof
JP2002025865A (en) Electric double-layer capacitor
CN202633454U (en) Lithium ion secondary battery
JPH08162117A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH06302472A (en) Electric double layer capacitor and its manufacture
JP3418431B2 (en) Electric double layer capacitor and method of manufacturing the same