JPH11337756A - Multilayered waveguide type reproducing-only memory card - Google Patents

Multilayered waveguide type reproducing-only memory card

Info

Publication number
JPH11337756A
JPH11337756A JP10148923A JP14892398A JPH11337756A JP H11337756 A JPH11337756 A JP H11337756A JP 10148923 A JP10148923 A JP 10148923A JP 14892398 A JP14892398 A JP 14892398A JP H11337756 A JPH11337756 A JP H11337756A
Authority
JP
Japan
Prior art keywords
waveguide
light
memory card
scattered light
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10148923A
Other languages
Japanese (ja)
Inventor
Ikutake Yagi
生剛 八木
Yoshiyuki Imai
欽之 今井
Hironori Yamazaki
裕基 山崎
Akiyuki Tate
彰之 館
Makoto Hikita
真 疋田
Akira Tomaru
曉 都丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10148923A priority Critical patent/JPH11337756A/en
Publication of JPH11337756A publication Critical patent/JPH11337756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayered waveguide type memory card to be used only for reproducing which can constitute a large-capacity storage system without requiring a high-precision film thickness control. SOLUTION: A multilayered waveguide is produced by laminating plane optical waveguides 1 and 2 in many layers and has a structure where a face to couple light to the waveguide is inclined at 45 deg. to the normal of the waveguide plane. A refractive index fluctuation or a scattering factor due to raggedness is formed in each waveguide layer 1 to generate scattered light which leaks from the waveguide plane to the outside of the waveguide, and the position where this scattered light is generated is taken out as two-dimensional pattern information by using a lens 6 and a two-dimensional light reception element 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層導波路形再生
専用メモリーカードに関する。例えば、CD、CD−R
OM、あるいは、DVD−ROMの様に音楽や映像ソフ
トあるいはコンピュータのソフトウェアの配布等の用途
が考えられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer waveguide type read-only memory card. For example, CD, CD-R
Applications such as distribution of music or video software or computer software, such as OM or DVD-ROM, are conceivable.

【0002】[0002]

【従来の技術】従来の光メモリーの記憶容量の限界を超
える3次元的記録領域を持ち、かつ、大量生産可能なメ
モリー方式として、再生専用多重ホログラムカードが提
案されている。この方式は、再生時に二次元受光素子に
結像させるためのレンズ系が不要で、再生装置が小型で
安価にできるという利点を有する一方、各導波路がシン
グルモードでなければならず、使用波長を短くしたとき
に高精度の製膜技術を必要とし、短波長化による記憶容
量の向上に限界があった。
2. Description of the Related Art A read-only multiplexed hologram card has been proposed as a memory system having a three-dimensional recording area exceeding the storage capacity of a conventional optical memory and capable of mass production. This method has the advantage that a lens system for forming an image on a two-dimensional light receiving element at the time of reproduction is unnecessary, and the reproduction apparatus can be made small and inexpensive. When the length was shortened, a high-precision film forming technique was required, and there was a limit to the improvement of the storage capacity by shortening the wavelength.

【0003】即ち、クラッドの屈折率を1.47、コア
の屈折率を1.48としたとき、使用波長が830nm
の時には、コアの厚みは2.41μm以下という条件で
あったものが、使用波長を450nmにすると、1.3
1μm以下という条件になり、製造が困難になってしま
う。しかも、シングルモードであるため、レンズによる
光の導波路への結合効率は100%ではなく、結合して
いない光を二次元受光素子に照射させない工夫が必要で
あった。
That is, when the refractive index of the cladding is 1.47 and the refractive index of the core is 1.48, the wavelength used is 830 nm.
At the time of the above, the thickness of the core was 2.41 μm or less, but when the wavelength used was 450 nm, 1.3.
The condition is 1 μm or less, which makes production difficult. In addition, since the mode is a single mode, the coupling efficiency of light to the waveguide by the lens is not 100%, and it is necessary to devise a method of not irradiating uncoupled light to the two-dimensional light receiving element.

【0004】また、ホログラム像を二次元受光素子に結
像させるため、各導波路に作製する散乱要因の配置を計
算機によって予め計算しておく必要があるが、この計算
量が大きく、偽造を防ぐという利点もある一方、製造コ
ストが高くつくという欠点もあった。
In order to form a hologram image on a two-dimensional light receiving element, it is necessary to previously calculate the arrangement of scattering factors to be produced in each waveguide by a computer, but this calculation amount is large and forgery is prevented. On the other hand, there is a disadvantage that the manufacturing cost is high.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述した従
来技術の問題点を解決する多層導波路形再生専用メモリ
ーカードを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-layer waveguide type read-only memory card which solves the above-mentioned problems of the prior art.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明の多層導波路形再生専用メモリーカードは、平面型光
導波路を多層に重ねて作られ、かつ、光を導波路に結合
させる面が導波路平面の法線に対し45°に傾いている
構造をもつ多層導波路において、各導波路層に屈折率揺
らぎ、若しくは、凹凸による散乱要因を形成することで
導波路平面から導波路外に漏れ出す散乱光を作り、その
散乱光の発生位置をレンズと二次元受光素子を用いて二
次元パターン情報として取り出すことを特徴とする。
A multi-layer waveguide type read-only memory card according to the present invention, which solves the above-mentioned problems, is formed by stacking planar optical waveguides in multiple layers, and has a surface for coupling light to the waveguides. In a multilayer waveguide having a structure inclined at 45 ° with respect to the normal line of the waveguide plane, the refractive index fluctuates in each waveguide layer, or a scattering factor due to unevenness is formed to move the waveguide from the waveguide plane to the outside of the waveguide. It is characterized in that leaked scattered light is created, and the position where the scattered light is generated is extracted as two-dimensional pattern information using a lens and a two-dimensional light receiving element.

【0007】[0007]

【発明の実施の形態】再生専用多重ホログラムカードに
おいて用いられている周期的散乱要因による回折光利用
に代えて、各々独立した散乱要因からの散乱光をレンズ
で二次元受光素子上に集光する方法を用いる。散乱要素
は、例えば、図1に示すように、コア1とクラッド2と
の界面に作製する。屈折率揺らぎ、若しくは、凹凸によ
るものの何れでも良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Instead of using diffracted light due to a periodic scattering factor used in a reproduction-only multiplex hologram card, scattered light from independent scattering factors is condensed on a two-dimensional light receiving element by a lens. Method. The scattering element is formed, for example, at the interface between the core 1 and the clad 2, as shown in FIG. Any of fluctuations in refractive index and those due to unevenness may be used.

【0008】光を導波路に結合させる面は、導波路平面
の法線に対し45°に傾いており、集光レンズ6で入射
光7がその面に入射する。また、再生用レンズ群3は、
各導波路表面が二次元受光素子4上で実像を結像するよ
うに配置する。従って、着目する導波路を変更する度に
焦点を合わせ直す機構を持たせる。例えば、図1に示す
ように、ピント合わせ機構5を設ける。
The surface for coupling light to the waveguide is inclined at 45 ° to the normal to the waveguide plane, and the incident light 7 is incident on the surface by the condenser lens 6. The reproducing lens group 3 is
Each waveguide surface is arranged such that a real image is formed on the two-dimensional light receiving element 4. Therefore, a mechanism is provided to refocus each time the waveguide of interest is changed. For example, as shown in FIG. 1, a focusing mechanism 5 is provided.

【0009】ここで、各散乱要因がお互いに独立である
為、散乱光の位相をあわせる必要がなく、従って導波路
はシングルモードである必要はない。つまり、コア厚の
厚いマルチモード導波路を利用でき、製造に関わる困難
さが軽減される。また、コア厚が厚いことから、レンズ
による光の結合効率をほぼ100%にでき、従って、非
結合光による迷光を気にせず結像系のレンズ配置を設計
できる様になる。
Here, since the scattering factors are independent of each other, there is no need to adjust the phase of the scattered light, and therefore the waveguide does not need to be single mode. That is, a multi-mode waveguide having a large core thickness can be used, and the difficulty in manufacturing can be reduced. Further, since the core thickness is large, the coupling efficiency of light by the lens can be made almost 100%. Therefore, the lens arrangement of the imaging system can be designed without concern for stray light due to non-coupled light.

【0010】また、計算機ホログラム作製の手順がな
く、メモリーカード作製が容易となる。各散乱要因の体
積をV、導波路の比屈折率差をΔ、コアの屈折率をn、
波長をλ、結像用のレンズ系で散乱光のB%を二次元受
光素子上に結像できるとすると、散乱要因が波長に比べ
て小さいとき、導波光の光強度がII(W/m2)の地点
の散乱要因からの散乱光を結像した点における光量J2
(W)は、下式で表される。
In addition, there is no procedure for producing a computer generated hologram, which facilitates production of a memory card. V is the volume of each scattering factor, Δ is the relative refractive index difference of the waveguide, n is the refractive index of the core,
Assuming that the wavelength is λ and B% of the scattered light can be imaged on the two-dimensional light receiving element by the imaging lens system, when the scattering factor is smaller than the wavelength, the light intensity of the guided light is I I (W / m 2 ) the amount of light J 2 at the point where scattered light from the scattering factor at the point is imaged
(W) is represented by the following equation.

【0011】[0011]

【数1】 (Equation 1)

【0012】例えば、λ=830nm、B=20%、n
=1.48、Δ=0.01、V=2.5×10-20
3(0.5μm×0.5μm×0.1μm)とすると、
2=8×1019Iとなる。入力パワーが、20mWで
あったとすると、厚み5μmのコア層のビーム広がりが
1mmの地点において、II〜4×106W/m2である
から、J2=3.2pWとなる。
For example, λ = 830 nm, B = 20%, n
= 1.48, Δ = 0.01, V = 2.5 × 10 −20 m
3 (0.5μm × 0.5μm × 0.1μm)
J 2 = 8 × 10 19 I I Assuming that the input power is 20 mW, at the point where the beam spread of the core layer having a thickness of 5 μm is 1 mm, I I is 4 × 10 6 W / m 2 , so J 2 = 3.2 pW.

【0013】この値は、1msのフレーム速度で再生を
行った場合でも、フォトン数は13000を超え、十分
なS/Nが与えられることが分かる。この様な散乱要因
を、1μmおきに高さ10mm、底辺が2.5mmの二
等辺三角形内に配置すると、散乱要因のあるなしの判定
によって、12.5Mbitの情報が詰められる。
This value indicates that the number of photons exceeds 13000 even when the reproduction is performed at a frame speed of 1 ms, and that a sufficient S / N is provided. If such scattering factors are arranged in an isosceles triangle having a height of 10 mm and a base of 2.5 mm every 1 μm, 12.5 Mbit of information is packed by the determination of the presence or absence of the scattering factors.

【0014】これを、1msのフレーム速度で再生すれ
ば、12.5Gbpsの高速転送速度が得られる。記憶
容量は、導波路を多層に重ねることで、層の数だけ大き
くすることができる。多層に重ねることで、散乱光が他
の層の散乱要因で散乱される効果も存在するが、その効
果は、散乱要因の深さ×比屈折率差×層数が、波長より
も十分小さければ無視できる値となる。
If this is reproduced at a frame rate of 1 ms, a high transfer rate of 12.5 Gbps can be obtained. The storage capacity can be increased by the number of layers by stacking waveguides in multiple layers. By stacking on multiple layers, there is also an effect that scattered light is scattered by scattering factors of other layers, but the effect is, if the depth of scattering factor × relative refractive index difference × number of layers is sufficiently smaller than the wavelength The value can be ignored.

【0015】例えば、前述の条件、深さ=0.1μm、
Δ=0.01を用いて、層数=100の場合、これらの
積は0.1μmであり、この値は使用波長が紫外線で無
い限り、十分小さいと言える。なお、(1)式から分か
るように、波長を半分にすれば、1/4の散乱要因の体
積で同等の散乱光が得られる。従って、散乱要因の深さ
を0.1μmに固定したとすると、その面積を1/4に
することができ、記憶容量は1/4に比例することが分
かる。
For example, under the above-mentioned conditions, depth = 0.1 μm,
When Δ = 0.01 and the number of layers = 100, their product is 0.1 μm, and this value can be said to be sufficiently small unless the wavelength used is ultraviolet light. As can be seen from equation (1), if the wavelength is halved, equivalent scattered light can be obtained with a volume of 散乱 of the scattering factor. Therefore, assuming that the depth of the scattering factor is fixed at 0.1 μm, the area can be reduced to 4, and the storage capacity is proportional to 4.

【0016】[0016]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。本実施例に係る多層導波路形
再生専用メモリーカードは、波長532nmの半導体レ
ーザーを光源とし、屈折率1.48、厚み9μmの紫外
線硬化樹脂がクラッド層、屈折率1.49、厚み3.0
μmのPMMAがコア層である。本実施例に係る多層導
波路形再生専用メモリーカードは、図2に示す方法によ
り作製される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. The multi-layer waveguide type read-only memory card according to the present embodiment uses a semiconductor laser having a wavelength of 532 nm as a light source, a UV curable resin having a refractive index of 1.48 and a thickness of 9 μm, a cladding layer, a refractive index of 1.49 and a thickness of 3.0.
μm PMMA is the core layer. The multilayer waveguide type read-only memory card according to this embodiment is manufactured by the method shown in FIG.

【0017】先ず、図2(a)(b)に示すように、4
インチのシリコンウェハ11上に銅12を0.5μmの
厚みで蒸着し、更に、図2(c)に示すように、その上
に紫外線硬化樹脂13を9μmの厚みになるようスピン
コートし、図2(d)に示すように、紫外線照射によっ
て硬化させた。次いで、図2(e)(f)に示すよう
に、PMMA14を3μmの厚みになるようスピンコー
トした後、その上を凹凸模様のついたローラーを走らせ
た。
First, as shown in FIGS.
Copper 12 is vapor-deposited to a thickness of 0.5 μm on an inch silicon wafer 11, and further, as shown in FIG. 2C, an ultraviolet curable resin 13 is spin-coated thereon to a thickness of 9 μm. As shown in FIG. 2 (d), the composition was cured by ultraviolet irradiation. Next, as shown in FIGS. 2E and 2F, PMMA14 was spin-coated so as to have a thickness of 3 μm, and a roller having a concavo-convex pattern was run thereon.

【0018】さらに、図2(c)〜(f)に示す工程、
即ち、紫外線硬化樹脂コート→紫外線露光→PMMAコ
ート→ローラー転写という作業を10サイクル繰り返
し、さらに、図2(g)に示すように、紫外線硬化樹脂
をスピンコート後、紫外線照射した。引き続き、図3に
示すように、シリコンウェハ11を45度の角度をもつ
ダイシングソー(図示省略)で10mmおきに短冊状に
切り離し、最後に、図4に示すように、5%希塩酸溶液
に浸して、銅層を溶かし出し、幅10mmの複数の短冊
状多層導波路メモリーを得た。
Further, the steps shown in FIGS.
That is, the operation of UV curable resin coating → UV light exposure → PMMA coat → Roller transfer was repeated for 10 cycles, and further, as shown in FIG. Subsequently, as shown in FIG. 3, the silicon wafer 11 is cut into strips at intervals of 10 mm using a dicing saw (not shown) having an angle of 45 degrees, and finally, immersed in a 5% diluted hydrochloric acid solution as shown in FIG. Then, the copper layer was melted out to obtain a plurality of strip-shaped multilayer waveguide memories having a width of 10 mm.

【0019】この短冊状多層導波路メモリーの長辺は導
波路に対し、45度の傾きを持っており、図5に示すよ
うに、散乱光が結像する様子を確かめた。図5において
は、短冊状多層導波路メモリー15をステージ16上の
スライドガラス17に載置し、YAGレーザーのSHG
光をNA=0.15の光学系(マイクロレンズ付き光フ
ァイバ)18で下方から導入し、顕微鏡19で上方から
観察したところ、光が結合している層の凹凸からもれる
散乱光のみが観察された。
The long side of the strip-shaped multilayer waveguide memory has an inclination of 45 degrees with respect to the waveguide, and it was confirmed that scattered light forms an image as shown in FIG. In FIG. 5, a strip-shaped multilayer waveguide memory 15 is placed on a slide glass 17 on a stage 16 and the SHG of a YAG laser is used.
When light was introduced from below with an optical system (optical fiber with microlenses) 18 with NA = 0.15 and observed from above with a microscope 19, only scattered light leaking from the unevenness of the layer to which the light was coupled was observed. Was done.

【0020】[0020]

【発明の効果】以上、実施例に基づいて詳細に説明した
ように、本発明に係る多層導波路形再生専用メモリーカ
ードは、導波路層に屈折率揺らぎ、若しくは、凹凸によ
る散乱要因を形成することで導波路平面から導波路外に
漏れ出す散乱光を作り、その散乱光の発生位置をレンズ
と二次元受光素子を用いて二次元パターン情報として取
り出すので、高精度な膜厚制御を必要としないで、大容
量の記憶システムを構築することが可能である。
As described above in detail with reference to the embodiments, in the multilayer waveguide type read-only memory card according to the present invention, the refractive index fluctuates in the waveguide layer or a scattering factor due to unevenness is formed. As a result, scattered light leaking out of the waveguide from the waveguide plane is created, and the position where the scattered light is generated is extracted as two-dimensional pattern information using a lens and a two-dimensional light receiving element. Instead, a large-capacity storage system can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多層導波路形再生専用メモリーカ
ードの動作原理の説明図である。
FIG. 1 is an explanatory view of the operation principle of a multilayer waveguide type read-only memory card according to the present invention.

【図2】本発明の一実施例に係る多層導波路形再生専用
メモリーカードの作製法を示す工程図である。
FIG. 2 is a process chart showing a method for manufacturing a multilayer waveguide type read-only memory card according to one embodiment of the present invention.

【図3】ダイシングソーによる切り出しを示す説明図で
ある。
FIG. 3 is an explanatory view showing cutting out by a dicing saw.

【図4】シリコンウェハと多層導波路の切り離しを示す
説明図である。
FIG. 4 is an explanatory diagram showing separation of a silicon wafer and a multilayer waveguide.

【図5】散乱光が結像する様子を確かめる方法を示す説
明図である。
FIG. 5 is an explanatory diagram showing a method for confirming how scattered light forms an image.

【符号の説明】[Explanation of symbols]

1 コア 2 クラッド 3 再生用レンズ群 4 二次元受光素子 5 ピント合わせ機構 11 シリコンウェハ 12 銅 13 紫外線硬化樹脂 14 PMMA 15 多層導波路メモリー 16 ステージ 17 スライドガラス 18 光学系 19 顕微鏡 DESCRIPTION OF SYMBOLS 1 Core 2 Clad 3 Reproduction lens group 4 Two-dimensional light receiving element 5 Focusing mechanism 11 Silicon wafer 12 Copper 13 Ultraviolet curing resin 14 PMMA 15 Multilayer waveguide memory 16 Stage 17 Slide glass 18 Optical system 19 Microscope

フロントページの続き (72)発明者 館 彰之 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 疋田 真 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 都丸 曉 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内Continued on the front page. (72) Akiyuki Kan, Nippon Telegraph and Telephone Corporation, 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan (72) Makoto Hikita 3-2-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan Within Telegraph and Telephone Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平面型光導波路を多層に重ねて作られ、
かつ、光を導波路に結合させる面が導波路平面の法線に
対し45°に傾いている構造をもつ多層導波路におい
て、各導波路層に屈折率揺らぎ、若しくは、凹凸による
散乱要因を形成することで導波路平面から導波路外に漏
れ出す散乱光を作り、その散乱光の発生位置をレンズと
二次元受光素子を用いて二次元パターン情報として取り
出すことを特徴とする多層導波路形再生専用メモリーカ
ード。
1. It is made by stacking planar optical waveguides in multiple layers,
In addition, in a multilayer waveguide having a structure in which a surface for coupling light to the waveguide is inclined at an angle of 45 ° with respect to the normal to the waveguide plane, a scattering factor due to a fluctuation in refractive index or unevenness is formed in each waveguide layer. A scattered light leaking out of the waveguide from the waveguide plane, and extracting the position of the scattered light as two-dimensional pattern information using a lens and a two-dimensional light receiving element. Dedicated memory card.
JP10148923A 1998-05-29 1998-05-29 Multilayered waveguide type reproducing-only memory card Pending JPH11337756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10148923A JPH11337756A (en) 1998-05-29 1998-05-29 Multilayered waveguide type reproducing-only memory card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10148923A JPH11337756A (en) 1998-05-29 1998-05-29 Multilayered waveguide type reproducing-only memory card

Publications (1)

Publication Number Publication Date
JPH11337756A true JPH11337756A (en) 1999-12-10

Family

ID=15463693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10148923A Pending JPH11337756A (en) 1998-05-29 1998-05-29 Multilayered waveguide type reproducing-only memory card

Country Status (1)

Country Link
JP (1) JPH11337756A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046892B2 (en) 2001-06-22 2006-05-16 Nippon Telegraph And Telephone Corporation Optical waveguide, holographic medium, holographic storage and retrieval method and system
US8134905B2 (en) 2007-11-01 2012-03-13 Hitachi, Ltd. Information storage device and storage media
US8422350B2 (en) 2008-10-30 2013-04-16 Hitachi, Ltd. Information processor device and storage medium
US8982682B2 (en) 2009-12-28 2015-03-17 Hitachi, Ltd. Information processing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046892B2 (en) 2001-06-22 2006-05-16 Nippon Telegraph And Telephone Corporation Optical waveguide, holographic medium, holographic storage and retrieval method and system
US8134905B2 (en) 2007-11-01 2012-03-13 Hitachi, Ltd. Information storage device and storage media
US8422350B2 (en) 2008-10-30 2013-04-16 Hitachi, Ltd. Information processor device and storage medium
US8982682B2 (en) 2009-12-28 2015-03-17 Hitachi, Ltd. Information processing system

Similar Documents

Publication Publication Date Title
JPS59174803A (en) Wavelength multiplexer or demultiplexer
US6654532B1 (en) Read-only laminated information recording medium and manufacturing method therefor
CN100472257C (en) Process for producing optical waveguide
WO2011098609A1 (en) Three-dimensional optical and material structures
US9341785B2 (en) Wavelength division multiplexing with multi-core fiber
JPH01287605A (en) Optical fiber connector assembly and manufacture thereof
JPH03209442A (en) Multiplexer-demultiplexer for opticalic and its manufacture
JP5293969B2 (en) Wavelength demultiplexing optical element
JP2006106753A (en) Micro mirror and method of manufacturing the same
JP3323146B2 (en) Read-only multiplexed hologram information recording medium and information reading method
JPH11337756A (en) Multilayered waveguide type reproducing-only memory card
KR20050084025A (en) Polymeric optical device structures having controlled topographic and refractive index profiles
JPH11183747A (en) Three-dimensional polymer optical waveguide array and manufacture thereof
JP2007017522A (en) Resin sheet for manufacturing planar optical waveguide
JP3309877B2 (en) Optical waveguide circuit
JP2004309552A (en) Optical circuit member and its manufacturing method
JP2001027714A (en) Optical memory element and its production
JP2000155297A (en) Spatial modulator, hologram recording/reproducing device and optical information processor
EP1496378A1 (en) Optical coupling device
TW200933624A (en) Optical information recording medium and method for manufacturing the same
KR100681614B1 (en) Method for recording and playing in holographic storage system
JP2003316244A (en) Apparatus and method for inputting light for light reproducing device
JP3487338B2 (en) Method of manufacturing hologram master
JP3547690B2 (en) Method for manufacturing read-only multiplexed hologram information recording medium
Van Daele et al. Optical interconnections on PCBs: a killer application for VCSELs

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030708