JP3309877B2 - Optical waveguide circuit - Google Patents

Optical waveguide circuit

Info

Publication number
JP3309877B2
JP3309877B2 JP21389393A JP21389393A JP3309877B2 JP 3309877 B2 JP3309877 B2 JP 3309877B2 JP 21389393 A JP21389393 A JP 21389393A JP 21389393 A JP21389393 A JP 21389393A JP 3309877 B2 JP3309877 B2 JP 3309877B2
Authority
JP
Japan
Prior art keywords
waveguide
rectangular
output
optical
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21389393A
Other languages
Japanese (ja)
Other versions
JPH0763934A (en
Inventor
扇太 鈴木
勝就 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21389393A priority Critical patent/JP3309877B2/en
Publication of JPH0763934A publication Critical patent/JPH0763934A/en
Application granted granted Critical
Publication of JP3309877B2 publication Critical patent/JP3309877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、基板上に形成された平
面導波路と矩形導波路の組み合わせからなる光導波回路
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide circuit comprising a combination of a planar waveguide and a rectangular waveguide formed on a substrate.

【0002】[0002]

【従来の技術】集積型光導波回路において、平面導波路
と矩形導波路は導波路の基本構造であり、それらの組み
合わせにより、光パワーを分ける光分岐回路や波長毎に
光を分離する光分波回路などが作られている。
2. Description of the Related Art In an integrated optical waveguide circuit, a planar waveguide and a rectangular waveguide are basic structures of a waveguide, and an optical branching circuit for dividing optical power and a light splitting device for separating light for each wavelength are provided by combining them. Wave circuits are made.

【0003】図6は、平面導波路と複数の矩形導波路の
組み合わせから構成される従来の光分岐回路を示す図で
あって、同図の(a)は上面図、同図の(b)はA−B
線方向の断面図である。図6において、1は入力用の矩
形導波路、2は出力用の矩形導波路、3は入力用の矩形
導波路からつながるテーパ導波路、4は出力用の矩形導
波路につながるテーパ導波路、5は平面導波路、6は基
板、7はクラッドである。31は導波路中を伝搬する光
を示す網掛け、32は回折で広がる光の等位相面を示す
細線であり、後述する図面においても同様に用いてい
る。
FIG. 6 is a diagram showing a conventional optical branch circuit composed of a combination of a planar waveguide and a plurality of rectangular waveguides. FIG. 6A is a top view, and FIG. Is AB
It is sectional drawing of a line direction. In FIG. 6, 1 is a rectangular waveguide for input, 2 is a rectangular waveguide for output, 3 is a tapered waveguide connected to the rectangular waveguide for input, 4 is a tapered waveguide connected to the rectangular waveguide for output, 5 is a planar waveguide, 6 is a substrate, and 7 is a clad. Reference numeral 31 denotes hatching indicating light propagating in the waveguide, and reference numeral 32 denotes a thin line indicating an equal phase plane of light spread by diffraction, which is also used in the drawings described later.

【0004】入力用の矩形導波路1から導かれてきた光
は、平面導波路5において回折効果のため横方向に広が
り、その後、回折波の等位相面円周上にアレイ状に整列
したテーパ導波路4で受光され出力用の矩形導波路2に
導かれる。その際、光パワーを効率的に出力用の矩形導
波路2に分配するために、テーパ導波路4同士に囲まれ
たクサビ形の先端幅は零であるような理想形状にされて
いる。なお、入力用の矩形導波路1、出力用の矩形導波
路2、テーパ導波路3,4および平面導波路5は、断面
を表す図6の(b)に示すように、基板6上のクラッド
7の中に構成されている。
The light guided from the input rectangular waveguide 1 spreads in the horizontal direction due to the diffraction effect in the planar waveguide 5, and then the tapered light is arranged in an array on the circumference of the phase plane of the diffracted wave. The light is received by the waveguide 4 and guided to the rectangular waveguide 2 for output. At this time, in order to efficiently distribute the optical power to the output rectangular waveguide 2, the wedge-shaped tip width surrounded by the tapered waveguides 4 has an ideal shape such that the width is zero. The input rectangular waveguide 1, the output rectangular waveguide 2, the tapered waveguides 3, 4, and the planar waveguide 5 are formed by cladding on a substrate 6 as shown in FIG. 7.

【0005】図7は、従来技術の第2の例を示す図であ
って、平面導波路14に入力用の矩形導波路8と出力用
の矩形導波路11を接続した構造を有し、複数の入力用
の矩形導波路8からの光信号を全ての出力用の矩形導波
路11に等分配する光スターカプラが例示されている。
ダミー導波路10と13は、中央に位置する矩形導波路
と端に位置する矩形導波路の構造的条件を等しくするた
めに設けられている。また、平面導波路14と入力用の
矩形導波路8および出力用の矩形導波路11は、前述し
た理由よりテーパ導波路9および12を介して接続され
ている。
FIG. 7 is a view showing a second example of the prior art, which has a structure in which a rectangular waveguide 8 for input and a rectangular waveguide 11 for output are connected to a planar waveguide 14. An optical star coupler for equally distributing the optical signal from the input rectangular waveguide 8 to all the output rectangular waveguides 11 is illustrated.
The dummy waveguides 10 and 13 are provided for equalizing the structural conditions of the rectangular waveguide located at the center and the rectangular waveguide located at the end. The planar waveguide 14, the input rectangular waveguide 8, and the output rectangular waveguide 11 are connected via the tapered waveguides 9 and 12 for the above-mentioned reason.

【0006】図8は、従来技術の第3の例を示す図であ
って、複数の矩形導波路が接続された2個の平面導波路
をそれぞれ光路長の異なる複数の矩形導波路アレイで接
続した構造を有する光合分波回路が例示されている。
FIG. 8 is a diagram showing a third example of the prior art, in which two planar waveguides to which a plurality of rectangular waveguides are connected are connected by a plurality of rectangular waveguide arrays having different optical path lengths. An optical multiplexing / demultiplexing circuit having the above structure is illustrated.

【0007】入力用の矩形導波路15を導波してきた光
は、第1の平面導波路17において回折により広がり、
その回折波面と垂直に配置されたテーパ導波路18によ
り受光される。各テーパ導波路に受光された直後の光は
それぞれ等位相関係を持っているが、所定の光路長差を
有する矩形導波路アレイ19を導波することにより、第
2の平面導波路21に到達した時点で光路長差分に対応
する位相差を生じている。この位相差は波長により異な
るため、出力用の矩形導波路23に集光する際に、波長
毎に異なる出力用の矩形導波路に集光することになり、
光分波回路として動作する。この動作を逆に行えば、波
長の異なる光を1本の導波路に集光することができるの
で、光合波回路として動作する。平面導波路と矩形導波
路の接続点においては、前述した理由によりテーパ導波
路16,18,20,22が設けられている。
The light guided through the input rectangular waveguide 15 spreads by diffraction in the first planar waveguide 17,
Light is received by the tapered waveguide 18 arranged perpendicular to the diffracted wavefront. The light immediately after being received by each tapered waveguide has the same phase relationship, but reaches the second planar waveguide 21 by guiding the rectangular waveguide array 19 having a predetermined optical path length difference. At this point, a phase difference corresponding to the optical path length difference is generated. Since this phase difference varies depending on the wavelength, when the light is focused on the output rectangular waveguide 23, the light is focused on the output rectangular waveguide which differs for each wavelength.
It operates as an optical demultiplexing circuit. If this operation is performed in reverse, light having different wavelengths can be converged on one waveguide, so that it operates as an optical multiplexing circuit. At the connection point between the planar waveguide and the rectangular waveguide, the tapered waveguides 16, 18, 20, and 22 are provided for the reason described above.

【0008】これらのような光分岐回路の作製は、例え
ば特開昭58−105111号公報に示されているよう
に行えば良い。即ち、SiCl4 ,GeCl4 ,TiCl4 ,POC
l3 ,BCl3の塩化物を出発材料とし、例えば図9の
(a)〜(c)に示すように、シリコン等の基板6上に
クラッド7、コアガラス層24を順次堆積し、次いで図
9の(d)に示すように、エッチング加工により上述の
導波路に対応するコア部24−1,24−2をエッチン
グにより形成し、最後に図9の(e)に示すように、ク
ラッド7を堆積し導波路を埋め込む。
The fabrication of such an optical branching circuit may be performed, for example, as disclosed in Japanese Patent Application Laid-Open No. 58-105111. That is, SiCl 4 , GeCl 4 , TiCl 4 , POC
Using a chloride of l 3 and BCl 3 as a starting material, a clad 7 and a core glass layer 24 are sequentially deposited on a substrate 6 such as silicon as shown in FIGS. As shown in FIG. 9D, core portions 24-1 and 24-2 corresponding to the above-described waveguides are formed by etching, and finally, as shown in FIG. And bury the waveguide.

【0009】[0009]

【発明が解決しようとする課題】上述したような光回路
においては、低損失化のために矩形導波路同士で囲まれ
る部分を理想的な鋭峻形状に近づけていた。しかし、現
実の作製技術では、矩形導波路が近接している部分を鋭
峻に且つ精度良く加工したり、クラッドで埋め込むこと
は困難である。エッチング用マスクは感光性レジストに
紫外線を照射して形成するが、パターン幅の細い部分で
は紫外線の回折や集光用レンズの収差などにより、図1
0に示すような形状変形25,26が生じる問題があ
る。また、導波路間隔が狭く、かつ複数の導波路に挟ま
れた袋小路のような構造になっている場合は、導波路埋
め込み時に図11に示すようにクラッドガラスが分岐点
近傍の矩形導波路間隙に充填されずクラッド7に空隙2
7が生じる問題もある。即ち、従来においては平面導波
路と矩形導波路からなる光導波回路を設計通り再現性良
く製作することができず、光パワーを所望の比率で分岐
導波路に分配することが困難であった。そのため、ある
程度の損失を犠牲にして、図12のように矩形導波路同
士の間隔28を大きく設定し、作製時の形状変形を防止
する方法などがとられていたが、矩形導波路同士の間隔
は数μm程度と狭く袋小路の構造であるため、図11で
述べたようなクラッド7の空隙27発生を防止すること
は困難であった。
In the above-described optical circuit, the portion surrounded by the rectangular waveguides is made closer to an ideal sharp shape in order to reduce the loss. However, in an actual manufacturing technique, it is difficult to sharply and accurately process a portion where a rectangular waveguide is close or to embed the portion with a clad. The etching mask is formed by irradiating the photosensitive resist with ultraviolet rays. However, in the portion where the pattern width is small, the diffraction of the ultraviolet rays and the aberration of the condensing lens cause the etching of FIG.
There is a problem that shape deformations 25 and 26 as shown in FIG. When the waveguide interval is small and the structure is like a dead end sandwiched by a plurality of waveguides, when the waveguide is embedded, as shown in FIG. Gap 2 in clad 7 without filling
7 also occurs. That is, in the related art, an optical waveguide circuit including a planar waveguide and a rectangular waveguide cannot be manufactured with high reproducibility as designed, and it has been difficult to distribute optical power to a branch waveguide at a desired ratio. Therefore, at the expense of some loss, a method of setting a large space 28 between the rectangular waveguides as shown in FIG. 12 to prevent shape deformation at the time of manufacturing has been adopted. Since is small and has a structure of a blind alley of about several μm, it was difficult to prevent the generation of the voids 27 in the clad 7 as described in FIG.

【0010】本発明は、このような事情に鑑み、製作が
容易で且つ再現性に優れた平面導波路と矩形導波路から
構成される光導波回路を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical waveguide circuit composed of a planar waveguide and a rectangular waveguide which is easy to manufacture and has excellent reproducibility.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
の本発明の構成は、基板上のクラッド内に作製した平面
導波路と、前記平面導波路の一方の端面に1本だけ接続
された入力用矩形導波路と、前記端面に対向するもう一
方の端面に接続された複数の出力用矩形導波路とからな
り、火炎堆積法によって製造された光分岐回路におい
て、前記平面導波路と前記出力用矩形導波路との接続部
分が、前記平面導波路と各前記出力用矩形導波路とを間
隙をもって分離し、かつ、各前記出力用矩形導波路同士
を間隔をもって分離してなり、前記平面導波路と前記入
力用矩形導波路との接続部分は、前記平面導波路と前記
入力用矩形導波路とを間隙をもって分離してなること
特徴とする。
Means for Solving the Problems The configuration of the present invention for achieving the above object, the plane was produced in the cladding on a substrate
Connect only one waveguide to one end face of the planar waveguide
Input rectangular waveguide, and another rectangular waveguide facing the end face.
And a plurality of output rectangular waveguides connected to one end face.
In the optical branch circuit manufactured by the flame deposition method.
A connecting portion between the planar waveguide and the output rectangular waveguide.
A distance between the planar waveguide and each of the output rectangular waveguides.
Separated by a gap, and each of the output rectangular waveguides
Are separated by an interval, and the planar waveguide and the input are separated.
The connection portion with the force rectangular waveguide is the planar waveguide and the
The input rectangular waveguide is separated by a gap .

【0012】[0012]

【作用】上記構成において、矩形導波路同士や平面導波
路と矩形導波路との間に間隙が存在するために、導波路
加工が容易になる上、導波路間隙にクラッドガラスが供
給され易くなって導波路を均一に埋め込むことが可能と
なるため、光導波回路の製作性および再現性が向上され
る。
In the above configuration, since there is a gap between the rectangular waveguides or between the planar waveguide and the rectangular waveguide, the waveguide processing is facilitated and the clad glass is easily supplied to the waveguide gap. As a result, the waveguide can be uniformly embedded, so that the manufacturability and reproducibility of the optical waveguide circuit are improved.

【0013】[0013]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。図1は、本発明の第1の実施例である光分岐
回路を示す。図中、1は入力用の矩形導波路、2は出力
用の矩形導波路、5は入力用の矩形導波路からの光を回
折効果により広げる平面導波路、29は本発明の特徴で
ある平面導波路5と入力用の矩形導波路1間の間隙、3
0も本発明の特徴である平面導波路5と複数の出力用の
矩形導波路2間の間隙である。また、33は設計の上で
補助的に必要であるが実際には作製されない線である。
出力用の矩形導波路2は、平面導波路5内で回折して広
がる光の等位相面に垂直になるよう配置されている。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. FIG. 1 shows an optical branch circuit according to a first embodiment of the present invention. In the drawing, 1 is a rectangular waveguide for input, 2 is a rectangular waveguide for output, 5 is a planar waveguide that spreads light from the rectangular waveguide for input by a diffraction effect, and 29 is a plane which is a feature of the present invention. A gap between the waveguide 5 and the input rectangular waveguide 1;
Numeral 0 is a gap between the planar waveguide 5 and the plurality of output rectangular waveguides 2 which is a feature of the present invention. Reference numeral 33 denotes a line that is necessary for design but is not actually manufactured.
The output rectangular waveguide 2 is arranged so as to be perpendicular to the equal phase plane of the light diffracted and spread in the planar waveguide 5.

【0014】導波路の間隙寸法の最大値は回折による過
剰損失で決まり、最小値はエッチング用マスク作製技術
で決定される。図2は、導波路間隙と回折による過剰損
失の関係を示したグラフである。導波路間隙を設けたこ
とによる過剰損失は、間隙寸法が10μm以下では最大
で0.1dBと十分無視できるほど小さいことが分かる。間
隙が小さいほど過剰損失は小さくなるが、通常の紫外線
露光装置を用いた場合は1μm以下の間隙をエッチング
用マスクで作製する事は難しく、逆に導波路パターンの
変形を生じる危険性が高くなる。さらに、クラッドガラ
スが間隙に入り込みにくくなるため、上述したような空
隙(図11の27参照)が生じる危険性も高くなる。し
たがって、導波路間隙は1〜10μm程度が光結合する
ために最適であると言える。
The maximum value of the gap size of the waveguide is determined by excess loss due to diffraction, and the minimum value is determined by an etching mask manufacturing technique. FIG. 2 is a graph showing the relationship between the waveguide gap and excess loss due to diffraction. It can be seen that the excess loss due to the provision of the waveguide gap is as small as 0.1 dB at the maximum when the gap size is 10 μm or less, which is sufficiently negligible. The excess loss is smaller as the gap is smaller, but it is difficult to form a gap of 1 μm or less with an etching mask when using a normal ultraviolet exposure apparatus, and conversely, the risk of deforming the waveguide pattern increases. . Furthermore, since the clad glass is less likely to enter the gap, the risk of the above-described void (see 27 in FIG. 11) is increased. Therefore, it can be said that the waveguide gap is optimal for optical coupling of about 1 to 10 μm.

【0015】本実施例においては、直径3インチ、厚さ
700μmのシリコン基板上に火災堆積法によって、ま
ずクラッド層として組成がSiO2−P2O5−B2O3の多孔質ガ
ラス膜を堆積し、次にコア層として組成がSiO2−GeO2
P2O5−B2O3の多孔質ガラスを堆積し、その後、温度13
90℃のHeとO2との混合雰囲気で2時間熱処理した。次
に、反応性イオンエッチングにより上述したような光導
波路パターンを形成し、その後、このコア層を埋め込む
ように上述したものと同様のクラッド層を形成した。コ
ア寸法は6.5×6.5μm、コアガラスとクラッドガラス
の比屈折率差は0.75%である。
In this embodiment, a porous glass film having a composition of SiO 2 —P 2 O 5 —B 2 O 3 is firstly formed as a cladding layer on a silicon substrate having a diameter of 3 inches and a thickness of 700 μm by a fire deposition method. Is deposited, and then has a composition of SiO 2 --GeO 2-
P 2 O 5 -B 2 O 3 porous glass was deposited,
Heat treatment was performed at 90 ° C. in a mixed atmosphere of He and O 2 for 2 hours. Next, an optical waveguide pattern as described above was formed by reactive ion etching, and then a clad layer similar to that described above was formed so as to embed the core layer. The core size is 6.5 × 6.5 μm, and the relative refractive index difference between the core glass and the clad glass is 0.75%.

【0016】このようにして、導波路間の間隙29,3
0により、急峻な形状や細かい形状が無くなるため、上
述のエッチング工程における導波路パターンの変形が防
止される。また、導波路を埋め込むクラッドガラスが導
波路間隙に入り込み易くなるために、導波路間に空隙の
発生も防止される。また、反射戻り光もコアガラスとク
ラッドガラスの屈折率差が小さいため問題にならない。
この結果、本発明により光導波路回路を設計通りに再現
性良く製作することが可能となる。以下に説明する実施
例においても、同様の効果が得られる。
Thus, the gaps 29, 3 between the waveguides
With 0, the steep shape and the fine shape are eliminated, so that the deformation of the waveguide pattern in the above-described etching step is prevented. Further, since the clad glass for embedding the waveguides easily enters the waveguide gaps, the generation of voids between the waveguides is also prevented. Further, the reflected return light is not a problem because the difference in the refractive index between the core glass and the clad glass is small.
As a result, according to the present invention, an optical waveguide circuit can be manufactured as designed with good reproducibility. Similar effects can be obtained in the embodiments described below.

【0017】図3は、本発明の第2の実施例を示す図で
あり、第1の実施例である光分岐回路において矩形導波
路と平面導波路との接続部にテーパ導波路を用いたもの
である。図中、1は入力用の矩形導波路、2は出力用の
矩形導波路、3は入力用の矩形導波路1からつながるテ
ーパ導波路、4は出力用の矩形導波路2につながるテー
パ導波路、5は入力用の矩形導波路1からの光を回折効
果により広げる平面導波路、29は本発明の特徴である
平面導波路5と入力用の矩形導波路1,3間の間隙、3
0も本発明の特徴である平面導波路5と複数の出力用の
矩形導波路2,4間の間隙である。テーパ導波路4は、
平面導波路5内で回折して広がる光の等位相面に垂直に
なるよう配置されている。
FIG. 3 is a view showing a second embodiment of the present invention. In the optical branch circuit according to the first embodiment, a tapered waveguide is used for a connection portion between a rectangular waveguide and a planar waveguide. Things. In the drawing, 1 is a rectangular waveguide for input, 2 is a rectangular waveguide for output, 3 is a tapered waveguide connected to the rectangular waveguide 1 for input, and 4 is a tapered waveguide connected to the rectangular waveguide 2 for output. Reference numeral 5 denotes a planar waveguide for expanding the light from the input rectangular waveguide 1 by a diffraction effect. Reference numeral 29 denotes a gap between the planar waveguide 5 and the input rectangular waveguides 1 and 3, which is a feature of the present invention.
Reference numeral 0 denotes a gap between the planar waveguide 5 and a plurality of output rectangular waveguides 2 and 4, which is a feature of the present invention. The tapered waveguide 4 is
The light is arranged so as to be perpendicular to the equal phase plane of light that spreads by diffracting in the planar waveguide 5.

【0018】図4は、本発明の第3の実施例である光ス
ターカプラを示す。平面導波路15を中心に対向するよ
うに入力用テーパ導波路10、出力用テーパ導波路13
が配置され、該テーパ導波路は入力用の矩形導波路9、
出力用の矩形導波路12に接続されており、任意の入力
用の矩形導波路からの光信号を全ての出力用の矩形導波
路に分配する機能を有している。前記テーパ導波路1
0,13と平面導波路15の接続部には、本発明の特徴
である平面導波路と複数の矩形導波路間の間隙30が設
けられている。
FIG. 4 shows an optical star coupler according to a third embodiment of the present invention. The input tapered waveguide 10 and the output tapered waveguide 13 are opposed to each other with the plane waveguide 15 as a center.
Are arranged, and the tapered waveguide is a rectangular waveguide 9 for input,
It is connected to the output rectangular waveguide 12, and has a function of distributing an optical signal from an arbitrary input rectangular waveguide to all output rectangular waveguides. The tapered waveguide 1
A gap 30 between the planar waveguide and the plurality of rectangular waveguides, which is a feature of the present invention, is provided at the connection between the planar waveguide 15 and the plane waveguides 0 and 13.

【0019】図5は、本発明の第4の実施例である光合
分波回路を示す。複数の入力用の矩形および出力用の矩
形導波路が接続された2個の平面導波路をそれぞれ光路
長の異なる複数の矩形導波路アレイで接続した構造を有
する光合分波回路である。入力用の矩形導波路16と出
力用の矩形導波路24につながるテーパ導波路17,2
3および所定の光路長差を有するアレイ導波路20につ
ながるテーパ導波路19と21と、2個のレンズ作用を
有する平面導波路18,22の接続部には、本発明の特
徴である導波路間の間隙30がそれぞれ設けられてい
る。
FIG. 5 shows an optical multiplexing / demultiplexing circuit according to a fourth embodiment of the present invention. An optical multiplexing / demultiplexing circuit having a structure in which two planar waveguides to which a plurality of input rectangular and output rectangular waveguides are connected are connected by a plurality of rectangular waveguide arrays having different optical path lengths. Tapered waveguides 17 and 2 connected to rectangular waveguide 16 for input and rectangular waveguide 24 for output
The connecting portions of the tapered waveguides 19 and 21 connected to the arrayed waveguide 20 having the optical path length difference 3 and the predetermined optical path length difference and the planar waveguides 18 and 22 having the function of two lenses are provided with the waveguide which is a feature of the present invention. A gap 30 between them is provided.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、平
面導波路と矩形導波路との接続部分を、平面導波路と各
矩形導波路とを間隙をもって分離し、かつ各矩形導波路
同士を間隔をもって分離して構成したので、製作が容易
で且つ再現性に優れた、平面導波路と複数の矩形導波路
とから構成される光導波回路を実現することが可能とな
る。
As described above, according to the present invention, the connecting portion between the planar waveguide and the rectangular waveguide is separated from the planar waveguide and each rectangular waveguide by a gap, and each rectangular waveguide is connected to each other. Are separated from each other at intervals, so that an optical waveguide circuit composed of a planar waveguide and a plurality of rectangular waveguides, which is easy to manufacture and excellent in reproducibility, can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の係る第1の実施例である光分岐回路を
示す説明図である。
FIG. 1 is an explanatory diagram showing an optical branch circuit according to a first embodiment of the present invention.

【図2】導波路間隙と回折による過剰損失の関係を示す
グラフである。
FIG. 2 is a graph showing a relationship between a waveguide gap and excess loss due to diffraction.

【図3】本発明の係る第2の実施例である光分岐回路を
示す説明図である。
FIG. 3 is an explanatory diagram showing an optical branch circuit according to a second embodiment of the present invention.

【図4】本発明の係る第3の実施例である光スターカプ
ラを示す説明図である。
FIG. 4 is an explanatory diagram showing an optical star coupler according to a third embodiment of the present invention.

【図5】本発明の係る第4の実施例である光合分波回路
を示す説明図である。
FIG. 5 is an explanatory diagram showing an optical multiplexing / demultiplexing circuit according to a fourth embodiment of the present invention.

【図6】従来技術の係る光分岐回路を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing an optical branch circuit according to a conventional technique.

【図7】従来技術の係る光スターカプラを示す説明図で
ある。
FIG. 7 is an explanatory diagram showing an optical star coupler according to a conventional technique.

【図8】従来技術の係る光合分波回路を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing an optical multiplexing / demultiplexing circuit according to a conventional technique.

【図9】光導波路の作製方法を示す説明図である。FIG. 9 is an explanatory diagram illustrating a method for manufacturing an optical waveguide.

【図10】従来技術の係る第1の問題点を示す説明図で
ある。
FIG. 10 is an explanatory diagram showing a first problem of the related art.

【図11】従来技術の係る第2の問題点を示す説明図で
ある。
FIG. 11 is an explanatory diagram showing a second problem of the related art.

【図12】従来の解決方法における導波路構造を示す説
明図である。
FIG. 12 is an explanatory view showing a waveguide structure in a conventional solution.

【符号の説明】[Explanation of symbols]

1 入力用の矩形導波路 2 出力用の矩形導波路 3 入力用の矩形導波路からつながるテーパ導波路 4 出力用の矩形導波路からつながるテーパ導波路 5 平面導波路 6 基板 7 クラッド 8 光スターカプラ入力用の矩形導波路 9 入力用の矩形導波路からつながるテーパ導波路 10 入力側ダミー導波路 11 光スターカプラ出力用の矩形導波路 12 出力矩形導波路につながるテーパ導波路 13 出力側ダミー導波路 14 光スターカプラ平面導波路 15 光合分波回路入力用の矩形導波路 16 入力用の矩形導波路からつながるテーパ導波路 17 矩形導波路アレイに光を分配するための第1の平
面導波路 18 矩形導波路アレイにつながるテーパ導波路 19 光路長差を有する矩形導波路アレイ 20 矩形導波路アレイからつながるテーパ導波路 21 集光作用を有する第2の平面導波路 22 出力用の矩形導波路からつながるテーパ導波路 23 光合分波回路出力用の矩形導波路 24 コアガラス層 24−1,24−2 エッチング後のコア部 25,26 テーパ導波路の変形部分 27 クラッド間に生じた空隙 28 変形防止のための従来構造 29 平面導波路と矩形導波路接続点の間隙 30 平面導波路と複数の矩形導波路接続点の間隙 31 導波路中を伝搬する光を示す網掛け 32 回折で広がる光の等位相面を示す細線 33 設計の上で補助的に必要であるが実際には作製さ
れていない線
DESCRIPTION OF SYMBOLS 1 Rectangular waveguide for input 2 Rectangular waveguide for output 3 Tapered waveguide connected from rectangular waveguide for input 4 Tapered waveguide connected from rectangular waveguide for output 5 Planar waveguide 6 Substrate 7 Cladding 8 Optical star coupler Rectangular waveguide for input 9 Tapered waveguide connected from rectangular waveguide for input 10 Dummy waveguide on input side 11 Rectangular waveguide for output of optical star coupler 12 Tapered waveguide connected to output rectangular waveguide 13 Output dummy waveguide 14 Planar waveguide of optical star coupler 15 Rectangular waveguide for input of optical multiplexing / demultiplexing circuit 16 Tapered waveguide connected from rectangular waveguide for input 17 First planar waveguide for distributing light to rectangular waveguide array 18 Rectangular Tapered waveguide connected to waveguide array 19 Rectangular waveguide array having optical path length difference 20 Tapered waveguide connected from rectangular waveguide array Reference Signs List 21 second planar waveguide having condensing action 22 tapered waveguide connected from output rectangular waveguide 23 rectangular waveguide for output of optical multiplexing / demultiplexing circuit 24 core glass layer 24-1 and 24-2 core after etching Part 25, 26 Deformed portion of tapered waveguide 27 Gap created between claddings 28 Conventional structure for preventing deformation 29 Gap between planar waveguide and rectangular waveguide connection point 30 Between planar waveguide and a plurality of rectangular waveguide connection points Gap 31 Shading indicating light propagating in the waveguide 32 Thin wire indicating equal phase plane of light spreading by diffraction 33 A line that is necessary for design but is not actually produced

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−70605(JP,A) 特開 平2−244105(JP,A) 特開 平4−213407(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-70605 (JP, A) JP-A-2-244105 (JP, A) JP-A-4-213407 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上のクラッド内に作製した平面導波
路と、前記平面導波路の一方の端面に1本だけ接続され
た入力用矩形導波路と、前記端面に対向するもう一方の
端面に接続された複数の出力用矩形導波路とからなり、
火炎堆積法によって製造された光分岐回路において、 前記平面導波路と前記出力用矩形導波路との接続部分
が、前記平面導波路と各前記出力用矩形導波路とを間隙
をもって分離し、かつ、各前記出力用矩形導波路同士を
間隔をもって分離してなり、前記平面導波路と前記入力用矩形導波路との接続部分
は、前記平面導波路と前記入力用矩形導波路とを間隙を
もって分離してなることを特徴とする光分岐回路。
1. A planar waveguide formed in a clad on a substrate, and only one planar waveguide connected to one end face of the planar waveguide.
Input rectangular waveguide and the other end facing the end face.
Consisting of a plurality of output rectangular waveguides connected to the end face,
In the optical branching circuit manufactured by flame hydrolysis deposition, the connection portion between the planar waveguide and the rectangular waveguide the output, and said planar waveguide and the rectangular waveguide each said output is separated with a gap, and, The output rectangular waveguides are separated from each other with an interval, and a connection portion between the planar waveguide and the input rectangular waveguide is formed.
Has a gap between the planar waveguide and the input rectangular waveguide.
An optical branching circuit characterized in that the optical branching circuit is separated.
JP21389393A 1993-08-30 1993-08-30 Optical waveguide circuit Expired - Lifetime JP3309877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21389393A JP3309877B2 (en) 1993-08-30 1993-08-30 Optical waveguide circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21389393A JP3309877B2 (en) 1993-08-30 1993-08-30 Optical waveguide circuit

Publications (2)

Publication Number Publication Date
JPH0763934A JPH0763934A (en) 1995-03-10
JP3309877B2 true JP3309877B2 (en) 2002-07-29

Family

ID=16646765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21389393A Expired - Lifetime JP3309877B2 (en) 1993-08-30 1993-08-30 Optical waveguide circuit

Country Status (1)

Country Link
JP (1) JP3309877B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596917B2 (en) * 1993-11-01 2004-12-02 住友電気工業株式会社 Optical branching device and optical components
JP3625666B2 (en) * 1998-11-06 2005-03-02 古河電気工業株式会社 Optical wavelength multiplexer / demultiplexer
JP3890190B2 (en) 2000-11-16 2007-03-07 日本電気株式会社 Arrayed waveguide grating and waveguide element
US6424760B1 (en) 2000-12-29 2002-07-23 Sumitomo Electric Industries, Ltd. Optical multiplexer/demultiplexer
JP2007233294A (en) * 2006-03-03 2007-09-13 Oki Electric Ind Co Ltd Optical coupler
JP5244085B2 (en) * 2009-12-22 2013-07-24 Nttエレクトロニクス株式会社 Planar lightwave circuit and method for manufacturing planar lightwave circuit
JP5952643B2 (en) * 2012-05-28 2016-07-13 日本電信電話株式会社 Excitation light source for optical circuit and optical amplifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599786B2 (en) * 1989-03-17 1997-04-16 日本電信電話株式会社 Waveguide type diffraction grating
JP2817898B2 (en) * 1990-07-06 1998-10-30 日本電信電話株式会社 Branch and multiplex optical waveguide circuit
JP2809517B2 (en) * 1990-12-10 1998-10-08 日本電信電話株式会社 Branch and multiplex optical waveguide circuit

Also Published As

Publication number Publication date
JPH0763934A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
JP3253622B2 (en) Optical integrated circuit device
US6767756B2 (en) Method of manufacturing tapered optical waveguide
JP2004234031A (en) Planar optical waveguide element
JPH11174246A (en) Planar type optical waveguide
JP3309877B2 (en) Optical waveguide circuit
JP3039491B2 (en) Optical wavelength multiplexer / demultiplexer
EP0525606B1 (en) Waveguide fabrication by electron beam irradiation of silica
JP3994860B2 (en) Arrayed waveguide grating
US6483964B1 (en) Method of fabricating an optical component
JPH09297235A (en) Optical waveguide and its production as well as optical waveguide module using the same
JP2005338467A (en) Optical branching device and manufacturing method therefor
JP3309369B2 (en) Optical wavelength multiplexer / demultiplexer
JP3228233B2 (en) Optical waveguide device
JPH10197737A (en) Production of optical waveguide circuit
Mottier Integrated optics and micro-optics at LETI
CN1387059A (en) Wave division multiplexer based on more sub-rasters for flat-top etching and diffracting raster
JP3137165B2 (en) Manufacturing method of optical waveguide circuit
JP2001159718A (en) Array waveguide type wavelength multiplexing/ demultiplexing circuit
JPH01231006A (en) Optical multiplexer/demultiplexer
JPS61122610A (en) Working method of optical fiber end face
JP4954828B2 (en) Optical waveguide circuit and manufacturing method thereof
JP2000241637A (en) Manufacture of optical wavelength multiplexer/ demultiplexer
JP2798308B2 (en) Crossed star coupler
JP3837506B2 (en) Optical waveguide and method for forming the same
JPH09269514A (en) Optical waveguide device and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12