JPH0763934A - Optical waveguide circuit - Google Patents

Optical waveguide circuit

Info

Publication number
JPH0763934A
JPH0763934A JP5213893A JP21389393A JPH0763934A JP H0763934 A JPH0763934 A JP H0763934A JP 5213893 A JP5213893 A JP 5213893A JP 21389393 A JP21389393 A JP 21389393A JP H0763934 A JPH0763934 A JP H0763934A
Authority
JP
Japan
Prior art keywords
waveguide
rectangular
optical
waveguides
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5213893A
Other languages
Japanese (ja)
Other versions
JP3309877B2 (en
Inventor
Senta Suzuki
扇太 鈴木
Katsunari Okamoto
勝就 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21389393A priority Critical patent/JP3309877B2/en
Publication of JPH0763934A publication Critical patent/JPH0763934A/en
Application granted granted Critical
Publication of JP3309877B2 publication Critical patent/JP3309877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide an optical waveguide circuit consisting of a plane waveguide and rectangular waveguide having excellent reproducibility with easy production. CONSTITUTION:This optical waveguide circuit consists of combination of the plane waveguide 5 formed within a clad on a substrate and the rectangular waveguides 1, 2 connected to the plane waveguide 5. The connecting parts of the plane waveguide 5 and the rectangular waveguides 1, 2 separate the plane waveguide 5 and the respective rectangular waveguides 1, 2 at spacings 29, 30 and the respective rectangular waveguides 2 are separated from each other at the spacings.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上に形成された平
面導波路と矩形導波路の組み合わせからなる光導波回路
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide circuit composed of a combination of a planar waveguide and a rectangular waveguide formed on a substrate.

【0002】[0002]

【従来の技術】集積型光導波回路において、平面導波路
と矩形導波路は導波路の基本構造であり、それらの組み
合わせにより、光パワーを分ける光分岐回路や波長毎に
光を分離する光分波回路などが作られている。
2. Description of the Related Art In an integrated optical waveguide circuit, a planar waveguide and a rectangular waveguide are basic structures of a waveguide, and by combining them, an optical branch circuit for dividing the optical power and an optical branch for separating the light for each wavelength. Wave circuits are made.

【0003】図6は、平面導波路と複数の矩形導波路の
組み合わせから構成される従来の光分岐回路を示す図で
あって、同図の(a)は上面図、同図の(b)はA−B
線方向の断面図である。図6において、1は入力用の矩
形導波路、2は出力用の矩形導波路、3は入力用の矩形
導波路からつながるテーパ導波路、4は出力用の矩形導
波路につながるテーパ導波路、5は平面導波路、6は基
板、7はクラッドである。31は導波路中を伝搬する光
を示す網掛け、32は回折で広がる光の等位相面を示す
細線であり、後述する図面においても同様に用いてい
る。
FIG. 6 is a diagram showing a conventional optical branching circuit composed of a combination of a planar waveguide and a plurality of rectangular waveguides. (A) of the same figure is a top view and (b) of the same figure. Is AB
It is sectional drawing of a line direction. In FIG. 6, 1 is a rectangular waveguide for input, 2 is a rectangular waveguide for output, 3 is a tapered waveguide connected from the rectangular waveguide for input, 4 is a tapered waveguide connected to a rectangular waveguide for output, Reference numeral 5 is a planar waveguide, 6 is a substrate, and 7 is a clad. Reference numeral 31 is a mesh for showing the light propagating in the waveguide, and 32 is a thin line showing the equiphase surface of the light spread by diffraction, which is also used in the drawings described later.

【0004】入力用の矩形導波路1から導かれてきた光
は、平面導波路5において回折効果のため横方向に広が
り、その後、回折波の等位相面円周上にアレイ状に整列
したテーパ導波路4で受光され出力用の矩形導波路2に
導かれる。その際、光パワーを効率的に出力用の矩形導
波路2に分配するために、テーパ導波路4同士に囲まれ
たクサビ形の先端幅は零であるような理想形状にされて
いる。なお、入力用の矩形導波路1、出力用の矩形導波
路2、テーパ導波路3,4および平面導波路5は、断面
を表す図6の(b)に示すように、基板6上のクラッド
7の中に構成されている。
The light guided from the input rectangular waveguide 1 spreads laterally in the planar waveguide 5 due to the diffraction effect, and then tapers arranged in an array on the circumference of the equiphase surface of the diffracted wave. The light is received by the waveguide 4 and guided to the output rectangular waveguide 2. At this time, in order to efficiently distribute the optical power to the rectangular waveguide 2 for output, the wedge-shaped tip surrounded by the tapered waveguides 4 has an ideal tip width of zero. The rectangular waveguide 1 for input, the rectangular waveguide 2 for output, the tapered waveguides 3, 4 and the planar waveguide 5 are clad on the substrate 6, as shown in FIG. It is organized in 7.

【0005】図7は、従来技術の第2の例を示す図であ
って、平面導波路14に入力用の矩形導波路8と出力用
の矩形導波路11を接続した構造を有し、複数の入力用
の矩形導波路8からの光信号を全ての出力用の矩形導波
路11に等分配する光スターカプラが例示されている。
ダミー導波路10と13は、中央に位置する矩形導波路
と端に位置する矩形導波路の構造的条件を等しくするた
めに設けられている。また、平面導波路14と入力用の
矩形導波路8および出力用の矩形導波路11は、前述し
た理由よりテーパ導波路9および12を介して接続され
ている。
FIG. 7 is a diagram showing a second example of the prior art, which has a structure in which a rectangular waveguide 8 for input and a rectangular waveguide 11 for output are connected to a planar waveguide 14, An optical star coupler that equally distributes the optical signal from the input rectangular waveguide 8 to all the output rectangular waveguides 11 is illustrated.
The dummy waveguides 10 and 13 are provided to equalize the structural conditions of the rectangular waveguide located at the center and the rectangular waveguide located at the ends. Further, the planar waveguide 14, the input rectangular waveguide 8 and the output rectangular waveguide 11 are connected via the tapered waveguides 9 and 12 for the reason described above.

【0006】図8は、従来技術の第3の例を示す図であ
って、複数の矩形導波路が接続された2個の平面導波路
をそれぞれ光路長の異なる複数の矩形導波路アレイで接
続した構造を有する光合分波回路が例示されている。
FIG. 8 is a diagram showing a third example of the prior art, in which two planar waveguides to which a plurality of rectangular waveguides are connected are connected by a plurality of rectangular waveguide arrays having different optical path lengths. An optical multiplexing / demultiplexing circuit having the above structure is illustrated.

【0007】入力用の矩形導波路15を導波してきた光
は、第1の平面導波路17において回折により広がり、
その回折波面と垂直に配置されたテーパ導波路18によ
り受光される。各テーパ導波路に受光された直後の光は
それぞれ等位相関係を持っているが、所定の光路長差を
有する矩形導波路アレイ19を導波することにより、第
2の平面導波路21に到達した時点で光路長差分に対応
する位相差を生じている。この位相差は波長により異な
るため、出力用の矩形導波路23に集光する際に、波長
毎に異なる出力用の矩形導波路に集光することになり、
光分波回路として動作する。この動作を逆に行えば、波
長の異なる光を1本の導波路に集光することができるの
で、光合波回路として動作する。平面導波路と矩形導波
路の接続点においては、前述した理由によりテーパ導波
路16,18,20,22が設けられている。
The light guided through the input rectangular waveguide 15 spreads by diffraction in the first planar waveguide 17,
The light is received by the tapered waveguide 18 arranged perpendicular to the diffracted wavefront. The light immediately after being received by each tapered waveguide has an equal phase relationship, but reaches the second planar waveguide 21 by being guided through the rectangular waveguide array 19 having a predetermined optical path length difference. At that time, a phase difference corresponding to the optical path length difference is generated. Since this phase difference differs depending on the wavelength, when the light is focused on the output rectangular waveguide 23, it is focused on the output rectangular waveguide different for each wavelength.
It operates as an optical demultiplexing circuit. If this operation is performed in reverse, light having different wavelengths can be condensed in one waveguide, and thus the optical multiplexer operates. The tapered waveguides 16, 18, 20, 22 are provided at the connection point between the planar waveguide and the rectangular waveguide for the reason described above.

【0008】これらのような光分岐回路の作製は、例え
ば特開昭58−105111号公報に示されているよう
に行えば良い。即ち、SiCl4 ,GeCl4 ,TiCl4 ,POC
l3 ,BCl3の塩化物を出発材料とし、例えば図9の
(a)〜(c)に示すように、シリコン等の基板6上に
クラッド7、コアガラス層24を順次堆積し、次いで図
9の(d)に示すように、エッチング加工により上述の
導波路に対応するコア部24−1,24−2をエッチン
グにより形成し、最後に図9の(e)に示すように、ク
ラッド7を堆積し導波路を埋め込む。
The optical branch circuit as described above may be manufactured, for example, as disclosed in Japanese Patent Application Laid-Open No. 58-105111. That is, SiCl 4 , GeCl 4 , TiCl 4 , POC
Using chlorides of l 3 and BCl 3 as starting materials, a cladding 7 and a core glass layer 24 are sequentially deposited on a substrate 6 such as silicon as shown in FIGS. As shown in (d) of FIG. 9, core portions 24-1 and 24-2 corresponding to the above-mentioned waveguides are formed by etching by etching, and finally, as shown in (e) of FIG. Is deposited and the waveguide is embedded.

【0009】[0009]

【発明が解決しようとする課題】上述したような光回路
においては、低損失化のために矩形導波路同士で囲まれ
る部分を理想的な鋭峻形状に近づけていた。しかし、現
実の作製技術では、矩形導波路が近接している部分を鋭
峻に且つ精度良く加工したり、クラッドで埋め込むこと
は困難である。エッチング用マスクは感光性レジストに
紫外線を照射して形成するが、パターン幅の細い部分で
は紫外線の回折や集光用レンズの収差などにより、図1
0に示すような形状変形25,26が生じる問題があ
る。また、導波路間隔が狭く、かつ複数の導波路に挟ま
れた袋小路のような構造になっている場合は、導波路埋
め込み時に図11に示すようにクラッドガラスが分岐点
近傍の矩形導波路間隙に充填されずクラッド7に空隙2
7が生じる問題もある。即ち、従来においては平面導波
路と矩形導波路からなる光導波回路を設計通り再現性良
く製作することができず、光パワーを所望の比率で分岐
導波路に分配することが困難であった。そのため、ある
程度の損失を犠牲にして、図12のように矩形導波路同
士の間隔28を大きく設定し、作製時の形状変形を防止
する方法などがとられていたが、矩形導波路同士の間隔
は数μm程度と狭く袋小路の構造であるため、図11で
述べたようなクラッド7の空隙27発生を防止すること
は困難であった。
In the above-mentioned optical circuit, the portion surrounded by the rectangular waveguides is made to have an ideal sharp shape in order to reduce the loss. However, in the actual manufacturing technique, it is difficult to sharply and accurately process a portion where the rectangular waveguides are close to each other or to embed it with a clad. The etching mask is formed by irradiating the photosensitive resist with ultraviolet rays. However, due to the diffraction of ultraviolet rays and the aberration of the condenser lens in the portion where the pattern width is narrow, the mask shown in FIG.
There is a problem that the shape deformations 25 and 26 as shown in 0 occur. Further, when the waveguide spacing is narrow and the structure is like a blind alley sandwiched between a plurality of waveguides, the clad glass has a rectangular waveguide gap near the branch point as shown in FIG. 11 when the waveguide is embedded. Not filled into the clad 7 and the void 2
There is also a problem that 7 occurs. That is, conventionally, an optical waveguide circuit including a planar waveguide and a rectangular waveguide could not be manufactured with good reproducibility as designed, and it was difficult to distribute optical power to a branch waveguide at a desired ratio. Therefore, at a sacrifice of a certain amount of loss, a method of setting the interval 28 between the rectangular waveguides to be large as shown in FIG. 12 to prevent the deformation of the shape at the time of fabrication has been taken. Since it has a narrow dead-end structure of about several μm, it is difficult to prevent the generation of the void 27 in the clad 7 as described in FIG.

【0010】本発明は、このような事情に鑑み、製作が
容易で且つ再現性に優れた平面導波路と矩形導波路から
構成される光導波回路を提供することを目的とする。
In view of such circumstances, it is an object of the present invention to provide an optical waveguide circuit composed of a planar waveguide and a rectangular waveguide which are easy to manufacture and excellent in reproducibility.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
の本発明の構成は、基板上のクラッド内に作製した平面
導波路と該平面導波路に接続される矩形導波路との組み
合せからなる光導波回路において、前記平面導波路と前
記矩形導波路との接続部分が、平面導波路と各矩形導波
路とを間隙をもって分離し、かつ各矩形導波路同士を間
隔をもって分離してなることを特徴とする。
The structure of the present invention for achieving the above object comprises a combination of a planar waveguide formed in a clad on a substrate and a rectangular waveguide connected to the planar waveguide. In the optical waveguide circuit, the connecting portion between the planar waveguide and the rectangular waveguide may separate the planar waveguide and each rectangular waveguide with a gap and each rectangular waveguide with a gap. Characterize.

【0012】[0012]

【作用】上記構成において、矩形導波路同士や平面導波
路と矩形導波路との間に間隙が存在するために、導波路
加工が容易になる上、導波路間隙にクラッドガラスが供
給され易くなって導波路を均一に埋め込むことが可能と
なるため、光導波回路の製作性および再現性が向上され
る。
In the above structure, since there are gaps between the rectangular waveguides or between the planar waveguides and the rectangular waveguides, it is easy to process the waveguides and the cladding glass is easily supplied to the waveguide gaps. Since it is possible to uniformly embed the waveguide, the manufacturability and reproducibility of the optical waveguide circuit are improved.

【0013】[0013]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。図1は、本発明の第1の実施例である光分岐
回路を示す。図中、1は入力用の矩形導波路、2は出力
用の矩形導波路、5は入力用の矩形導波路からの光を回
折効果により広げる平面導波路、29は本発明の特徴で
ある平面導波路5と入力用の矩形導波路1間の間隙、3
0も本発明の特徴である平面導波路5と複数の出力用の
矩形導波路2間の間隙である。また、33は設計の上で
補助的に必要であるが実際には作製されない線である。
出力用の矩形導波路2は、平面導波路5内で回折して広
がる光の等位相面に垂直になるよう配置されている。
EXAMPLES The present invention will be described in more detail below with reference to examples. FIG. 1 shows an optical branch circuit according to a first embodiment of the present invention. In the figure, 1 is a rectangular waveguide for input, 2 is a rectangular waveguide for output, 5 is a planar waveguide that spreads light from the rectangular waveguide for input by a diffraction effect, and 29 is a plane which is a feature of the present invention. Gap between waveguide 5 and rectangular waveguide 1 for input, 3
Reference numeral 0 is also a gap between the planar waveguide 5 and the plurality of output rectangular waveguides 2, which is a feature of the present invention. Further, reference numeral 33 is a line which is auxiliary in designing but is not actually produced.
The output rectangular waveguide 2 is arranged so as to be perpendicular to the equiphase surface of the light diffracted and spread in the planar waveguide 5.

【0014】導波路の間隙寸法の最大値は回折による過
剰損失で決まり、最小値はエッチング用マスク作製技術
で決定される。図2は、導波路間隙と回折による過剰損
失の関係を示したグラフである。導波路間隙を設けたこ
とによる過剰損失は、間隙寸法が10μm以下では最大
で0.1dBと十分無視できるほど小さいことが分かる。間
隙が小さいほど過剰損失は小さくなるが、通常の紫外線
露光装置を用いた場合は1μm以下の間隙をエッチング
用マスクで作製する事は難しく、逆に導波路パターンの
変形を生じる危険性が高くなる。さらに、クラッドガラ
スが間隙に入り込みにくくなるため、上述したような空
隙(図11の27参照)が生じる危険性も高くなる。し
たがって、導波路間隙は1〜10μm程度が光結合する
ために最適であると言える。
The maximum value of the gap size of the waveguide is determined by the excessive loss due to diffraction, and the minimum value is determined by the etching mask manufacturing technique. FIG. 2 is a graph showing the relationship between the waveguide gap and the excess loss due to diffraction. It can be seen that the excess loss due to the provision of the waveguide gap is 0.1 dB at the maximum when the gap dimension is 10 μm or less, which is sufficiently small to be ignored. The smaller the gap is, the smaller the excess loss becomes. However, it is difficult to form a gap of 1 μm or less with an etching mask when an ordinary ultraviolet exposure device is used, and on the contrary, the risk of deformation of the waveguide pattern increases. . Furthermore, since the clad glass is less likely to enter the gap, the risk of the above-described void (see 27 in FIG. 11) is increased. Therefore, it can be said that the waveguide gap of about 1 to 10 μm is optimal for optical coupling.

【0015】本実施例においては、直径3インチ、厚さ
700μmのシリコン基板上に火災堆積法によって、ま
ずクラッド層として組成がSiO2−P2O5−B2O3の多孔質ガ
ラス膜を堆積し、次にコア層として組成がSiO2−GeO2
P2O5−B2O3の多孔質ガラスを堆積し、その後、温度13
90℃のHeとO2との混合雰囲気で2時間熱処理した。次
に、反応性イオンエッチングにより上述したような光導
波路パターンを形成し、その後、このコア層を埋め込む
ように上述したものと同様のクラッド層を形成した。コ
ア寸法は6.5×6.5μm、コアガラスとクラッドガラス
の比屈折率差は0.75%である。
In this example, a porous glass film having a composition of SiO 2 —P 2 O 5 —B 2 O 3 was first formed as a cladding layer on a silicon substrate having a diameter of 3 inches and a thickness of 700 μm by a fire deposition method. deposited, 2 then the composition as a core layer is SiO -GeO 2 -
P 2 O 5 —B 2 O 3 porous glass was deposited and then the temperature of 13
Heat treatment was performed for 2 hours at 90 ° C. in a mixed atmosphere of He and O 2 . Next, an optical waveguide pattern as described above was formed by reactive ion etching, and then a clad layer similar to that described above was formed so as to embed the core layer. The core size is 6.5 × 6.5 μm, and the relative refractive index difference between the core glass and the clad glass is 0.75%.

【0016】このようにして、導波路間の間隙29,3
0により、急峻な形状や細かい形状が無くなるため、上
述のエッチング工程における導波路パターンの変形が防
止される。また、導波路を埋め込むクラッドガラスが導
波路間隙に入り込み易くなるために、導波路間に空隙の
発生も防止される。また、反射戻り光もコアガラスとク
ラッドガラスの屈折率差が小さいため問題にならない。
この結果、本発明により光導波路回路を設計通りに再現
性良く製作することが可能となる。以下に説明する実施
例においても、同様の効果が得られる。
In this way, the gaps 29, 3 between the waveguides are formed.
When 0 is set, a steep shape or a fine shape is eliminated, so that the waveguide pattern is prevented from being deformed in the above etching process. In addition, since the clad glass that fills the waveguides easily enters the waveguide gaps, the formation of voids between the waveguides is prevented. Further, the reflected return light is not a problem because the difference in refractive index between the core glass and the clad glass is small.
As a result, according to the present invention, the optical waveguide circuit can be manufactured with good reproducibility as designed. Similar effects can be obtained in the embodiments described below.

【0017】図3は、本発明の第2の実施例を示す図で
あり、第1の実施例である光分岐回路において矩形導波
路と平面導波路との接続部にテーパ導波路を用いたもの
である。図中、1は入力用の矩形導波路、2は出力用の
矩形導波路、3は入力用の矩形導波路1からつながるテ
ーパ導波路、4は出力用の矩形導波路2につながるテー
パ導波路、5は入力用の矩形導波路1からの光を回折効
果により広げる平面導波路、29は本発明の特徴である
平面導波路5と入力用の矩形導波路1,3間の間隙、3
0も本発明の特徴である平面導波路5と複数の出力用の
矩形導波路2,4間の間隙である。テーパ導波路4は、
平面導波路5内で回折して広がる光の等位相面に垂直に
なるよう配置されている。
FIG. 3 is a diagram showing a second embodiment of the present invention. In the optical branching circuit of the first embodiment, a tapered waveguide is used at the connecting portion between the rectangular waveguide and the planar waveguide. It is a thing. In the figure, 1 is a rectangular waveguide for input, 2 is a rectangular waveguide for output, 3 is a tapered waveguide connected from the rectangular waveguide for input 1, 4 is a tapered waveguide connected to a rectangular waveguide for output 2. Reference numeral 5 denotes a planar waveguide that spreads light from the input rectangular waveguide 1 by a diffraction effect. Reference numeral 29 denotes a gap between the planar waveguide 5 and the input rectangular waveguides 1 and 3, which is a feature of the present invention.
Reference numeral 0 is also a gap between the planar waveguide 5 and the plurality of output rectangular waveguides 2 and 4, which is a feature of the present invention. The tapered waveguide 4 is
It is arranged so as to be perpendicular to the equiphase surface of the light diffracted and spread in the planar waveguide 5.

【0018】図4は、本発明の第3の実施例である光ス
ターカプラを示す。平面導波路15を中心に対向するよ
うに入力用テーパ導波路10、出力用テーパ導波路13
が配置され、該テーパ導波路は入力用の矩形導波路9、
出力用の矩形導波路12に接続されており、任意の入力
用の矩形導波路からの光信号を全ての出力用の矩形導波
路に分配する機能を有している。前記テーパ導波路1
0,13と平面導波路15の接続部には、本発明の特徴
である平面導波路と複数の矩形導波路間の間隙30が設
けられている。
FIG. 4 shows an optical star coupler which is a third embodiment of the present invention. The input tapered waveguide 10 and the output tapered waveguide 13 are arranged so as to face each other with the planar waveguide 15 as the center.
And the tapered waveguide is a rectangular waveguide 9 for input,
It is connected to the output rectangular waveguide 12 and has a function of distributing an optical signal from an arbitrary input rectangular waveguide to all the output rectangular waveguides. The tapered waveguide 1
A gap 30 between the planar waveguide and the plurality of rectangular waveguides, which is a feature of the present invention, is provided at the connecting portion between the 0 and 13 and the planar waveguide 15.

【0019】図5は、本発明の第4の実施例である光合
分波回路を示す。複数の入力用の矩形および出力用の矩
形導波路が接続された2個の平面導波路をそれぞれ光路
長の異なる複数の矩形導波路アレイで接続した構造を有
する光合分波回路である。入力用の矩形導波路16と出
力用の矩形導波路24につながるテーパ導波路17,2
3および所定の光路長差を有するアレイ導波路20につ
ながるテーパ導波路19と21と、2個のレンズ作用を
有する平面導波路18,22の接続部には、本発明の特
徴である導波路間の間隙30がそれぞれ設けられてい
る。
FIG. 5 shows an optical multiplexer / demultiplexer circuit according to a fourth embodiment of the present invention. It is an optical multiplexing / demultiplexing circuit having a structure in which two planar waveguides to which a plurality of input rectangular waveguides and a plurality of output rectangular waveguides are connected are connected by a plurality of rectangular waveguide arrays each having a different optical path length. Tapered waveguides 17, 2 connected to the input rectangular waveguide 16 and the output rectangular waveguide 24
3 and the tapered waveguides 19 and 21 connected to the arrayed waveguide 20 having a predetermined optical path length difference and the planar waveguides 18 and 22 having two lens functions are connected to each other by the waveguide which is a feature of the present invention. A gap 30 is provided between them.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、平
面導波路と矩形導波路との接続部分を、平面導波路と各
矩形導波路とを間隙をもって分離し、かつ各矩形導波路
同士を間隔をもって分離して構成したので、製作が容易
で且つ再現性に優れた、平面導波路と複数の矩形導波路
とから構成される光導波回路を実現することが可能とな
る。
As described above, according to the present invention, the connecting portion of the planar waveguide and the rectangular waveguide is separated from each other with a gap between the planar waveguide and the rectangular waveguides, and the rectangular waveguides are connected to each other. Since the optical waveguides are separated from each other at intervals, it is possible to realize an optical waveguide circuit which is easy to manufacture and has excellent reproducibility and which is composed of a planar waveguide and a plurality of rectangular waveguides.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の係る第1の実施例である光分岐回路を
示す説明図である。
FIG. 1 is an explanatory diagram showing an optical branch circuit according to a first embodiment of the present invention.

【図2】導波路間隙と回折による過剰損失の関係を示す
グラフである。
FIG. 2 is a graph showing a relationship between a waveguide gap and an excessive loss due to diffraction.

【図3】本発明の係る第2の実施例である光分岐回路を
示す説明図である。
FIG. 3 is an explanatory diagram showing an optical branch circuit according to a second embodiment of the present invention.

【図4】本発明の係る第3の実施例である光スターカプ
ラを示す説明図である。
FIG. 4 is an explanatory diagram showing an optical star coupler that is a third embodiment of the present invention.

【図5】本発明の係る第4の実施例である光合分波回路
を示す説明図である。
FIG. 5 is an explanatory diagram showing an optical multiplexer / demultiplexer circuit according to a fourth embodiment of the present invention.

【図6】従来技術の係る光分岐回路を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing an optical branch circuit according to a conventional technique.

【図7】従来技術の係る光スターカプラを示す説明図で
ある。
FIG. 7 is an explanatory diagram showing a conventional optical star coupler.

【図8】従来技術の係る光合分波回路を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing an optical multiplexing / demultiplexing circuit according to a conventional technique.

【図9】光導波路の作製方法を示す説明図である。FIG. 9 is an explanatory diagram showing a method of manufacturing an optical waveguide.

【図10】従来技術の係る第1の問題点を示す説明図で
ある。
FIG. 10 is an explanatory diagram showing a first problem of the conventional technique.

【図11】従来技術の係る第2の問題点を示す説明図で
ある。
FIG. 11 is an explanatory diagram showing a second problem of the conventional technique.

【図12】従来の解決方法における導波路構造を示す説
明図である。
FIG. 12 is an explanatory diagram showing a waveguide structure in a conventional solution.

【符号の説明】 1 入力用の矩形導波路 2 出力用の矩形導波路 3 入力用の矩形導波路からつながるテーパ導波路 4 出力用の矩形導波路からつながるテーパ導波路 5 平面導波路 6 基板 7 クラッド 8 光スターカプラ入力用の矩形導波路 9 入力用の矩形導波路からつながるテーパ導波路 10 入力側ダミー導波路 11 光スターカプラ出力用の矩形導波路 12 出力矩形導波路につながるテーパ導波路 13 出力側ダミー導波路 14 光スターカプラ平面導波路 15 光合分波回路入力用の矩形導波路 16 入力用の矩形導波路からつながるテーパ導波路 17 矩形導波路アレイに光を分配するための第1の平
面導波路 18 矩形導波路アレイにつながるテーパ導波路 19 光路長差を有する矩形導波路アレイ 20 矩形導波路アレイからつながるテーパ導波路 21 集光作用を有する第2の平面導波路 22 出力用の矩形導波路からつながるテーパ導波路 23 光合分波回路出力用の矩形導波路 24 コアガラス層 24−1,24−2 エッチング後のコア部 25,26 テーパ導波路の変形部分 27 クラッド間に生じた空隙 28 変形防止のための従来構造 29 平面導波路と矩形導波路接続点の間隙 30 平面導波路と複数の矩形導波路接続点の間隙 31 導波路中を伝搬する光を示す網掛け 32 回折で広がる光の等位相面を示す細線 33 設計の上で補助的に必要であるが実際には作製さ
れていない線
[Description of Reference Signs] 1 rectangular waveguide for input 2 rectangular waveguide for output 3 tapered waveguide connected to rectangular waveguide for input 4 tapered waveguide connected to rectangular waveguide for output 5 planar waveguide 6 substrate 7 Clad 8 Rectangular waveguide for optical star coupler input 9 Tapered waveguide connected from input rectangular waveguide 10 Input side dummy waveguide 11 Rectangular waveguide for optical star coupler output 12 Tapered waveguide connected to output rectangular waveguide 13 Output side dummy waveguide 14 Optical star coupler planar waveguide 15 Rectangular waveguide for input of optical multiplexing / demultiplexing circuit 16 Tapered waveguide connected from rectangular waveguide for input 17 First for distributing light to rectangular waveguide array Planar waveguide 18 Tapered waveguide connected to rectangular waveguide array 19 Rectangular waveguide array having optical path length difference 20 Connected from rectangular waveguide array Tapered waveguide 21 Second planar waveguide having a condensing action 22 Tapered waveguide connected from output rectangular waveguide 23 Rectangular waveguide for optical multiplexing / demultiplexing circuit 24 Core glass layers 24-1, 24-2 Core part after etching 25,26 Deformed part of tapered waveguide 27 Void generated between clad 28 Conventional structure for preventing deformation 29 Gap between connection point of planar waveguide and rectangular waveguide 30 Planar waveguide and plural rectangular waveguides Gap between waveguide connection points 31 Shading showing light propagating in the waveguide 32 Fine line showing equal phase plane of light spread by diffraction 33 Line which is auxiliary required but not actually manufactured

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上のクラッド内に作製した平面導波
路と該平面導波路に接続される矩形導波路との組み合せ
からなる光導波回路において、 前記平面導波路と前記矩形導波路との接続部分が、平面
導波路と各矩形導波路とを間隙をもって分離し、かつ各
矩形導波路同士を間隔をもって分離してなることを特徴
とする光導波回路。
1. An optical waveguide circuit comprising a combination of a planar waveguide formed in a clad on a substrate and a rectangular waveguide connected to the planar waveguide, wherein the planar waveguide and the rectangular waveguide are connected. An optical waveguide circuit, characterized in that a portion separates a planar waveguide and each rectangular waveguide with a gap, and also separates each rectangular waveguide with a gap.
JP21389393A 1993-08-30 1993-08-30 Optical waveguide circuit Expired - Lifetime JP3309877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21389393A JP3309877B2 (en) 1993-08-30 1993-08-30 Optical waveguide circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21389393A JP3309877B2 (en) 1993-08-30 1993-08-30 Optical waveguide circuit

Publications (2)

Publication Number Publication Date
JPH0763934A true JPH0763934A (en) 1995-03-10
JP3309877B2 JP3309877B2 (en) 2002-07-29

Family

ID=16646765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21389393A Expired - Lifetime JP3309877B2 (en) 1993-08-30 1993-08-30 Optical waveguide circuit

Country Status (1)

Country Link
JP (1) JP3309877B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191226A (en) * 1993-11-01 1995-07-28 Sumitomo Electric Ind Ltd Optical branching device and optical component
WO2000028357A1 (en) * 1998-11-06 2000-05-18 The Furukawa Electric Co., Ltd. Optical multiplexer/demultiplexer
US6424760B1 (en) 2000-12-29 2002-07-23 Sumitomo Electric Industries, Ltd. Optical multiplexer/demultiplexer
US6882779B2 (en) 2000-11-16 2005-04-19 Nec Corporation Arrayed waveguide grading with optical input and output characteristics settable to desired values
JP2007233294A (en) * 2006-03-03 2007-09-13 Oki Electric Ind Co Ltd Optical coupler
WO2011078033A1 (en) * 2009-12-22 2011-06-30 Nttエレクトロニクス株式会社 Planar lightwave circuit and production method for planar lightwave circuit
JP2013246348A (en) * 2012-05-28 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and excitation light source for optical amplifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244105A (en) * 1989-03-17 1990-09-28 Nippon Telegr & Teleph Corp <Ntt> Waveguide type diffraction grating
JPH0470605A (en) * 1990-07-06 1992-03-05 Nippon Telegr & Teleph Corp <Ntt> Branching and multiplexing optical waveguide
JPH04213407A (en) * 1990-12-10 1992-08-04 Nippon Telegr & Teleph Corp <Ntt> Branching/multiplexing optical waveguide circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244105A (en) * 1989-03-17 1990-09-28 Nippon Telegr & Teleph Corp <Ntt> Waveguide type diffraction grating
JPH0470605A (en) * 1990-07-06 1992-03-05 Nippon Telegr & Teleph Corp <Ntt> Branching and multiplexing optical waveguide
JPH04213407A (en) * 1990-12-10 1992-08-04 Nippon Telegr & Teleph Corp <Ntt> Branching/multiplexing optical waveguide circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191226A (en) * 1993-11-01 1995-07-28 Sumitomo Electric Ind Ltd Optical branching device and optical component
WO2000028357A1 (en) * 1998-11-06 2000-05-18 The Furukawa Electric Co., Ltd. Optical multiplexer/demultiplexer
US6418249B1 (en) * 1998-11-06 2002-07-09 The Furukawa Electric Co., Ltd. Optical multiplexer/demultiplexer
US6882779B2 (en) 2000-11-16 2005-04-19 Nec Corporation Arrayed waveguide grading with optical input and output characteristics settable to desired values
US7139451B2 (en) 2000-11-16 2006-11-21 Nec Corporation Arrayed waveguide grading with optical input and output characteristics settable to desired values
US6424760B1 (en) 2000-12-29 2002-07-23 Sumitomo Electric Industries, Ltd. Optical multiplexer/demultiplexer
JP2007233294A (en) * 2006-03-03 2007-09-13 Oki Electric Ind Co Ltd Optical coupler
WO2011078033A1 (en) * 2009-12-22 2011-06-30 Nttエレクトロニクス株式会社 Planar lightwave circuit and production method for planar lightwave circuit
JP2013246348A (en) * 2012-05-28 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and excitation light source for optical amplifier

Also Published As

Publication number Publication date
JP3309877B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
EP1378772A2 (en) Method of manufacturing tapered optical waveguide
EP0984304B1 (en) Planar lightwave circuit
US6873761B2 (en) Temperature-independent arrayed waveguide grating device
WO2001013150A9 (en) Array waveguide diffraction grating
JP2002323626A (en) Optical wavelength multiplexing and demultiplexing device and optical multiplexing and demultiplexing system
JPH0763934A (en) Optical waveguide circuit
JP3754684B2 (en) Method for manufacturing planar lightwave circuit having vertical taper structure
JP3700930B2 (en) Arrayed waveguide grating
JP2001221923A (en) Optical waveguide circuit
JP3472247B2 (en) Waveguide type optical multiplexer / demultiplexer
JP2005338467A (en) Optical branching device and manufacturing method therefor
WO2001009652A1 (en) Array waveguide diffraction grating
US6483964B1 (en) Method of fabricating an optical component
JP3029028B2 (en) Optical wavelength multiplexer / demultiplexer
JPH1068833A (en) Optical waveguide and its production as well as output circuit
JP2000147283A (en) Optical waveguide circuit
JP3309369B2 (en) Optical wavelength multiplexer / demultiplexer
JP3963255B2 (en) Optical waveguide
Mottier Integrated optics and micro-optics at LETI
JPH10197737A (en) Production of optical waveguide circuit
JP2557455B2 (en) Optical multiplexer / demultiplexer
JP2000321454A (en) Multi-mode interference optical coupler and manufacture thereof
JP2001159718A (en) Array waveguide type wavelength multiplexing/ demultiplexing circuit
US20050232538A1 (en) Integrated optics multiplexer/demultiplexer comprising a cladding and method for making same
JP3137165B2 (en) Manufacturing method of optical waveguide circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12