JPH1133774A - Solder alloy, solder paste, and resin flux cored solder - Google Patents

Solder alloy, solder paste, and resin flux cored solder

Info

Publication number
JPH1133774A
JPH1133774A JP19092897A JP19092897A JPH1133774A JP H1133774 A JPH1133774 A JP H1133774A JP 19092897 A JP19092897 A JP 19092897A JP 19092897 A JP19092897 A JP 19092897A JP H1133774 A JPH1133774 A JP H1133774A
Authority
JP
Japan
Prior art keywords
solder
weight
solder alloy
added
heat cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19092897A
Other languages
Japanese (ja)
Inventor
Toru Murata
透 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
Original Assignee
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co Ltd filed Critical Nihon Handa Co Ltd
Priority to JP19092897A priority Critical patent/JPH1133774A/en
Publication of JPH1133774A publication Critical patent/JPH1133774A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the solder alloy which reduces the crack under the heat cycle condition, the high temperature creep fracture under the high temperature condition, and the tip upright in the time of the reflow by specifying the composition consisting of Sn, Sb, Ag, Cu, Ni and Pb. SOLUTION: The solder alloy consists of 55.0-61.8 wt.% Sn, 0.3-0.7 wt.% Sb, 0.2-1.0 wt.% Ag, 0.05-0.15 wt.% Cu, 0.025-0.07 wt.% Ni, and the balance of Pb, and shows an excellent heat resistant characteristics. The solder alloy absorbs the stress based on the expansion/shrinkage of a substrate by the heat cycle to reduce the crack generated at the soldering part. Further, the solder alloy reduces the creep fracture of the soldering part against the long-hour load under the high temperature condition, and also reduces the upright phenomenon of a tip part in heat-fusing a surface mounting field. The solder alloy can be used for the solder paste or the resin flux cored solder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリント基板等に
使用されるはんだ合金で、熱サイクルによる基板の膨脹
収縮による応力を吸収し、はんだ付け部に発生するクラ
ックを低減させ、かつ高温環境化において、はんだ付け
部に一定荷重が掛かり続けると、やがてはんだ付け部が
外れる現象である高温クリープ破壊を低減させ、かつ表
面実装分野において加熱溶融(リフロー)した時のチッ
プ部品の直立現象(チップ立ち)を低減させる技術であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder alloy used for a printed circuit board or the like, which absorbs stress caused by expansion and contraction of the board due to thermal cycling, reduces cracks generated at a soldered portion, and provides a high-temperature environment. In this case, if a constant load is continuously applied to the soldered part, the high temperature creep destruction, which is the phenomenon that the soldered part will eventually come off, is reduced, and the upright phenomenon of the chip component when it is heated and melted (reflow) in the surface mounting field (chip standing) ).

【0002】[0002]

【従来の技術】電子機器の故障の大部分は、はんだ付け
部の故障だと言われてきた。はんだ付け部の機械的な故
障を形態で分類すると(1)熱疲労破壊、(2)高温ク
リープ破壊、(3)振動破壊、及びそれらが組み合わさ
れた(4)複合破壊等に分類できる。その内の熱疲労破
壊は、環境の温度変化や電気回路のON−OFFに伴な
う基板温度の上昇下降の繰り返しによって、はんだ付け
部は、熱サイクルと基板の膨脹収縮に伴なう応力サイク
ルが繰り返される。やがて、はんだ付け部は、はんだの
結晶組織が粗大化し、脆くなり、応力を吸収できなくな
って破壊する。
2. Description of the Related Art It has been said that most failures in electronic devices are failures in soldered portions. When the mechanical failure of the soldered portion is classified by form, it can be classified into (1) thermal fatigue fracture, (2) high temperature creep fracture, (3) vibration fracture, and a combination thereof (4) composite fracture. Among them, thermal fatigue destruction is caused by repeated changes in the temperature of the substrate and the rise and fall of the substrate temperature caused by the ON-OFF of the electric circuit, and the soldered part undergoes a thermal cycle and a stress cycle caused by the expansion and contraction of the substrate. Is repeated. Eventually, the soldered portion becomes coarse because the crystal structure of the solder becomes coarse, becomes brittle, becomes unable to absorb stress, and is broken.

【0003】このような熱疲労破壊を低減させるため、
従来のSn−Pb系はんだに第2、第3の金属元素を加
え、耐熱疲労特性を向上させたはんだ合金が報告されて
いる。例えば特開平6−71480ではSb0.05〜
1重量%、Te0.01〜0.2重量%を添加したはん
だや、特開平7−116887ではNi0.002〜
0.02重量%を添加したはんだなどが知られている。
そしてその添加する目的として、熱サイクルストレスに
耐え得る結晶組織とするため、またははんだ材料の展延
性を損なわないためとなっている。
In order to reduce such thermal fatigue fracture,
There has been reported a solder alloy in which second and third metal elements are added to a conventional Sn-Pb-based solder to improve thermal fatigue resistance. For example, in JP-A-6-71480, Sb
1% by weight and 0.01 to 0.2% by weight of Te, and in Japanese Patent Application Laid-Open No. 7-11687
A solder to which 0.02% by weight is added is known.
The purpose of the addition is to provide a crystal structure that can withstand thermal cycle stress, or not to impair the spreadability of the solder material.

【0004】さらに最近の電子機器の基板、取り分け携
帯用電話機や車載用電子機器の基板等は、高密度実装で
基板の放熱が悪くなっている上に、消費電力が大きいた
め、従来の電子機器より更に高温環境下で、基板の熱膨
脹収縮による高荷重をはんだ付け部が受け、はんだ付け
部が外れる現象が起きている。この現象は熱サイクルに
よる破壊とは区別され、高温環境下における、はんだ付
け部の機械的強度の不足によると考えられている。この
破壊現象を高温クリープ破壊と呼び、近年重大視されて
いる破壊現象の1つである。
[0004] Furthermore, the boards of recent electronic devices, especially the boards of portable telephones and in-vehicle electronic devices, are not only capable of high-density mounting, but also have poor heat radiation and large power consumption. In a still higher temperature environment, the soldered portion receives a high load due to thermal expansion and contraction of the substrate, and the soldered portion comes off. This phenomenon is distinguished from destruction due to thermal cycling, and is considered to be due to lack of mechanical strength of the soldered portion under a high temperature environment. This destruction phenomenon is called high-temperature creep destruction and is one of destruction phenomena that have been regarded as important in recent years.

【0005】このような高温クリープ破壊を低減させる
ため、従来のSn−Pb系はんだに第2、第3の金属元
素を加え、高温クリープ特性を向上させたはんだ合金が
報告されている。例えば特開平8−132278ではG
e、Ni等を0.005〜0.05重量%添加したはん
だなどが知られている。そしてその添加する理由として
結晶組織を微細化させることにより高温クリープ特性を
向上させるとなっている。
[0005] In order to reduce such high-temperature creep destruction, there has been reported a solder alloy in which second and third metal elements are added to a conventional Sn-Pb-based solder to improve the high-temperature creep characteristics. For example, in JP-A-8-132278, G
e, Ni and the like to which 0.005 to 0.05% by weight is added are known. The reason for the addition is that the high-temperature creep characteristics are improved by refining the crystal structure.

【0006】また表面実装分野は小型軽量化の技術がい
っそう進み、搭載されるチップ部品もいっそう小型軽量
化が進んでいる。最近ではチップの形状が1.0mm×
0.5mmの、いわゆる「1005」も多用されるよう
になって来ている。このような小型のチップ部品は重量
が軽いため、はんだの溶融時の表面張力によるチップ立
ちの現象が多発するようになって来た。
In the field of surface mounting, the technology for reducing the size and weight has been further advanced, and the mounted chip components have been further reduced in size and weight. Recently, the tip shape is 1.0mm ×
The so-called “1005” of 0.5 mm has also been used frequently. Since such a small chip component is light in weight, the phenomenon of chip standing due to surface tension at the time of melting of solder has come to occur frequently.

【0007】チップ立ちは、基板上のチップ部品の左右
電極を接合する位置にソルダーペーストを印刷し、その
上にチップ部品を載せてリフローしたとき、左右のソル
ダーペーストの溶融開始時間が僅かにずれることがある
と、早く溶融した方のはんだの表面張力によってチップ
の反対側が持ち上げられてしまう現象である。
[0007] When a chip is formed, a solder paste is printed at a position on the substrate where the left and right electrodes of the chip component are joined, and when the chip component is mounted thereon and reflowed, the melting start time of the left and right solder paste slightly shifts. In some cases, the opposite side of the chip is lifted by the surface tension of the solder that has melted earlier.

【0008】このチップ立ちを防止するために従来の方
法は特開平8−186367や、特開平7−27607
6に見られるように融点の異なる2種類あるいは3種類
の粉末はんだを混合して、加熱後はんだが完全な液体に
なるまでの時間を長くする方法がある。液体の中に未溶
解の粉末が存在すると、その表面張力は完全な液体の表
面張力より低くなる。チップ部品の左右電極のはんだの
溶解開始時間に多少のずれがあっても、チップ立ちを起
こさない程度の表面張力にする技術である。
In order to prevent this chip standing, conventional methods are disclosed in Japanese Patent Application Laid-Open Nos. 8-186367 and 7-27607.
As shown in No. 6, there is a method of mixing two or three kinds of powdered solders having different melting points to increase the time until the solder becomes a complete liquid after heating. If undissolved powder is present in the liquid, its surface tension will be lower than the surface tension of the complete liquid. This is a technique for adjusting the surface tension to such an extent that the chip does not stand up even if the melting start time of the solder of the left and right electrodes of the chip component slightly shifts.

【0009】[0009]

【発明が解決しようとする課題】従来から利用されてい
るヒートサイクルに強いはんだ、高温クリープに強いは
んだ、チップ立ちを低減するはんだの機能を1種類のは
んだ合金で持ち合わせている。高密度実装の進歩に伴な
い、基板の熱的な負荷と小型化が同時に進んだため、耐
熱特性と、リフロー時のチップ立ちの低減の性能を合わ
せ持った合金を提供する。
One type of solder alloy has the functions of a solder which is conventionally used, which is resistant to heat cycles, a solder which is resistant to high-temperature creep, and a solder which reduces chip standing. With the progress of high-density mounting, the thermal load and miniaturization of the substrate have been advanced at the same time, so that an alloy having both heat resistance and performance of reducing chip standing during reflow is provided.

【0010】電子機器のフロー、リフロー法によるはん
だ付けは、通常融点が低く、はんだ付け性、機械的性質
等の優れたSn63−Pb37共晶はんだを多用してい
る。本発明はSn63−Pb37共晶はんだの溶解温度
特性を損なうことなく、ヒートサイクル環境下に於いて
はんだ付け部のクラックの発生を低減する性能と高温下
においてクリープ特性が優れた性能を持ち、かつ溶解温
度範囲を広げリフロー時のチップ立ちを低減させる性能
を持っている。
In the soldering of electronic equipment by the flow or reflow method, Sn63-Pb37 eutectic solder having a low melting point and excellent in solderability and mechanical properties is often used. The present invention has the performance of reducing the occurrence of cracks in the soldered portion in a heat cycle environment and the excellent creep characteristics at high temperatures without impairing the melting temperature characteristics of the Sn63-Pb37 eutectic solder, and It has the ability to widen the melting temperature range and reduce chip standing during reflow.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本願発明に於いては、Snが55.0〜61.8重
量%、Sbが0.3〜0.7重量%、Agが0.2〜
1.0重量%、Cuが0.05〜0.15重量%、Ni
が0.025〜0.07重量%、残部がPbを基本構成
とするはんだ合金により解決しようとするものである。
In order to solve the above problems, in the present invention, Sn is 55.0 to 61.8% by weight, Sb is 0.3 to 0.7% by weight, and Ag is 0.2 ~
1.0% by weight, 0.05 to 0.15% by weight of Cu, Ni
Is 0.025 to 0.07% by weight, and the balance is to be solved by a solder alloy having a basic composition of Pb.

【0012】[0012]

【発明の実施の形態】本発明に於いてSnを55.0〜
61.8重量%とした理由は、電子機器のフロー、リフ
ローはんだ付けに於いて一般的に使用される共晶近傍の
融点の低いはんだが、最も耐熱疲労特性の向上を求めら
れているからである。さらにSn含有量の上限を共晶組
成であるSn61.9重量%以下にしているのは凝固温
度範囲を広げチップ立ちを低減させることが目的であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, Sn is set to 55.0 to 55.0.
The reason for using 61.8% by weight is that solder having a low melting point near the eutectic which is generally used in the flow and reflow soldering of electronic equipment is required to have the highest thermal fatigue resistance. is there. Further, the reason why the upper limit of the Sn content is set to 61.9% by weight or less, which is the eutectic composition, is to widen the solidification temperature range and reduce chipping.

【0013】Sbを0.3〜0.7重量%添加している
のは、この添加範囲においてSbをはんだ合金に添加す
ると材料の伸び率を損なうことなく引張強さが改善され
るので耐熱的な特性が向上する。Sbが0.3重量%以
下では効果が見られず、Sbが0.7%以上では材料の
伸び率が低下するため、ヒートサイクル下において基板
の熱膨脹収縮をはんだ材料が吸収し難くなることによ
り、耐ヒートサイクル特性が降下するためである。
The reason why 0.3 to 0.7% by weight of Sb is added is that when Sb is added to the solder alloy in this addition range, the tensile strength is improved without impairing the elongation of the material, so that heat resistance is improved. Characteristics are improved. When Sb is 0.3% by weight or less, no effect is obtained, and when Sb is 0.7% or more, the elongation rate of the material is reduced. Therefore, it is difficult for the solder material to absorb the thermal expansion and contraction of the substrate under a heat cycle. This is because the heat cycle resistance decreases.

【0014】Agを0.2〜1.0重量%添加している
が、Agを添加すると熱サイクルによるはんだの結晶組
織の粗大化を抑制することができ、かつSn/Pb/A
g3元共晶反応によって固相線温度をSn/Pb2元共
晶温度より約4℃低い179℃にすることが出来る。こ
れによりSn/Pb2元系より更に凝固温度範囲が広が
りチップ立ちの低減に寄与することが出来る。また本発
明でAgの添加量を0.2〜1.0重量%に限定した理
由はAgが0.2重量%以下では3元共晶反応をする成
分が少なすぎ、チップ立ち防止の低減に効果が少なく、
かつ熱サイクル環境下における結晶粒度の粗大化の低減
の効果も少ないためである。またAgの添加量の上限を
1.0%重量にした理由は、Agが1.0重量%を越え
るとSn/Pb/Ag3元共晶反応をする成分が多くな
るためリフロー時のはんだの溶け始めの時に大部分のは
んだが液体になるため、液体の表面張力が高くなりチッ
プ立ち防止の効果が低減するためである。
Although Ag is added in an amount of 0.2 to 1.0% by weight, the addition of Ag can suppress the coarsening of the solder crystal structure due to thermal cycling, and can also provide Sn / Pb / A
By the ternary eutectic reaction, the solidus temperature can be set to 179 ° C. which is about 4 ° C. lower than the Sn / Pb eutectic temperature. As a result, the solidification temperature range is further widened as compared with the Sn / Pb binary system, and it is possible to contribute to a reduction in chip standing. In addition, the reason why the amount of Ag added is limited to 0.2 to 1.0% by weight in the present invention is that when the amount of Ag is 0.2% by weight or less, the amount of the component that undergoes a ternary eutectic reaction is too small to reduce the prevention of chip standing. Less effective,
This is because the effect of reducing the coarsening of the crystal grain size under a thermal cycle environment is small. The reason why the upper limit of the amount of Ag added is set to 1.0% by weight is that if the amount of Ag exceeds 1.0% by weight, the amount of a component that undergoes a ternary eutectic reaction of Sn / Pb / Ag increases, so that the solder melts during reflow. This is because most of the solder becomes liquid at the beginning, so that the surface tension of the liquid is increased and the effect of preventing chip standing is reduced.

【0015】Cuを0.05〜0.15重量%添加して
いる理由は、高温クリープ特性を向上させるためで、C
uが0.05重量%以下ではその特性が見られず、また
Cuを0.15重量%以上添加すると、Cu6Sn5等
の金属間化合物を作りやすく、合金製造のための材料溶
解時に、これらの結晶は100μm以上の長さの針状の
結晶を生成することがある。そして、この針状の結晶は
ソルダーペスト用の粉末に混入し、表面実装用の微細な
回路では、この結晶が回路を短絡させる可能性がある。
The reason for adding 0.05 to 0.15% by weight of Cu is to improve the high-temperature creep characteristics.
When u is 0.05% by weight or less, the characteristics are not observed, and when Cu is added by 0.15% by weight or more, an intermetallic compound such as Cu6Sn5 is easily formed. May form needle-like crystals having a length of 100 μm or more. The needle-like crystal is mixed into the powder for solder paste, and in a fine circuit for surface mounting, the crystal may short-circuit the circuit.

【0016】Niを0.025〜0.07重量%添加し
ている理由は、上記のCuと同じ理由で高温クリープ特
性を向上させるためである。Cuのみの添加で更に高温
クリープ特性を向上させるなら、Cuを0.15重量%
以上添加することになるので、CuとNiの相乗効果で
高温クリープ特性の向上を計っている。Niの添加量を
0.025重量%以上としているのは、この添加量以下
では、高温クリープ特性の改良に効果が見られないため
である。Niの添加量を0.07重量%以下としている
理由は、NiはSnとNi3Sn、Ni3Sn2、Ni
Sn等の金属間化合物を作りやすい。そしてNiの添加
量が0.07重量%を越えると、金属間化合物はCuの
場合と同じで針状の結晶を生成することがあり、表面実
装用の微細な回路では、この結晶が回路を短絡させる可
能性があるためである。
The reason why Ni is added in an amount of 0.025 to 0.07% by weight is to improve the high-temperature creep characteristics for the same reason as that for Cu described above. To further improve the high temperature creep properties by adding only Cu, 0.15% by weight of Cu
Since the addition is made as described above, the improvement of the high-temperature creep characteristics is measured by the synergistic effect of Cu and Ni. The addition amount of Ni is set to 0.025% by weight or more because an effect of improving the high-temperature creep characteristics is not seen below this addition amount. The reason why the addition amount of Ni is set to 0.07% by weight or less is that Ni is composed of Sn, Ni3Sn, Ni3Sn2, and Ni.
It is easy to form an intermetallic compound such as Sn. If the addition amount of Ni exceeds 0.07% by weight, the intermetallic compound may form needle-like crystals as in the case of Cu, and in a fine circuit for surface mounting, this crystal This is because a short circuit may occur.

【0017】[0017]

【実施例】本願発明のはんだ合金の実施例およびその性
能につき以下説明する。表1に示す様にJIS Z 3
282におけるH63Sに相当するSn63−Pb37
はんだを基準サンプル(以下H1という)として採用
し、17種類のはんだ合金サンプル(以下G1〜G17
という)との比較試験を行なった。表1は実施例による
性能試験(熱分析試験、ヒートサイクル試験、高温クリ
ープ試験、チップ立ち試験)結果を示す表、図1は基板
とコネクタのはんだ付けの状態を示す説明図、図2はは
んだフィレット面にあらわれたクラックおよびしわ欠陥
の判定基準を示す図であり、図3は各サンプルの熱分析
試験結果を示す図、図4はヒートサイクル試験結果を示
す図、図5は高温クリープ試験結果を示す図及び図6は
チップ立ち試験結果を示す図である。各サンプルによる
性能試験(熱分析試験、ヒートサイクル試験、高温クリ
ープ試験、チップ立ち試験)結果を下記に示す。
EXAMPLES Examples of the solder alloy of the present invention and its performance will be described below. As shown in Table 1, JIS Z 3
Sn63-Pb37 corresponding to H63S in 282
Solder was adopted as a reference sample (hereinafter referred to as H1), and 17 types of solder alloy samples (hereinafter referred to as G1 to G17) were used.
). Table 1 is a table showing the results of performance tests (thermal analysis test, heat cycle test, high temperature creep test, chip standing test) according to the examples, FIG. 1 is an explanatory diagram showing the state of soldering of the board and the connector, and FIG. FIG. 3 is a diagram showing criteria for cracks and wrinkle defects appearing on a fillet surface, FIG. 3 is a diagram showing a thermal analysis test result of each sample, FIG. 4 is a diagram showing a heat cycle test result, and FIG. 5 is a high temperature creep test result. FIG. 6 and FIG. 6 are diagrams showing the results of the chip standing test. The results of the performance tests (thermal analysis test, heat cycle test, high temperature creep test, chip standing test) of each sample are shown below.

【0018】[0018]

【表1】 [Table 1]

【0019】熱分析試験は表1のごとくH1とG1〜G
17種類のサンプルについて行なった。熱分析の測定装
置はDSCを用いた。試料の溶湯をFe板の上に滴下し
て凝固した粒の中から30mg程度の粒を選びこれを測
定試料とした。昇温速度は2℃/分、測定感度は20mC
al/S、チャート速度は10mm/分である。結果を表1と
図3に示す。固相線温度と液相線温度の差(凝固温度範
囲)は、H1のSn63/Pb37においては僅か0.
9℃で、チップ左右の電極部分のはんだの溶解部分に多
少のズレが生じた場合、左右のはんだの表面張力の差に
よってチップ立ちが生じる典型の事例である。G1から
G17までは、凝固温度範囲が3.7〜10.6℃とH
1より広くなっていて、チップ立ち現象が少ないことが
予測できる。その中で、G5、6、7及び14〜17は
Agを添加した試料であり、固相線温度が他のサンプル
より低くなっている。したがって凝固温度範囲を広げる
ために液相線温度のみを上昇させることが抑制できる。
As shown in Table 1, H1 and G1 to G
This was performed on 17 types of samples. DSC was used as a measuring device for the thermal analysis. The molten metal of the sample was dropped on the Fe plate, and about 30 mg of the solidified particles were selected from the solidified particles and used as a measurement sample. Heating rate: 2 ° C / min, measurement sensitivity: 20mC
al / S, chart speed is 10 mm / min. The results are shown in Table 1 and FIG. The difference between the solidus temperature and the liquidus temperature (solidification temperature range) is only 0. 3 for Sn63 / Pb37 of H1.
This is a typical case in which when the solder dissolution portion of the left and right electrode portions of the chip slightly shifts at 9 ° C., the tip of the chip is caused by a difference in surface tension between the left and right solders. From G1 to G17, the solidification temperature range is 3.7 to 10.6 ° C and H
It can be expected that it is wider than 1 and that the chip standing phenomenon is small. Among them, G5, 6, 7, and 14 to 17 are samples to which Ag is added, and the solidus temperature is lower than other samples. Therefore, it is possible to suppress an increase in only the liquidus temperature in order to widen the solidification temperature range.

【0020】チップ立ち確認試験はH1とG1、そして
熱分析結果で最もチップ立ち防止はんだ合金として適切
な結果が出たAgを添加した4種類のサンプルG5、
6、7及び17について行なった。チップ部品は軽量で
チップ立ち現象を起こし易い1005を使用し、フラッ
クスは天然ロジンを主成分とする固形分35重量%、ハ
ロゲン成分0.06重量%、フラックス配合比は10.
5重量%の低残査ソルダーペスートで、印刷厚さは0.
15mm、リフローピーク温度は230℃、リフロー炉
の酸素濃度は100ppm、チップ部品実装点数は1
0,000点で試験を行なった。
The chip standing confirmation test was conducted on H1 and G1, and four kinds of samples G5 added with Ag, which gave the most suitable result as a soldering preventing solder alloy in thermal analysis results,
6, 7, and 17 were performed. The chip component is 1005, which is lightweight and easily causes a chip standing phenomenon. The flux is 35% by weight of solid content containing natural rosin as a main component, 0.06% by weight of a halogen component, and the flux mixing ratio is 10.
5% by weight low residue solder paste with a printed thickness of 0.
15mm, reflow peak temperature is 230 ° C, oxygen concentration of reflow furnace is 100ppm, number of chip parts mounted is 1
The test was performed at 000 points.

【0021】ヒートサイクル試験は表1に示すようにH
1とG1〜G17のサンプルについて行なった。使用し
た基板は、2.54ピッチで孔径φ0.9のユニバーサ
ル型の紙フェノール片面基板である。使用したコネクタ
ーは、Snメッキを施したリン青銅製の10ピンで線経
はφ0.64である。はんだ付け条件は、コネクターを
酸洗、水洗浄、乾燥した後、RAタイプのロジン系フラ
ックスをコネクターピンと基板に塗布、乾燥した後、基
板にコネクターを10個、即ち100ピンを挿入し23
0℃で浸漬によるはんだ付けを行なった。温度サイクル
は−40℃で30分、常温さらし時間10分、+80℃
で30分を1000サイクル行なって、はんだ付け部の
クラックの発生個数を実体顕微鏡を用いて調べた。図1
は基板にコネクターがはんだ付けされた状態の断面参考
図である。クラックの判定として図2に示すように、は
んだフィレットの周囲1/2周以上亀裂の入っているも
のをクラックとして数え、また全周にしわが入っている
はんだフィレットもクラックとして数えた。
In the heat cycle test, as shown in Table 1, H
1 and samples G1 to G17. The substrate used was a universal paper phenol single-sided substrate having a 2.54 pitch and a hole diameter of φ0.9. The connector used was a 10-pin Sn-plated phosphor bronze pin having a wire diameter of 0.64. The soldering conditions were as follows: the connector was pickled, washed with water, and dried, then a rosin flux of the RA type was applied to the connector pins and the board, and after drying, 10 connectors were inserted into the board, that is, 100 pins were inserted.
Soldering by immersion was performed at 0 ° C. Temperature cycle is -40 ° C for 30 minutes, room temperature exposure time is 10 minutes, + 80 ° C
For 30 minutes, and the number of cracks generated in the soldered portion was examined using a stereoscopic microscope. FIG.
FIG. 3 is a cross-sectional reference view of a state where a connector is soldered to a substrate. As shown in FIG. 2, cracks were counted as cracks when the cracks were 以上 or more around the periphery of the solder fillet, and solder fillets having wrinkles all over the circumference were also counted as cracks.

【0022】高温クリープ試験は試験は表1のH1とG
1〜G17種類のサンプルについて行なった。使用した
基板はヒートサイクル試験で使用した基板と同じであ
る。使用したコネクターは、ヒートサイクル試験で使用
した10連のコネクターと同じ物を1本づつニッパで割
り、分銅のワイヤロープが掛けられるようにピンの先端
部をフック状に曲げた。洗浄の条件、はんだ付けの条件
はヒートサイクル試験と同じである。100℃の環境下
においてはんだ付けされたコネクターに500gの荷重
をかけ続け、はんだ付けが外れる時間をクリープ時間と
し、1種類のサンプルにつき5回測定をし、それらの平
均値を表1と図5に示した。
For the high temperature creep test, the test was conducted using H1 and G in Table 1.
This was performed on 1 to G17 types of samples. The substrate used was the same as the substrate used in the heat cycle test. The connector used was the same as the ten connectors used in the heat cycle test, one by one with a nipper, and the tip of the pin was bent into a hook shape so that a weight wire rope could be hooked. Cleaning conditions and soldering conditions are the same as in the heat cycle test. In a 100 ° C. environment, a load of 500 g was continuously applied to the soldered connector, and the time during which the solder was removed was set as the creep time, and five measurements were taken for each type of sample. The average value was shown in Table 1 and FIG. It was shown to.

【0023】チップ立ち抑制効果について: Agの効果:H1とG1、5、6、7及び17のチップ
立ち確認試験結果を表1と図6に示した。H1とG1は
同じ2元系合金であり、凝固温度範囲の広いG1の方が
チップ立ち抑制に効果があることがわかる。G5、6、
7はG1にAgを段階的に加えた合金であるが、Agの
添加量が0.1重量%では、熱分析結果に見られるよう
に、Sn/Pb/Ag3元共晶反応をする成分が極めて
僅かのため、チップ立ち抑制の効果がほとんど見られな
い。そしてG6のチップ立ち点数は19点と低くなり、
G8ではチップ立ち点数は84と再び上昇する。この理
由は、Agが1.0重量%を越えるとSn/Pb/Ag
3元共晶反応をする成分が多くなるためリフロー時のは
んだの溶け始めの時に大部分のはんだが液体となり、液
体の表面張力が高くなるところからチップ立ち防止の効
果が低減するものと考えられる。
Effect of suppressing chip standing: Effect of Ag: Table 1 and FIG. 6 show the results of the chip standing confirmation test of H1 and G1, 5, 6, 7, and 17. H1 and G1 are the same binary alloy, and it can be seen that G1 having a wider solidification temperature range is more effective in suppressing chipping. G5, 6,
7 is an alloy obtained by adding Ag stepwise to G1. When the added amount of Ag is 0.1% by weight, as shown in the thermal analysis results, the component that undergoes the Sn / Pb / Ag ternary eutectic reaction is formed. Since it is very slight, the effect of suppressing chip standing is hardly seen. And the number of chip standing points of G6 is as low as 19 points,
In G8, the number of chip standing points rises again to 84. The reason is that if Ag exceeds 1.0% by weight, Sn / Pb / Ag
It is thought that the effect of the ternary eutectic reaction increases, so that most of the solder becomes liquid when the solder begins to melt during reflow, and the surface tension of the liquid increases, thereby reducing the effect of preventing chip standing. .

【0024】耐ヒートサイクル特性について: Sbの効果:表1と図4にヒートサイクル試験結果を示
す。G1はSbを0.2重量%添加したサンプルである
が、耐ヒートサイクル特性の改良が見られない。G3は
Sbを0.5重量%添加したサンプルであり、耐ヒート
サイクル特性が向上していることがわかる。しかしなが
らG4のSbを1.0重量%添加したサンプルは耐ヒー
トサイクル特性の改良が見られない。これはSbの添加
量が多過ぎると材料の伸び率が低下するため、ヒートサ
イクル環境下において基板の熱膨脹収縮をはんだ材料が
吸収し難くなるためと考えられる。
Heat cycle resistance: Effect of Sb: Table 1 and FIG. 4 show the results of the heat cycle test. G1 is a sample to which 0.2% by weight of Sb was added, but no improvement in heat cycle resistance was observed. G3 is a sample to which 0.5% by weight of Sb is added, and it can be seen that the heat cycle resistance is improved. However, the sample to which 1.0% by weight of Sb of G4 was added did not show improvement in heat cycle resistance. This is considered to be because if the amount of added Sb is too large, the elongation rate of the material is reduced, so that it is difficult for the solder material to absorb the thermal expansion and contraction of the substrate in a heat cycle environment.

【0025】Agの効果:G5はAgを0.1重量%添
加したサンプルであるが、耐ヒートサイクル特性の改良
は見られない。G6はAgを0.5重量%添加した試料
であり、耐ヒートサイクル特性が向上していることがわ
かる。しかしながらG7のAgを1.2重量%添加した
場合は、耐ヒートサイクル特性がG6より悪化してい
る。この原因はAgの添加量が多過ぎると材料の伸び率
が低下するため、ヒートサイクル環境下において基板の
熱膨脹収縮をはんだ材料が吸収し難くなるためと考えら
れる。
Effect of Ag: G5 is a sample containing 0.1% by weight of Ag, but no improvement in heat cycle resistance is observed. G6 is a sample to which 0.5% by weight of Ag is added, and it can be seen that the heat cycle resistance is improved. However, when 1.2% by weight of Ag of G7 was added, the heat cycle resistance was worse than that of G6. It is considered that the reason for this is that if the added amount of Ag is too large, the elongation rate of the material is reduced, and it is difficult for the solder material to absorb the thermal expansion and contraction of the substrate in a heat cycle environment.

【0026】高温クリープ特性について: SbとAgの効果:高温クリープ特性は、SbとAgの
添加量が多いほど、その特性値が上がっている。G2、
3、4はSbを0.2重量%、0.5重量%、1.0重
量%添加したサンプルであり、G5、6、7はAgを
0.1重量%、0.5重量%、1.2重量%添加したサ
ンプルである。これらのサンプルのその高温クリープ試
験結果を表1と図5に示した。これらの添加元素は、は
んだ合金の機械的強度を向上させる。しかしながらSb
とAgはチップ立ち特性、耐ヒートサイクル特性等の調
査から添加できる量が限定されている。
Regarding high temperature creep characteristics: Effect of Sb and Ag: The higher the amount of Sb and Ag added, the higher the value of the high temperature creep characteristics. G2,
Samples 3 and 4 were samples to which 0.2%, 0.5% and 1.0% by weight of Sb were added, and samples G5, 6 and 7 were 0.1% by weight, 0.5% by weight and 1% by weight of Ag, respectively. This is a sample to which 0.2% by weight is added. The high temperature creep test results of these samples are shown in Table 1 and FIG. These additional elements improve the mechanical strength of the solder alloy. However, Sb
The amounts of Ag and Ag that can be added are limited from investigations of chip standing characteristics, heat cycle resistance characteristics, and the like.

【0027】Cuの効果:Cuは、その添加量が多いほ
ど高温クリープ特性が向上する。その結果を表1と図5
に示した。G8におけるCu0.03重量%の場合は、
高温クリープ特性に変化が見られない。G9、10にお
けるCu0.1および0.2重量%の場合は、添加量に
応じて特性値が上昇している。しかしながらCuは、針
状の結晶を成長させる傾向があり、ソルダーペースト用
に製造したはんだ粉末を顕微鏡観察し、針状結晶の有無
を調査した結果を表1に示した。この調査からG9のC
uを0.1重量%添加した試料からは針状結晶が観察さ
れなかったのに対し、G10のCuを0.2重量%添加
したサンプルの粉末から針状結晶が観察された。これら
の調査からCuの添加範囲は0.05〜0.015重量
%が適当であると判断される。
Effect of Cu: The higher the amount of Cu added, the better the high-temperature creep characteristics. The results are shown in Table 1 and FIG.
It was shown to. In the case of 0.03% by weight of Cu in G8,
No change in high temperature creep characteristics. In the case of 0.1% and 0.2% by weight of Cu in G9 and 10, the characteristic value increases in accordance with the added amount. However, Cu tends to grow needle-like crystals, and Table 1 shows the results of observing the presence of needle-like crystals by microscopic observation of the solder powder produced for the solder paste. From this survey, G9 C
While needle-like crystals were not observed from the sample to which 0.1% by weight of u was added, needle-like crystals were observed from the powder of the sample to which 0.2% by weight of Cu of G10 was added. From these investigations, it is determined that the appropriate range of addition of Cu is 0.05 to 0.015% by weight.

【0028】Niの効果:Niの高温クリープ特性と針
状結晶の発生傾向は、Cuの場合とほぼ同じであった。
Niは、その添加量が多いほど高温クリープ特性が向上
する。その結果を表1と図5に示した。G11における
Ni0.02重量%の場合は、高温クリープ特性に変化
が見られない。G12,13におけるNi0.05およ
び0.1重量%の場合は、添加量に応じて特性値が上昇
している。しかしながらNiは、針状の結晶を成長させ
る傾向があり、ソルダーペースト用に製造したはんだ粉
末を顕微鏡観察し、針状結晶の有無を調査した結果を表
1に示した。この調査からG12のNiを0.05重量
%添加したサンプルからは針状結晶が観察されなかった
のに対し、G13のNiを0.1重量%添加した試料の
粉末から針状結晶が観察された。これらの試験結果から
Niの添加範囲は0.025〜0.07重量%が適当で
あると判断される。
Effect of Ni: The high-temperature creep characteristics of Ni and the tendency to form needle-like crystals were almost the same as those of Cu.
The higher the amount of Ni added, the better the high-temperature creep characteristics. The results are shown in Table 1 and FIG. In the case of 0.02% by weight of Ni in G11, no change is observed in the high-temperature creep characteristics. In the case of Ni 0.05 and 0.1% by weight in G12 and G13, the characteristic value increases in accordance with the addition amount. However, Ni tends to grow needle-like crystals. The results of observing the presence of needle-like crystals by microscopic observation of the solder powder produced for the solder paste are shown in Table 1. From this investigation, needle-like crystals were not observed from the sample to which 0.05% by weight of Ni of G12 was added, whereas needle-like crystals were observed to the powder of the sample to which 0.1% by weight of Ni of G13 was added. Was. From these test results, it is judged that the range of addition of Ni is appropriately from 0.025 to 0.07% by weight.

【0029】CuとNiの相乗効果:Cu添加の調査に
おいて、針状結晶が見られない限界のCu添加量である
0.15重量と,Ni添加量の試験における針状結晶が
見られない限界のNi添加量を越えた0.08重量%を
組み合せ、且つSb及びAgの添加量は各G2〜4及び
G5〜7で求められた限界値0.3重量%及び0.2重
量%としたはんだ合金(G14)とその粉末を造り、各
特性を調査した。表1のG14にその特性を示す。粉末
中に針状結晶が認められた。
The synergistic effect of Cu and Ni: In the investigation of the addition of Cu, the limit of 0.15 weight, which is the limit of addition of Cu, at which no needle-like crystals are observed, and the limit, at which no needle-like crystals are observed in the test of the amount of Ni added And the addition amounts of Sb and Ag were set to the limit values of 0.3% by weight and 0.2% by weight determined for G2-4 and G5-7, respectively. A solder alloy (G14) and its powder were produced and their characteristics were investigated. G14 of Table 1 shows the characteristics. Needle-like crystals were observed in the powder.

【0030】またCu添加の調査において、針状結晶の
認められない限界Cu添加量を越えた0.2重量%とN
i添加量の試験における針状結晶の認められない限界の
Ni添加量である0.07重量%を組み合わせ、Sb、
Agは各限界値0.3重量%及び0.2重量%としたは
んだ合金(G15)とその粉末を造り、各特性を調べ
た。特性はG14とほぼ同じであったが、矢張り粉末中
に針状結晶が認められた。
In the investigation of the addition of Cu, it was found that 0.2% by weight of N and N exceeded the limit Cu addition amount at which no needle crystals were observed.
The combination of 0.07% by weight of Ni, which is the limit of addition of Ni in which no needle-like crystals are observed in the test of i
Ag was prepared with a solder alloy (G15) and its powders having respective limit values of 0.3% by weight and 0.2% by weight, and each characteristic was examined. The properties were almost the same as G14, but needle-like crystals were observed in the arrowhead powder.

【0031】Cu及びNiの各針状結晶の生じない限界
添加量Cu0.15重量%、Ni0.07重量%とした
はんだ合金(G16)と粉末を造り、針状結晶の発生有
無を調べた(他Sb、Ag添加量はG14、15に同
じ)。結果はおおよその予想に反し針状結晶は全く認め
られなかった。これはCu、Niの相乗効果がそれぞれ
の限界値にまで及ぶという結果を意味している。
A solder alloy (G16) and a powder were prepared with a limit addition amount of Cu of 0.15% by weight and Ni of 0.07% by weight at which the needle-like crystals of Cu and Ni did not occur, and the presence or absence of needle-like crystals was examined. Other Sb and Ag addition amounts are the same as G14 and G15). As a result, no needle crystals were observed at all, contrary to the expectation. This means that the synergistic effect of Cu and Ni reaches the respective limit values.

【0032】更に上記G16に対し、Sb及びAgの添
加量を前記における、各上限値0.7重量%及び1.0
重量%としたサンプル(G17)を作り、同様に特性値
および針状結晶の有無を調べた。結果は針状結晶は全く
認められず、且つ高温クリープ性はCu、Niの各単体
を添加した場合に比し大幅に向上した。
Further, with respect to the above G16, the addition amounts of Sb and Ag were set to the above upper limits of 0.7% by weight and 1.0%, respectively.
A sample (G17) in which the weight% was obtained was prepared, and the characteristic value and the presence or absence of needle-like crystals were similarly examined. As a result, no needle-like crystals were observed, and the high-temperature creep property was significantly improved as compared with the case where each of Cu and Ni alone was added.

【0033】本願発明ははんだ合金に要求される条件、
特に近年要求の度合いが厳しくなったチップ立ちに対す
る要求(熱分析試験)、高温クリープ破壊に対する要求
(高温クリープ性試験)、熱疲労破壊に対する要求(ヒ
ートサイクル試験)などに対処すべく各添加元素による
解析ばかりでなく、これら添加元素間の相乗作用などの
総合的なものとして捉え、解決したものである。
The present invention is based on the conditions required for solder alloys,
In particular, in order to deal with the demands for chip standing (heat analysis test), the requirements for high-temperature creep fracture (high-temperature creep test), and the requirements for thermal fatigue fracture (heat cycle test), which have become increasingly severe in recent years, Not only the analysis but also the synergy between these additional elements is considered and solved.

【0034】即ち、本願発明の実施例であるG16、1
7は表1、図4および図5に明らかなように、ヒートサ
イクル特性と高温クリープ特性は各サンプル中最も良好
な結果を示している。 熱分析結果は表1に示すように
固相線温度が179.2℃であり、液相線温度は18
7.5℃であった。この程度の液相線温度であれば、H
1のSn63/Pb37共晶はんだの温度特性をほとん
ど損なうことがないと言える。チップ立ち点数は表1と
図6に示すように21点程度であり、Sb、Cu、Ni
を添加してもチップ立ちの抑制に悪い影響を及ぼしてい
ないことがわかる。
That is, G16, 1 according to the embodiment of the present invention
As is clear from Table 1, FIG. 4 and FIG. 5, No. 7 shows the best results in heat cycle characteristics and high temperature creep characteristics among the samples. The results of the thermal analysis show that the solidus temperature is 179.2 ° C. and the liquidus temperature is 18 as shown in Table 1.
7.5 ° C. At this level of liquidus temperature, H
It can be said that the temperature characteristics of the Sn63 / Pb37 eutectic solder No. 1 are hardly impaired. The number of chip standing points is about 21 as shown in Table 1 and FIG. 6, and Sb, Cu, Ni
It can be seen that the addition of no adverse effect on suppression of chip standing.

【0035】本願発明は相互に複雑に絡み合った各種の
必要特性に対し、各元素間の相乗効果を含めて各元素の
最適な添加量及び限界値を決定したところに、その特徴
がある。Sn55.0〜61.8重量%、Sb0.3〜
0.7重量%、Ag0.2〜1.0重量%、Cu0.0
5〜0.15重量%、Ni0.025〜0.07重量
%、およびPbを残部として構成されたはんだ合金が本
願発明の特徴である。
The present invention is characterized in that, for various necessary characteristics intricately intertwined with each other, the optimum addition amount and the limit value of each element are determined including the synergistic effect between the elements. Sn 55.0-61.8% by weight, Sb 0.3-
0.7% by weight, Ag 0.2 to 1.0% by weight, Cu 0.0
A solder alloy composed of 5 to 0.15% by weight, 0.025 to 0.07% by weight of Ni, and Pb as the balance is a feature of the present invention.

【0036】[0036]

【発明の効果】上記の如く、本願発明のはんだ合金によ
り従来問題のあった、チップ立ちを初めとするトラブル
を解消することができ、IC用の性能の安定した且つ経
済的なはんだ合金を供給することが可能となった。
As described above, the solder alloy according to the present invention can solve the problems, such as chip standing, which had been a problem in the past, and supply a stable and economical solder alloy having a stable performance for ICs. It became possible to do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基板とコネクタのはんだ付けの状態を示す説明
図である。
FIG. 1 is an explanatory view showing a state of soldering a board and a connector.

【図2】はんだフィレット面にあらわれたクラックの判
定基準を示す図である。
FIG. 2 is a diagram showing criteria for determining cracks appearing on a solder fillet surface.

【図3】各サンプルの熱分析試験結果を示す図である。FIG. 3 is a diagram showing the results of a thermal analysis test of each sample.

【図4】各サンプルのヒートサイクル試験結果を示す図
である。
FIG. 4 is a view showing a heat cycle test result of each sample.

【図5】各サンプルの高温クリープ試験結果を示す図で
ある。
FIG. 5 is a diagram showing the results of a high-temperature creep test of each sample.

【図6】サンプルH1、G1、5、6、7、17による
チップ立ち試験の結果を示す図である。
FIG. 6 is a diagram showing the results of a chip standing test using samples H1, G1, 5, 6, 7, and 17;

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 3/34 512 H05K 3/34 512C ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H05K 3/34 512 H05K 3/34 512C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Sn55.0〜61.8重量%、Sb
0.3〜0.7重量%、Ag0.2〜1.0重量%、C
u0.05〜0.15重量%、Ni0.025〜0.0
7重量%、およびPbを残部としたはんだ合金。
1. Sn55.0 to 61.8% by weight, Sb
0.3-0.7% by weight, Ag 0.2-1.0% by weight, C
u 0.05-0.15% by weight, Ni 0.025-0.0
Solder alloy with 7% by weight and Pb as the balance.
【請求項2】 請求項1からなるはんだ合金の粉末とペ
ーストで構成されるソルダーペースト。
2. A solder paste comprising a powder and a paste of the solder alloy according to claim 1.
【請求項3】 請求項1からなるはんだ合金とフラック
スで構成されるやに入りはんだ。
3. A cored solder comprising the solder alloy according to claim 1 and a flux.
JP19092897A 1997-07-16 1997-07-16 Solder alloy, solder paste, and resin flux cored solder Withdrawn JPH1133774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19092897A JPH1133774A (en) 1997-07-16 1997-07-16 Solder alloy, solder paste, and resin flux cored solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19092897A JPH1133774A (en) 1997-07-16 1997-07-16 Solder alloy, solder paste, and resin flux cored solder

Publications (1)

Publication Number Publication Date
JPH1133774A true JPH1133774A (en) 1999-02-09

Family

ID=16266027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19092897A Withdrawn JPH1133774A (en) 1997-07-16 1997-07-16 Solder alloy, solder paste, and resin flux cored solder

Country Status (1)

Country Link
JP (1) JPH1133774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu
US11309209B2 (en) 2017-03-31 2022-04-19 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Wafer holder and wafer transfer apparatus, system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu
US11309209B2 (en) 2017-03-31 2022-04-19 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Wafer holder and wafer transfer apparatus, system and method

Similar Documents

Publication Publication Date Title
JP5287852B2 (en) Lead-free solder alloy with suppressed shrinkage
AU757312B2 (en) Leadless solder
JP4613823B2 (en) Solder paste and printed circuit board
EP1043112B1 (en) Lead-free solder
KR100999331B1 (en) Lead-free solder alloy
JP4770733B2 (en) Solder and mounted products using it
JP2016106033A (en) Solder joint
KR20200036948A (en) Solder alloys, solder pastes, solder balls, resin embedded solders and solder joints
JP4135268B2 (en) Lead-free solder alloy
JP4282482B2 (en) Solder alloys and solder joints
JP3446517B2 (en) Pb-free solder material and electronic equipment using the same
JP2005131705A (en) Pb-FREE SOLDER ALLOY, AND SOLDER MATERIAL AND SOLDER JOINT USING THE SAME
JP3719627B2 (en) Solder alloy
JPH01237095A (en) Soldering flux
JPH1133774A (en) Solder alloy, solder paste, and resin flux cored solder
JP2004167569A (en) Lead-free solder paste composition and soldering method
Chin et al. Efflorescence: evaluation of published test methods for brick and efforts to develop a Masonry assembly test method
JP3254901B2 (en) Solder alloy
JP3708252B2 (en) Solder alloy powder for reflow mounting of electronic parts
JP3698161B2 (en) Pb-free solder
JP2003200288A (en) Pb-FREE SOLDER MATERIAL AND ELECTRONIC APPARATUS USING THE SAME
JP2002153990A (en) Alloy for solder ball
JP3601904B2 (en) Solder alloy
JP2001121284A (en) Lead-free solder for joining electronic parts, joining method using the same and electronic module

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005