JP3601904B2 - Solder alloy - Google Patents

Solder alloy Download PDF

Info

Publication number
JP3601904B2
JP3601904B2 JP13262696A JP13262696A JP3601904B2 JP 3601904 B2 JP3601904 B2 JP 3601904B2 JP 13262696 A JP13262696 A JP 13262696A JP 13262696 A JP13262696 A JP 13262696A JP 3601904 B2 JP3601904 B2 JP 3601904B2
Authority
JP
Japan
Prior art keywords
solder alloy
solder
weight
alloy
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13262696A
Other languages
Japanese (ja)
Other versions
JPH09295183A (en
Inventor
透 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
Original Assignee
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co Ltd filed Critical Nihon Handa Co Ltd
Priority to JP13262696A priority Critical patent/JP3601904B2/en
Publication of JPH09295183A publication Critical patent/JPH09295183A/en
Application granted granted Critical
Publication of JP3601904B2 publication Critical patent/JP3601904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はプリント基板等に使用されるはんだ合金に関し、特に熱サイクルによる基板の膨脹収縮を吸収し、はんだ付け部に発生するクラックを低減させるはんだ合金に関する。
【0002】
【従来の技術】
電子機器の故障の大部分は、はんだ付け部の故障だと言われてきた。はんだ付け部の機械的な故障を形態で分類すると、(1)静的な破壊、(2)熱疲労破壊、(3)クリープ破壊、(4)振動破壊等に分類できる。その内の熱疲労破壊は、構成部材の熱膨張係数に差があると、環境の温度変化や電子回路のON−OFFに伴なう温度の上昇下降の繰り返しによって、はんだ接合部が塑性変形し、クラックの発生および進展が繰り返され、いずれは完全に破壊するに至ることをいう。高密度実装に伴なってはんだ接合部が微細化して強度的に弱くなり、使用環境条件が多岐にわたる今日、はんだ接合不良としてもっとも多く発生している破壊現象である。
【0003】
このような熱疲労破壊を低減させるため、従来のSn−Pb系はんだ合金に第2、第3の金属元素を加え、耐熱疲労特性を向上させたはんだ合金が報告されている。例えば、特開平6−71480号公報では、Sb0.05〜1重量%、Te0.01〜0.2重量%を添加したはんだ合金や、特開平7−116887号公報では、Ni0.002〜0.02重量%を添加したはんだ合金などが知られている。そして、これらの第2、第3の金属元素を添加する目的は、熱サイクルストレスに耐え得る結晶組織とするため、またははんだ材料の延展性を損なわないため、となっている。
【0004】
【発明が解決しようとする課題】
一般に、Sn63−Pb37共晶はんだ合金よりもPb含有率の高いはんだ合金、例えばSn40−Pb60、Sn5−Pb95等のはんだ合金の方が耐熱疲労に対し高い性質を示す。この理由は、Sn63−Pb37共晶はんだ合金に比べ高融点であるため、同じ温度における熱エネルギー的なポテンシャルが低く、高温状態に置かれたはんだ合金の結晶粒の粗大化が遅いため、機械的性質の低下が遅くなるからである。さらに、常温におけるSn63−Pb37共晶はんだ合金の機械的性質は、Sn40−Pb60はんだ合金、Sn5−Pb95はんだ合金のそれより高いが、100°Cの環境下における機械的性質は、Sn40−Pb60はんだ合金、Sn5−Pb95はんだ合金の方が高い。
【0005】
しかしながら、電子機器のフロー法やリフロー法によるはんだ付けは、通常融点が低く、はんだ付け性、機械的性質等の優れたSn63−Pb37共晶はんだ合金を多用している。
【0006】
本発明の目的は、上述の点に鑑み、熱サイクル条件下においても、はんだ接合部のクラックの発生を低減できるはんだ合金を提供することにある。
【0007】
【課題を解決するための手段】
本発明のはんだ合金は、Sn50〜70重量%、Pd0.005〜0.5重量%、残部がPbを基本構成とするものである。また、本発明のはんだ合金は、Sn50〜70重量%、Sb0.1〜2.0重量%、Pd0.005〜0.5重量%、残部がPbを基本構成とするものである。さらに、本発明のはんだ合金は、これらのはんだ合金にCuを0.01〜0.3重量%含有したフローはんだ用、やに入りはんだ用、および線はんだ用のものである。
【0008】
【発明の実施の形態】
次に、本発明について図面を参照して詳細に説明する。
【0009】
本発明のはんだ合金は、Snが50〜70重量%、Pdが0.005〜0.5重量%、残部がPbを基本構成とするはんだ合金である。また、本発明のはんだ合金は、Snが50〜70重量%、Sbが0.1〜2.0重量%、Pdが0.005〜0.5重量%、残部がPbを基本構成とするはんだ合金である。さらに、これらのはんだ合金にCuを0.01〜0.3重量%添加したフローはんだ用、やに入りはんだ用、および線はんだ用合金である。
【0010】
本発明のはんだ合金において、Snを50〜70重量%とした理由は、電子機器のフロー、リフローはんだ付けにおいて一般的に使用される共晶近傍の融点の低いはんだ合金が、最も耐熱疲労特性の向上を求められているからである。
【0011】
本発明のはんだ合金において、Pdを添加しているが、Pdを添加すると高温状態あるいは低温状態に置かれたはんだ合金の機械的性質における伸び率を大幅に改善でき、熱サイクルによる基板の膨張収縮をはんだ付け部で吸収できるからである。また、本発明のはんだ合金において、Pdの添加量を0.005〜0.5重量%に限定した理由は、Pdが0.005重量%以下でははんだ合金の伸び率を改善できず、またPdを0.5重量%以上添加しても伸び率の向上はみられないからである。
【0012】
本発明のはんだ合金において、Sbを0.1〜2.0重量%添加しているのは、この添加範囲においてSbをはんだ合金に添加すると、上記のPdと同じく、はんだ合金の伸び率を改善でき、また上記のPdを含有するはんだ合金にSbを添加すると更に伸び率が向上するからである。
【0013】
さらに、Cuを0.01〜0.3重量%添加しているのは、この添加範囲において上記のSbと同じくはんだ合金の伸び率を改善でき、また上記のPd、Sbを含有しているはんだ合金にCuを添加すると更に伸び率が向上するからである。しかしながら、SnとCuは、CuSn等の金属間化合物を作りやすく、これらの結晶は200〜300μm程度の長さの針状の結晶を生成することがあり、表面実装用の微細な回路や、BGA(ボールグリッドアレイ)では、この結晶が回路を短縮させる可能性がある。従って、Cuの添加は、はんだペースト用およびBGA用のはんだ合金を除いた。
【0014】
以上のような基本構成を有する本発明のはんだ合金では、Sn63−Pb37共晶はんだ合金の溶解温度特性を損なうことなく、熱サイクル下において基板とはんだ材との熱膨脹係数の違いによってはんだ接合部に生じるストレスを良く吸収できる。その理由は、高温時および低温時において機械的性質の伸び率の高いはんだ合金を提供することによって、熱サイクル下において基板とはんだ材との熱膨脹係数の違いによってはんだ接合部に生じるストレスを良く吸収できるためである。
【0015】
【実施例】
本発明のはんだ合金について、表1に示すように、JIS Z 3282におけるH63Sに相当するSn63−Pb37共晶はんだ合金を比較例として採用し、13種類の実施例のはんだ合金と比較試験を行なった。
【0016】
引張試験は、均一な試料が得られ、添加元素の影響を調べ易い圧延材で行なった。表1の14種類の合金をそれぞれ溶解温度400°Cで直径80mmの円筒状に鋳込み、これを油圧押出方式により、厚さ2.0mm、幅32mmのテープ状にした。さらに、圧延機を用いて、これを厚み1.0mmにした。このテープを、JIS Z 2201に基づく6号引張試験片に打ち抜いた。圧延したはんだ試験片は常温で再結晶する傾向があり、圧延直後は機械的性質の変化が大きい。このため、試験片を室温で20日間放置した後に引張試験を行なった。引張試験機の上下チャック間を耐熱布で覆い、外部より熱風を吹き込み、内部の上、中、下3カ所に設けた温度センサーがそれぞれ100±3°Cになるようにし、これを15分間保持した後、30mm/分の速度で引っ張り、材料の伸び率を調べた。試験結果を表1に示す。表1からもわかるように、Sn63−Pb37共晶はんだ合金に少量のPdを添加した場合には伸び率が著しく向上する。また、Sn63−Pb37共晶はんだ合金に少量のPdおよびSbを添加した場合にはさらに伸び率が向上する。さらにまた、Pd、Sb、Cuの添加がはんだ合金の伸び率を相乗的に改善している。
【0017】
熱サイクル試験は、表1の14種類の合金について行なった。使用した基板は、2.54ピッチで穴径φ0.9のユニバーサル型の紙フェノール片面基板である。使用したコネクターは、Snメッキを施したリン青銅製の10ピンで線径はφ0.64である。はんだ付け条件は、コネクターを酸洗、洗浄、乾燥した後、RAタイプのロジン系フラックスをコネクターピンと基板とに塗布、乾燥してから、基板にコネクターを10個、すなわち100ピンを挿入し、250°Cで浸漬によるはんだ付けを行なった。温度サイクルは−40°Cで30分、常温さらし時間10分、+80°Cで30分を1000サイクル行なって、はんだ付け部のクラックの発生個数を実体顕微鏡を用いて調べた。図1は、基板にコネクターがはんだ付けされた状態の図解である。クラックの判定として、図2に示すように、はんだフイレットの周囲1/2周以上亀裂の入っているものをクラックとして数え、また全周にしわが入っているはんだフイレットもクラックとして数えた。試験結果を表1に示す。表1からわかるように、熱サイクル下でフイレット周囲に生じるクラックの個数ははんだ合金の伸び率と反比例しており、Pd、Sb、Cuの添加によるはんだ合金の伸び率の改善によって、はんだ合金の耐熱疲労特性が大幅に改善されている。
【0018】
【表1】

Figure 0003601904
【0019】
熱分析試験は、凝固点降下法で行なった。実施例13について、液相線温度と固相線温度とを測定した。試験結果を表2に示す。なお、比較例の溶解温度特性は、JIS Z 3282の記載より抜粋した。表2からもわかるように、Sn63−Pb37共晶はんだ合金に少量のPd、Sb、Cuを添加しても、液相線温度および固相線温度はあまり変化がなく、Sn63−Pb37共晶はんだ合金の溶解温度特性は損なわれることはない。
【0020】
【表2】
Figure 0003601904
【0021】
【発明の効果】
以上説明したように、本発明のはんだ合金によれば、Pdの添加によってはんだ合金の伸び率が改善されるので、幅広い温度域において熱サイクルによる基板の膨脹収縮を吸収することができ、Sn63−Pb37共晶はんだ合金の溶解温度特性を損なうことなく、はんだ合金の耐熱疲労特性を改善させることができるという効果がある。
【0022】
また、本発明のはんだ合金によれば、PdおよびSbの添加によってはんだ合金の伸び率が著しく改善されるので、幅広い温度域において熱サイクルによる基板の膨脹収縮を吸収することができ、Sn63−Pb37共晶はんだ合金の溶解温度特性を損なうことなく、はんだ合金の耐熱疲労特性を改善させることができるという効果がある。
【0023】
さらに、本発明のはんだ合金によれば、Pd、SbおよびCuの添加によってはんだ合金の伸び率が相乗的に改善されるので、幅広い温度域において熱サイクルによる基板の膨脹収縮を吸収することができ、Sn63−Pb37共晶はんだ合金の溶解温度特性を損なうことなく、はんだ合金の耐熱疲労特性を改善させることができるという効果がある。
【図面の簡単な説明】
【図1】本発明のはんだ合金の熱サイクル試験に用いた基板とコネクターとのはんだ付けの図解を示し、(a)は平面図、(b)は正面断面図である。
【図2】本発明のはんだ合金の熱サイクル試験におけるクラックの判定基準を説明する図であり、(a)はクラック、(b)はしわを示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solder alloy used for a printed board or the like, and more particularly to a solder alloy that absorbs expansion and contraction of a board due to a thermal cycle and reduces cracks generated in a soldered portion.
[0002]
[Prior art]
It has been said that the majority of electronic equipment failures are due to soldered joint failures. When the mechanical failure of the soldering part is classified by form, it can be classified into (1) static fracture, (2) thermal fatigue fracture, (3) creep fracture, (4) vibration fracture and the like. Among them, thermal fatigue destruction causes the solder joints to undergo plastic deformation due to repeated changes in temperature due to environmental temperature changes and ON / OFF of electronic circuits if the thermal expansion coefficients of the components differ. , Cracks are repeatedly generated and propagated, and eventually lead to complete destruction. With high-density mounting, solder joints become finer and weaker in strength, and in a wide variety of operating environment conditions, it is a destructive phenomenon that occurs most often as poor solder joints.
[0003]
In order to reduce such thermal fatigue fracture, a solder alloy has been reported in which a second and third metal element is added to a conventional Sn-Pb-based solder alloy to improve the thermal fatigue resistance. For example, in JP-A-6-71480, a solder alloy containing 0.05 to 1% by weight of Sb and 0.01 to 0.2% by weight of Te is added. A solder alloy to which 02% by weight is added is known. The purpose of adding these second and third metal elements is to provide a crystal structure that can withstand thermal cycle stress or to not impair the spreadability of the solder material.
[0004]
[Problems to be solved by the invention]
In general, a solder alloy having a higher Pb content, for example, a solder alloy such as Sn40-Pb60 and Sn5-Pb95, has a higher property against thermal fatigue than a Sn63-Pb37 eutectic solder alloy. The reason is that the melting point is higher than that of the Sn63-Pb37 eutectic solder alloy, so that the thermal energy potential at the same temperature is low, and the crystal grains of the solder alloy placed at a high temperature are coarsened slowly, so that the mechanical This is because the deterioration of properties is delayed. Furthermore, the mechanical properties of the Sn63-Pb37 eutectic solder alloy at room temperature are higher than those of the Sn40-Pb60 solder alloy and the Sn5-Pb95 solder alloy, but the mechanical properties under the environment of 100 ° C are Sn40-Pb60 solder alloy. Alloy and Sn5-Pb95 solder alloy are higher.
[0005]
However, soldering of electronic equipment by a flow method or a reflow method generally uses a Sn63-Pb37 eutectic solder alloy having a low melting point and excellent solderability and mechanical properties.
[0006]
An object of the present invention is to provide a solder alloy that can reduce the occurrence of cracks in a solder joint even under thermal cycling conditions in view of the above points.
[0007]
[Means for Solving the Problems]
The solder alloy of the present invention has a basic composition of 50 to 70% by weight of Sn, 0.005 to 0.5% by weight of Pd, and the balance being Pb. The solder alloy of the present invention has a basic composition of 50 to 70% by weight of Sn, 0.1 to 2.0% by weight of Sb, 0.005 to 0.5% by weight of Pd, and the balance being Pb. Furthermore, the solder alloys of the present invention are those for flow soldering, flux cored wire, and wire soldering which contain 0.01 to 0.3% by weight of Cu in these solder alloys.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the drawings.
[0009]
The solder alloy of the present invention is a solder alloy having Sn of 50 to 70% by weight, Pd of 0.005 to 0.5% by weight, and the balance being Pb. In addition, the solder alloy of the present invention is a solder having a basic composition of 50 to 70% by weight of Sn, 0.1 to 2.0% by weight of Sb, 0.005 to 0.5% by weight of Pd, and the balance of Pb. Alloy. Furthermore, these are alloys for flow soldering, flux cored soldering, and wire soldering in which 0.01 to 0.3% by weight of Cu is added to these solder alloys.
[0010]
In the solder alloy of the present invention, the reason why Sn is set to 50 to 70% by weight is that a solder alloy having a low melting point in the vicinity of a eutectic generally used in electronic device flow and reflow soldering has the most heat-resistant fatigue characteristics. It is because improvement is required.
[0011]
Although Pd is added to the solder alloy of the present invention, the addition of Pd can greatly improve the elongation percentage in the mechanical properties of the solder alloy placed in a high or low temperature state, and the expansion and contraction of the substrate due to thermal cycling. Is absorbed by the soldering portion. In addition, the reason why the addition amount of Pd is limited to 0.005 to 0.5% by weight in the solder alloy of the present invention is that when Pd is 0.005% by weight or less, the elongation of the solder alloy cannot be improved, Is not added even if 0.5% by weight or more is added.
[0012]
In the solder alloy of the present invention, 0.1 to 2.0% by weight of Sb is added. When Sb is added to the solder alloy in this addition range, the elongation rate of the solder alloy is improved as in the case of Pd. This is because addition of Sb to the above-mentioned solder alloy containing Pd further improves the elongation.
[0013]
Further, the addition of 0.01 to 0.3% by weight of Cu can improve the elongation rate of the solder alloy in the same range as in the case of Sb in this addition range, and the solder containing Pd and Sb described above. This is because the addition of Cu to the alloy further improves the elongation. However, Sn and Cu tend to form an intermetallic compound such as Cu 6 Sn 5 , and these crystals may generate needle-like crystals having a length of about 200 to 300 μm. In a BGA (ball grid array), this crystal may shorten the circuit. Therefore, the addition of Cu excluded solder alloys for solder paste and BGA.
[0014]
In the solder alloy of the present invention having the basic structure as described above, the solder joint portion is formed by a difference in coefficient of thermal expansion between the substrate and the solder material under a heat cycle without impairing the melting temperature characteristics of the Sn63-Pb37 eutectic solder alloy. The generated stress can be well absorbed. The reason is that by providing a solder alloy with high elongation of mechanical properties at high and low temperatures, it absorbs the stress generated at the solder joint due to the difference in thermal expansion coefficient between the board and the solder material under thermal cycling This is because we can do it.
[0015]
【Example】
As shown in Table 1, the Sn63-Pb37 eutectic solder alloy corresponding to H63S in JIS Z 3282 was used as a comparative example for the solder alloy of the present invention, and a comparative test was performed with the solder alloys of 13 types of examples. .
[0016]
The tensile test was performed on a rolled material from which a uniform sample was obtained and the effect of the added element could be easily examined. Each of the 14 types of alloys shown in Table 1 was cast into a cylinder having a melting temperature of 400 ° C. and a diameter of 80 mm, which was formed into a tape having a thickness of 2.0 mm and a width of 32 mm by a hydraulic extrusion method. This was further reduced to a thickness of 1.0 mm using a rolling mill. The tape was punched into a No. 6 tensile test piece based on JIS Z 2201. Rolled solder test pieces tend to recrystallize at room temperature, and the mechanical properties change greatly immediately after rolling. For this reason, after the test piece was left at room temperature for 20 days, a tensile test was performed. Cover the space between the upper and lower chucks of the tensile tester with a heat-resistant cloth and blow hot air from the outside so that the temperature sensors provided at the upper, middle, and lower three points inside each become 100 ± 3 ° C, and hold this for 15 minutes. After that, the material was pulled at a speed of 30 mm / min, and the elongation of the material was examined. Table 1 shows the test results. As can be seen from Table 1, when a small amount of Pd is added to the Sn63-Pb37 eutectic solder alloy, the elongation is significantly improved. Further, when a small amount of Pd and Sb are added to the Sn63-Pb37 eutectic solder alloy, the elongation is further improved. Furthermore, the addition of Pd, Sb, and Cu synergistically improves the elongation of the solder alloy.
[0017]
The heat cycle test was performed on the 14 alloys shown in Table 1. The substrate used was a universal paper phenol single-sided substrate having a pitch of 2.54 and a hole diameter of φ0.9. The connector used was a 10-pin Sn-plated phosphor bronze pin having a wire diameter of φ0.64. The soldering conditions were as follows: after pickling, washing and drying the connector, applying an RA type rosin-based flux to the connector pins and the board and drying it, inserting 10 connectors into the board, that is, 100 pins, Soldering by immersion was performed at ° C. The temperature cycle was performed at −40 ° C. for 30 minutes, room temperature exposure time for 10 minutes, and + 80 ° C. for 30 minutes for 1000 cycles, and the number of cracks generated in the soldered portion was examined using a stereoscopic microscope. FIG. 1 is an illustration of a state where a connector is soldered to a substrate. As shown in FIG. 2, cracks were counted as cracks when the cracks were 1 / or more round the periphery of the solder fillet, and solder fillets having wrinkles all over the circumference were also counted as cracks. Table 1 shows the test results. As can be seen from Table 1, the number of cracks generated around the fillet under the heat cycle is inversely proportional to the elongation percentage of the solder alloy, and the addition of Pd, Sb, and Cu improves the elongation percentage of the solder alloy, thereby improving the solder alloy. The thermal fatigue properties have been greatly improved.
[0018]
[Table 1]
Figure 0003601904
[0019]
The thermal analysis test was performed by a freezing point depression method. For Example 13, the liquidus temperature and the solidus temperature were measured. Table 2 shows the test results. The melting temperature characteristics of the comparative examples were extracted from the description of JIS Z 3282. As can be seen from Table 2, even if a small amount of Pd, Sb, and Cu are added to the Sn63-Pb37 eutectic solder alloy, the liquidus temperature and the solidus temperature do not change so much. The melting temperature characteristics of the alloy are not impaired.
[0020]
[Table 2]
Figure 0003601904
[0021]
【The invention's effect】
As described above, according to the solder alloy of the present invention, since the elongation of the solder alloy is improved by the addition of Pd, the expansion and contraction of the substrate due to the thermal cycle can be absorbed in a wide temperature range, and Sn63- This has the effect of improving the thermal fatigue resistance of the solder alloy without impairing the melting temperature characteristics of the Pb37 eutectic solder alloy.
[0022]
Further, according to the solder alloy of the present invention, the addition of Pd and Sb significantly improves the elongation of the solder alloy, so that the expansion and contraction of the substrate due to the thermal cycle can be absorbed in a wide temperature range, and Sn63-Pb37 can be absorbed. This has the effect of improving the thermal fatigue resistance of the solder alloy without impairing the melting temperature characteristics of the eutectic solder alloy.
[0023]
Furthermore, according to the solder alloy of the present invention, the addition of Pd, Sb and Cu synergistically improves the elongation rate of the solder alloy, so that expansion and contraction of the substrate due to thermal cycling can be absorbed in a wide temperature range. And Sn63-Pb37 eutectic solder alloy can be improved in heat-resistant fatigue characteristics without impairing the melting temperature characteristics.
[Brief description of the drawings]
FIGS. 1A and 1B are illustrations of soldering of a board and a connector used in a thermal cycle test of a solder alloy of the present invention, wherein FIG. 1A is a plan view and FIG.
FIGS. 2A and 2B are diagrams for explaining a criterion for determining a crack in a heat cycle test of the solder alloy of the present invention, wherein FIG. 2A is a diagram showing cracks and FIG. 2B is a diagram showing wrinkles.

Claims (3)

Sn50〜70重量%、Pd0.005〜0.5重量%、残部がPbを基本構成とするはんだ合金。Solder alloy having Sn of 50 to 70% by weight, Pd of 0.005 to 0.5% by weight, and the balance being Pb. Sn50〜70重量%、Sb0.1〜2.0重量%、Pd0.005〜0.5重量%、残部がPbを基本構成とするはんだ合金。Solder alloy having Sn of 50 to 70% by weight, Sb of 0.1 to 2.0% by weight, Pd of 0.005 to 0.5% by weight, and the balance being Pb. 請求項1または2のはんだ合金に、さらにCuを0.01〜0.3重量%含有したフローはんだ用、やに入りはんだ用、および線はんだ用合金。3. An alloy for flow soldering, flux cored solder, and wire solder, which further contains 0.01 to 0.3% by weight of Cu in the solder alloy of claim 1 or 2.
JP13262696A 1996-04-30 1996-04-30 Solder alloy Expired - Fee Related JP3601904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13262696A JP3601904B2 (en) 1996-04-30 1996-04-30 Solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13262696A JP3601904B2 (en) 1996-04-30 1996-04-30 Solder alloy

Publications (2)

Publication Number Publication Date
JPH09295183A JPH09295183A (en) 1997-11-18
JP3601904B2 true JP3601904B2 (en) 2004-12-15

Family

ID=15085729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13262696A Expired - Fee Related JP3601904B2 (en) 1996-04-30 1996-04-30 Solder alloy

Country Status (1)

Country Link
JP (1) JP3601904B2 (en)

Also Published As

Publication number Publication date
JPH09295183A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
EP0787559B1 (en) Soldering alloy, cream solder and soldering method
EP1275463B1 (en) Pb-free solder-connected electronic device
EP1043112A1 (en) Lead-free solder
JP2825001B2 (en) Low melting point solder
US20040115088A1 (en) Lead-free solder
JP4135268B2 (en) Lead-free solder alloy
Poon et al. Residual shear strength of Sn-Ag and Sn-Bi lead-free SMT joints after thermal shock
JP3446517B2 (en) Pb-free solder material and electronic equipment using the same
JP3601904B2 (en) Solder alloy
JP2005131705A (en) Pb-FREE SOLDER ALLOY, AND SOLDER MATERIAL AND SOLDER JOINT USING THE SAME
JP3719627B2 (en) Solder alloy
JPH01237095A (en) Soldering flux
Laine-Ylijoki et al. Development and validation of a lead-free alloy for solder paste applications
JP3254901B2 (en) Solder alloy
JPH1133774A (en) Solder alloy, solder paste, and resin flux cored solder
Takaki et al. Protection of tombstone problems for small chip devices
JP2002153990A (en) Alloy for solder ball
JP2003200288A (en) Pb-FREE SOLDER MATERIAL AND ELECTRONIC APPARATUS USING THE SAME
JP3551168B2 (en) Pb-free solder connection structure and electronic equipment
Havia et al. Comparing SAC and SnCuNi solders in lead-free wave soldering process
JP3698161B2 (en) Pb-free solder
JP3254857B2 (en) Solder alloy
JP2005288478A (en) Lead-free solder weld
JP3551169B2 (en) Electronic device and method of manufacturing the same
CA2493351C (en) Pb-free solder-connected structure and electronic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees