JPH11337238A - Ice thermal storage system - Google Patents

Ice thermal storage system

Info

Publication number
JPH11337238A
JPH11337238A JP14538798A JP14538798A JPH11337238A JP H11337238 A JPH11337238 A JP H11337238A JP 14538798 A JP14538798 A JP 14538798A JP 14538798 A JP14538798 A JP 14538798A JP H11337238 A JPH11337238 A JP H11337238A
Authority
JP
Japan
Prior art keywords
ice
ice making
heat exchanger
heat
temperature antifreeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14538798A
Other languages
Japanese (ja)
Inventor
Junichi Kaneko
淳一 金子
Yoshitaka Sakano
義孝 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14538798A priority Critical patent/JPH11337238A/en
Publication of JPH11337238A publication Critical patent/JPH11337238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To detach an ice from an ice-making surface with small energy loss in an ice thermal storage system in which a low-temperature anti-freeze solution on an inner side of the ice-making surface, water flows on an outer surface of the ice-making surface to make an ice, and the ice is detached from the ice-making surface when the ice-making quantity reaches a specified value. SOLUTION: A heat exchanger 3 to heat an anti-freeze solution, a high- temperature anti-freeze solution tank 12, and a low-temperature anti-freeze solution tank 10 are provided in a refrigeration cycle. During the ice-making operation, the high-temperature anti-freeze solution is led to the heat exchanger 3, and the high-temperature anti-freeze solution is heated and stored in the high-temperature anti-freeze solution tank 12. When an ice is detached from an ice-making surface, the high-temperature anti-freeze solution stored in the high-temperature anti-freeze solution tank 12 is led to the inner side of an ice-making heat exchanger 6 to promote the detachment of the ice from the ice-making heat exchanger 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、夜間電力を利用し
て製氷し、昼間に氷を融解して利用する氷蓄熱システム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage system for making ice using electric power at night and melting and using the ice during the day.

【0002】[0002]

【従来の技術】電力負荷平準化に対する要望は社会的に
も強まっており、この一つの手段として夜間電力を利用
して製氷し、昼間の空調運転時に氷を融解して利用する
氷蓄熱システムが提案されて久しい。この氷蓄熱システ
ムには種々の方式があるが、製氷熱交換器の内側に不凍
液、外側に水を流下させて製氷し、製氷量が規定値に達
した時に製氷面から氷を離脱させるダイナミック型氷蓄
熱の一つである直膨式ハーベスト型氷蓄熱が注目されて
いる。この直膨式のハーベスト型氷蓄熱では、冷媒の蒸
発潜熱を利用して、エネルギーの低減を図っている。
2. Description of the Related Art The demand for electric power load leveling is increasing in society, and as one of the means, an ice heat storage system that makes ice using nighttime electric power and melts and uses the ice during daytime air conditioning operation is used. It has been proposed for a long time. There are various types of this ice heat storage system, but a dynamic type that makes ice by flowing antifreeze liquid inside the ice making heat exchanger and water down the outside and when the ice making amount reaches a specified value, ice is released from the ice making surface. Attention is paid to the direct expansion type harvest heat storage which is one of the ice storages. In the direct expansion type harvest heat storage, energy is reduced by utilizing the latent heat of vaporization of the refrigerant.

【0003】従来、直膨式のハーベスト型氷蓄熱におい
ては、冷熱使用時に、破片状の氷を貯留した氷蓄熱槽内
の水をポンプ等で氷発生のための熱交換器へ循環させ、
その氷蓄熱層の上部に設けられたスプレーヘッドから散
水して破片状の氷を融解させるとともに、その潜熱を利
用していた。また、従来の他の方法としては、製氷量が
規定値になると冷凍サイクルのバルブを切り替え、冷媒
液の供給を停止する。それとともに、圧縮機から出た高
圧高温の冷媒ガス、あるいは凝縮器や高圧レシーバ内の
高温で高圧の冷媒ガスを、製氷熱交換器の内側に通して
製氷熱交換器の外表面を加熱していた。これは、ホット
ガス脱氷方式と呼ばれ、熱交換器の外表面を加熱して熱
交換器表面の氷を溶融させて製造された氷を離脱させる
ものである。
Conventionally, in the direct expansion type harvest type ice heat storage, when using cold heat, water in an ice heat storage tank storing fragmented ice is circulated to a heat exchanger for generating ice by a pump or the like.
Water was sprayed from a spray head provided above the ice thermal storage layer to melt the shards of ice and to utilize the latent heat. Further, as another conventional method, when the ice making amount reaches a specified value, the valve of the refrigeration cycle is switched to stop the supply of the refrigerant liquid. At the same time, high-pressure and high-temperature refrigerant gas from the compressor or high-temperature and high-pressure refrigerant gas in the condenser and high-pressure receiver are passed inside the ice making heat exchanger to heat the outer surface of the ice making heat exchanger. Was. This is called a hot gas deicing method, in which the outer surface of the heat exchanger is heated to melt the ice on the surface of the heat exchanger, and the produced ice is released.

【0004】さらに他の方法としては、間接冷却式すな
わち製氷熱交換器の内側に低温の不凍液を流し、製氷熱
交換器の外表面に水を流下させて製氷し、製氷量がある
規定値に達した時に製氷面の内側に加熱した不凍液を流
して製氷面から氷を離脱させるものがある。この場合、
不凍液を加熱する手段として電気ヒータ等の他の熱源を
利用していた。
As another method, an indirect cooling type, that is, a low-temperature antifreeze solution is flown inside an ice making heat exchanger, and water is made to flow down on the outer surface of the ice making heat exchanger to make ice. In some cases, heated antifreeze is poured inside the ice-making surface when the ice-making surface is reached to release ice from the ice-making surface. in this case,
As a means for heating the antifreeze, other heat sources such as an electric heater have been used.

【0005】上記各氷蓄熱システムにおいて、製氷後の
氷を熱交換器表面から離脱させる方法が特開平9−14
702号、特開平7−19688号、特開平8−285
334号、特開平7−55303号、特開平8−261
614号公報等に記載されている。
[0005] In each of the above ice heat storage systems, a method for separating ice after ice making from the surface of the heat exchanger is disclosed in Japanese Patent Application Laid-Open No. 9-14 / 1997.
702, JP-A-7-19688, JP-A-8-285
334, JP-A-7-55303, JP-A-8-261
No. 614, etc.

【0006】[0006]

【発明が解決しようとする課題】製氷熱交換器の表面に
製氷した氷を製氷熱交換器の内側から加熱して、脱氷す
るいわゆるハーベスト方式においては、脱氷時に製氷面
を何らかの方法で加熱することが必要である。そして、
氷を製氷面から離脱させるために熱エネルギーを供給す
ることは、元来氷を作成するという目的からは無駄なも
のであるばかりでなく、折角製氷した氷を融解するとい
う面でも二重に無駄なものである。
In a so-called harvesting system in which ice made on the surface of an ice making heat exchanger is heated from the inside of the ice making heat exchanger and deiced, the ice making surface is heated by some method during deicing. It is necessary to. And
Supplying thermal energy to separate ice from the ice-making surface is not only wasteful for the purpose of creating ice originally, but also double-melting in terms of melting ice that has been made. It is something.

【0007】上記従来技術においては、このような不具
合を少しでも解消するために、例えば特開平7−196
88号公報に記載のものは、製氷面に疎水性コーティン
グを施すことにより無駄なエネルギーの消費を抑えてい
る。しかしながら、製氷面に疎水性コーティングを施す
ことは、製造面からはコスト増になること、加工が難し
い等の不具合がある。また、特開平8−285334号
公報には、製造された氷が脱氷後に製氷面に残っている
ときに、製氷面への水の供給量を可変にして、製氷開始
時に供給水の勢いで脱氷することが記載されている。こ
の従来例によれば脱氷時間は低減可能であるが、脱氷方
法自体は従来の方法であり、やはりエネルギーの無駄な
消費がある。また、特開平9−14702号公報に記載
のものも、製氷面からの氷の融解にはブライン水を利用
して、エネルギーの無駄な消費を低減しているものの、
まだ不十分である。さらに、特開平7−55303号お
よび特開平8−261614号公報に記載のものは、い
わゆるホットガス方式であり、脱氷に余分なエネルギー
を必要としている。本発明は、上記従来技術の不具合に
鑑みなされたものであり、その目的は冷凍サイクル中の
凝縮液の顕熱を利用して、製氷面からの氷の離脱を促進
するものである。本発明の他の目的は、できるだけ余分
なエネルギーを使わずに、製氷面から氷を離脱させるこ
とである。本発明のさらに他の目的は、簡単な構成で製
氷面からの氷の離脱を可能にすることである。さらに、
製氷面からの氷の離脱時間を低減すること、氷の離脱が
氷蓄熱手段に悪影響を及ぼさず、信頼性の高い氷蓄熱シ
ステムを提供できること、をも目的とする。
In the above-mentioned prior art, in order to solve such a problem even a little, for example, Japanese Patent Laid-Open No. 7-196
No. 88 describes suppressing the wasteful energy consumption by applying a hydrophobic coating to the ice making surface. However, applying a hydrophobic coating to the ice making surface has disadvantages such as an increase in cost from the viewpoint of manufacturing and difficulty in processing. Japanese Patent Application Laid-Open No. 8-285334 discloses that when the produced ice remains on the ice-making surface after deicing, the supply amount of water to the ice-making surface is made variable, and the supply water is stimulated at the start of ice-making. Deicing is described. According to this conventional example, the deicing time can be reduced, but the deicing method itself is a conventional method, and wasteful energy is consumed. In addition, although the method described in Japanese Patent Application Laid-Open No. Hei 9-14702 also uses brine water to melt ice from an ice making surface and reduces wasteful energy consumption,
Still not enough. Further, those described in JP-A-7-55303 and JP-A-8-261614 are so-called hot gas systems and require extra energy for deicing. The present invention has been made in view of the above-mentioned disadvantages of the related art, and has as its object to use the sensible heat of a condensate in a refrigeration cycle to promote the detachment of ice from an ice making surface. Another object of the invention is to release ice from the ice making surface with as little extra energy as possible. Still another object of the present invention is to enable ice to be separated from an ice making surface with a simple configuration. further,
It is another object of the present invention to reduce the time required for ice to be released from the ice making surface and to provide a highly reliable ice thermal storage system that does not adversely affect the ice thermal storage means.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の特徴は、圧縮機と凝縮器と膨張手段と
蒸発器とを順次配管接続して形成された冷凍サイクル
と、製氷手段とを有する氷蓄熱システムにおいて、前記
冷凍サイクルの蒸発器で得られた低温不凍液と、前記圧
縮機と前記凝縮器間または前記凝縮器と前記膨張手段間
に設けた熱交換器で得られた高温不凍液とを選択的に前
記製氷手段に流通させるものである。
A first feature of the present invention to achieve the above object is to provide a refrigeration cycle formed by sequentially connecting a compressor, a condenser, an expansion means, and an evaporator with piping, In an ice heat storage system having an ice making means, a low-temperature antifreeze obtained by an evaporator of the refrigeration cycle and a heat exchanger provided between the compressor and the condenser or between the condenser and the expansion means. And selectively flowing the high-temperature antifreeze to the ice making means.

【0009】上記目的を達成するための本発明の第2の
特徴は、圧縮機と凝縮器と膨張手段と蒸発器とを順次配
管接続して形成された冷凍サイクルと、前記蒸発器で発
生した冷熱と熱交換する低温不凍液と熱交換して氷を生
成する製氷手段とを備えた氷蓄熱システムにおいて、前
記凝縮器と前記膨張手段との間に熱交換器を設け、この
熱交換器において冷凍サイクル内を流通する冷媒と熱交
換した高温不凍液を、前記製氷手段に導く配管系を設け
たものである。
A second feature of the present invention for achieving the above object is that a refrigeration cycle formed by sequentially connecting a compressor, a condenser, an expansion means, and an evaporator to a pipe, and a refrigeration cycle generated by the evaporator. In an ice heat storage system including ice making means for generating ice by exchanging heat with a low-temperature antifreeze which exchanges heat with cold, a heat exchanger is provided between the condenser and the expansion means, and refrigeration is performed in this heat exchanger. A piping system is provided for guiding the high-temperature antifreeze liquid that has exchanged heat with the refrigerant flowing in the cycle to the ice making means.

【0010】そして好ましくは、前記熱交換器は冷媒を
過冷却させるものである。さらに、前記蒸発器と前記製
氷手段との間に低温不凍液の流通を制御する第1のバル
ブを、前記熱交換器と前記製氷手段との間に高温不凍液
の流通を制御するバルブとを夫々設け、前記製氷手段に
低温不凍液と高温不凍液とを選択的に供給可能にした、
さらにまた、前記製氷手段は、ハーベスト型製氷手段で
あるか、前記製氷手段は、製氷用熱交換器と、この製氷
用熱交換器の表面に水を散布する散布手段と、前記製氷
用熱交換器で生成された氷と製氷用熱交換器に散布され
る水とを蓄える蓄熱槽とを有するものである。
[0010] Preferably, the heat exchanger supercools the refrigerant. Further, a first valve for controlling the flow of the low-temperature antifreeze liquid between the evaporator and the ice making means is provided, and a valve for controlling the flow of the high-temperature antifreeze liquid between the heat exchanger and the ice making means is provided. A low-temperature antifreeze and a high-temperature antifreeze can be selectively supplied to the ice making means,
Further, the ice making means is a harvest type ice making means, or the ice making means is an ice making heat exchanger, a spraying means for spraying water on the surface of the ice making heat exchanger, and the ice making heat exchange means. A heat storage tank for storing ice generated by the vessel and water sprayed to the ice making heat exchanger.

【0011】上記目的を達成するための本発明の第3の
特徴は、圧縮機と凝縮器と膨張手段と蒸発器とを順次配
管接続して形成された冷凍サイクルと、前記蒸発器で冷
却された低温不凍液と熱交換して氷を生成する製氷手段
とを備えた氷蓄熱システムにおいて、前記凝縮器と前記
膨張手段との間に熱交換器を設け、この熱交換器におい
て冷凍サイクル内を流通する冷媒と熱交換させた高温不
凍液を、前記製氷手段に導く配管系を設けたものであ
る。
A third feature of the present invention to achieve the above object is that a refrigeration cycle formed by sequentially connecting a compressor, a condenser, expansion means, and an evaporator to a pipe, and a cooling cycle formed by the evaporator. An ice making means for exchanging heat with the low-temperature antifreeze liquid to produce ice, wherein a heat exchanger is provided between the condenser and the expansion means, and the heat exchanger flows through the refrigeration cycle in the heat exchanger. And a piping system for guiding the high-temperature antifreeze liquid that has undergone heat exchange with the cooling medium to the ice making means.

【0012】上記目的を達成するための本発明の第4の
特徴は、製氷運転時には、凝縮器と膨張手段間に位置さ
せた熱交換器において昇温した高温不凍液を高温不凍液
槽に貯え、一方、蒸発器で冷媒と熱交換した低温不凍液
を製氷手段に導き製氷し、脱氷運転時には前記高温不凍
液を製氷手段に導くとともに、低温不凍液の製氷手段へ
の流入を防止するものである。
A fourth feature of the present invention for achieving the above object is that during the ice making operation, the high-temperature antifreeze liquid heated in the heat exchanger located between the condenser and the expansion means is stored in the high-temperature antifreeze liquid tank. In addition, the low-temperature antifreeze liquid that has exchanged heat with the refrigerant in the evaporator is guided to ice-making means to make ice, and during the deicing operation, the high-temperature antifreeze liquid is guided to the ice-making means and the low-temperature antifreeze liquid is prevented from flowing into the ice-making means.

【0013】上記目的を達成するための本発明の第5の
特徴は、複数の製氷手段を切替えて使用する氷蓄熱シス
テムにおいて、製氷運転中の製氷手段には蒸発器で冷媒
と熱交換した低温不凍液を導いて製氷し、一方、凝縮器
と膨張手段間に位置する熱交換器において熱交換した高
温不凍液を脱氷運転中の他の製氷手段へ導いて脱氷運転
させ、その後、製氷運転をしていた前記製氷手段へは低
温不凍液の供給を停止するとともに高温不凍液を供給
し、脱氷運転していた前記他の製氷手段へは高温不凍液
の供給を停止するものである。
A fifth feature of the present invention to achieve the above object is that in an ice heat storage system in which a plurality of ice making means are switched and used, the ice making means during the ice making operation is provided with a low temperature heat exchanged with a refrigerant by an evaporator. The antifreeze liquid is guided to make ice, and the high-temperature antifreeze liquid that has exchanged heat in the heat exchanger located between the condenser and the expansion means is guided to other ice making means during the deicing operation to perform deicing operation. The supply of the low-temperature antifreeze is stopped and the high-temperature antifreeze is supplied to the ice making means, and the supply of the high-temperature antifreeze is stopped to the other ice making means which has been deicing.

【0014】そして好ましくは、第4または第5の特徴
において、前記製氷運転と脱氷運転とを、製氷運転して
いる製氷装置表面に生成される氷の厚さに基づいて切替
える、かまたは、前記製氷運転と脱氷運転とを、製氷運
転している製氷装置を脱氷した後であって、製氷開始か
らの運転時間に基づいて切替えるものである。
Preferably, in the fourth or fifth aspect, the ice making operation and the deicing operation are switched on the basis of the thickness of ice generated on the surface of the ice making device performing the ice making operation, or The ice making operation and the deicing operation are switched after the ice making device performing the ice making operation is deiced and based on the operation time from the start of ice making.

【0015】上記目的を達成するための本発明の第6の
特徴は、低温の不凍液を製氷面の内側に流すとともに製
氷面の外側に水を流して製氷し、製氷量が所定値に達し
たときに前記製氷面の内側に加熱した不凍液を流して製
氷面から氷を離脱させる氷蓄熱システムにおいて、氷を
前記製氷面から離脱させる熱源として冷凍サイクル中を
流通する冷媒の凝縮液の顕熱を用いるものである。
A sixth feature of the present invention to achieve the above object is that ice is made by flowing a low-temperature antifreeze liquid inside the ice making surface and flowing water outside the ice making surface, and the ice making amount reaches a predetermined value. Sometimes, in an ice heat storage system in which heated antifreeze is flown inside the ice making surface to separate ice from the ice making surface, the sensible heat of the condensate of the refrigerant flowing through the refrigeration cycle as a heat source for separating ice from the ice making surface is used. It is used.

【0016】[0016]

【発明の実施の形態】以下、図面を用いて本発明のいく
つかの実施例を説明する。図1は、本発明に係る氷蓄熱
システムの概要を示す図である。本氷蓄熱システムは、
通常の冷凍サイクルのほかに、氷を製造、融解する氷蓄
熱部とを有している。冷凍サイクルに設けられる圧縮機
1において圧縮機された高圧高温の冷媒ガスは、凝縮器
2で凝縮液化し、熱交換器3および膨張弁4を経て、蒸
発器5に流入する。その後、ガス冷媒となって圧縮機1
に流入する。このように冷媒は、冷凍サイクル内を循環
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an outline of an ice heat storage system according to the present invention. This ice thermal storage system
In addition to the normal refrigeration cycle, it has an ice heat storage unit for producing and melting ice. The high-pressure and high-temperature refrigerant gas compressed in the compressor 1 provided in the refrigeration cycle is condensed and liquefied in the condenser 2 and flows into the evaporator 5 via the heat exchanger 3 and the expansion valve 4. Then, it becomes a gas refrigerant and the compressor 1
Flows into. Thus, the refrigerant circulates through the refrigeration cycle.

【0017】ここで、本実施例の蒸発器5はシェル内に
伝熱管が配置されたシェルチューブ型熱交換器である
が、これに限るものではない。蒸発器5に流入した冷媒
は、後述する低温不凍液と熱交換して蒸発ガス化され
る。このガス化の過程において、蒸発器5の伝熱管内ま
たはシェル側を流れる低温不凍液が所定の温度まで冷却
され、製氷の用に供される。
Here, the evaporator 5 of this embodiment is a shell tube type heat exchanger in which a heat transfer tube is disposed in a shell, but is not limited to this. The refrigerant that has flowed into the evaporator 5 undergoes heat exchange with a low-temperature antifreeze, which will be described later, to be evaporated and gasified. In this gasification process, the low-temperature antifreeze flowing in the heat transfer tube or the shell side of the evaporator 5 is cooled to a predetermined temperature and used for ice making.

【0018】つまり、夜間電力を利用する製氷運転中に
は、氷蓄熱部が作動して、蓄熱層に氷が蓄えられる。氷
蓄熱部は、水が溜められた蓄熱槽7と、この蓄熱槽内の
水を汲み上げる散水ポンプ8と、散水ポンプ8により汲
み上げられた水を製氷用の熱交換器6に散水する散水ノ
ズル9とを備えている。これらは通常のハーベスト方式
の氷蓄熱システムに備えられるものと同様のものであ
る。
That is, during the ice making operation using the nighttime electric power, the ice heat storage section operates, and ice is stored in the heat storage layer. The ice heat storage unit includes a heat storage tank 7 in which water is stored, a water spray pump 8 for pumping water in the heat storage tank, and a water spray nozzle 9 for spraying water pumped by the water spray pump 8 to the heat exchanger 6 for making ice. And These are the same as those provided in a normal harvest type ice heat storage system.

【0019】この蓄熱部と冷凍サイクルとは、不凍液の
管路により接続されている。すなわち、蒸発器5内を流
通した低温不凍液は、低温不凍液槽10に溜めらえ、ポ
ンプ11によって製氷用の熱交換器6に供給される。こ
の製氷用の熱交換器6は、外表面を水が流下し、内部を
低温不凍液が流通するように形成されている。製氷用の
水と熱交換した低温不凍液は、再び蒸発器5に戻され、
低温不凍液槽10、熱交換器6及び蒸発器5により構成
される循環路を循環する。
The heat storage section and the refrigeration cycle are connected by an antifreeze pipe. That is, the low-temperature antifreeze flowing through the evaporator 5 is stored in the low-temperature antifreeze tank 10 and supplied to the ice making heat exchanger 6 by the pump 11. The heat exchanger 6 for making ice is formed such that water flows down the outer surface and the low-temperature antifreeze flows through the inside. The low-temperature antifreeze liquid that has exchanged heat with the ice-making water is returned to the evaporator 5 again.
It circulates in a circulation path constituted by the low-temperature antifreeze tank 10, the heat exchanger 6, and the evaporator 5.

【0020】ポンプ11と熱交換器6間及び熱交換器6
と蒸発器5間には、バルブ14、及びバルブ15が夫々
設けられている。また、これらバルブ14、15よりも
熱交換器6側から分岐して分岐管路を設けている。そし
て、この分岐管路及びこれに接続された熱交換器3内に
高温不凍液を流して、高温不凍液循環路を蓄熱部に形成
している。この点が、本発明の特徴の一つである。すなわ
ち、製氷用の熱交換器6と熱交換器3とはバルブ17を
介して配管接続するとともに、この接続配管のバルブ1
7と熱交換器3との間からさらに分岐した分岐配管を設
け、低温不凍液が流れる配管路のバルブ14と熱交換器
6間に合流させている。また、熱交換器3において加熱
されて高温となった高温不凍液は、高温不凍液槽12に
蓄えられる。製氷時には、高温不凍液槽12に溜められ
た高温不凍液をポンプ13で熱交換器3に導き、この熱
交換器3で高温不凍液を加熱する。それを高温不凍液槽
12に導き、循環させている。一方、脱氷時には、ポン
プ13が高温不凍液槽12に蓄えられた高温不凍液を汲
み上げ、製氷用の熱交換器6へ導いている。
Between the pump 11 and the heat exchanger 6 and between the heat exchanger 6
Between the evaporator 5 and the evaporator 5, a valve 14 and a valve 15 are provided, respectively. Further, a branch pipe is provided which branches off from the heat exchanger 6 side with respect to the valves 14 and 15. Then, a high-temperature antifreeze is caused to flow through the branch pipe and the heat exchanger 3 connected thereto, thereby forming a high-temperature antifreeze circulation circuit in the heat storage unit. This is one of the features of the present invention. That is, the heat exchanger 6 for ice making and the heat exchanger 3 are connected to each other via the valve 17 and connected to the valve 1 of the connection pipe.
A branch pipe further branched from between the heat exchanger 7 and the heat exchanger 3 is provided so as to join between the valve 14 and the heat exchanger 6 in the pipe line through which the low-temperature antifreeze flows. The high-temperature antifreeze which has been heated to a high temperature in the heat exchanger 3 is stored in the high-temperature antifreeze tank 12. During ice making, the high-temperature antifreeze stored in the high-temperature antifreeze tank 12 is guided to the heat exchanger 3 by the pump 13, and the high-temperature antifreeze is heated by the heat exchanger 3. It is guided to the high-temperature antifreeze tank 12 and circulated. On the other hand, at the time of deicing, the pump 13 pumps up the high-temperature antifreeze stored in the high-temperature antifreeze tank 12 and guides it to the ice-making heat exchanger 6.

【0021】製氷時と脱氷時の各バルブの状態は以下の
通りである。製氷時には、バルブ14、15を全開とし
て、製氷用の熱交換器6に低温不凍液が流れるようにす
る。それとともに、バルブ16、17を全閉にして、低
温不凍液が熱交換器3へ流れること及び高温不凍液が製
氷用の熱交換器6へ流れ込むことも防止している。さら
に、バルブ18は全開にして、熱交換器3と高温不凍液
槽12間を高温不凍液が循環するようにする。なお、低
温不凍液槽10および高温不凍液槽12には、夫々エア
ぬき用のバルブ19、20が設けられており、不凍液配
管内にエアが残留するのを防止している。
The state of each valve during ice making and deicing is as follows. At the time of ice-making, the valves 14 and 15 are fully opened so that the low-temperature antifreeze flows into the ice-making heat exchanger 6. At the same time, the valves 16 and 17 are fully closed to prevent the low-temperature antifreeze from flowing into the heat exchanger 3 and the high-temperature antifreeze from flowing into the ice-making heat exchanger 6. Further, the valve 18 is fully opened so that the high-temperature antifreeze circulates between the heat exchanger 3 and the high-temperature antifreeze tank 12. The low-temperature antifreeze tank 10 and the high-temperature antifreeze tank 12 are provided with valves 19 and 20 for removing air, respectively, to prevent air from remaining in the antifreeze pipe.

【0022】製氷用の熱交換器6の製氷量が設定値に達
したら、製氷運転から脱氷運転に切り替え、製氷用の熱
交換器6の製氷面から脱氷する。この切替えは、製氷に
要した運転時間が所定時間に達したとき、高温不凍液ま
たは低温不凍液の温度が所定温度に達したとき、氷の厚
さが所定温度に達したとき等に行う。脱氷時には、バル
ブ14、15を全閉にして低温不凍液が製氷用の熱交換
器6へ流れるの防止する。さらに、バルブ18を閉じ、
バルブ16、17を全開にすることにより、製氷時に高
温不凍液槽12に蓄えられた高温の不凍液を製氷用の熱
交換器6に導く。 なお、脱氷を製氷用の熱交換器6の
全面にわたって実施する方法と、製氷面をいくつかに分
割して順次脱表する方法が考えられる。次に前者の方法
を以下に述べる。
When the ice making amount of the ice making heat exchanger 6 reaches the set value, the operation is switched from the ice making operation to the deicing operation, and the ice is made from the ice making surface of the ice making heat exchanger 6. This switching is performed when the operation time required for ice making reaches a predetermined time, when the temperature of the high-temperature antifreeze or the low-temperature antifreeze reaches the predetermined temperature, when the thickness of the ice reaches the predetermined temperature, or the like. During deicing, the valves 14 and 15 are fully closed to prevent the low-temperature antifreeze from flowing to the ice making heat exchanger 6. Further, the valve 18 is closed,
By fully opening the valves 16 and 17, the high-temperature antifreeze stored in the high-temperature antifreeze tank 12 during ice making is guided to the ice making heat exchanger 6. It is to be noted that a method of performing deicing over the entire surface of the ice making heat exchanger 6 and a method of dividing the ice making surface into several parts and sequentially removing the surface are considered. Next, the former method will be described below.

【0023】圧縮機1を停止して脱氷する例を、図1を
用いて説明する。図示しない厚さセンサーが製氷量が設
定値に達したことを検出すると、図示しない制御装置が
圧縮機1を停止させる。そして、圧縮機1の停止後、所
定時間経過したら低温不凍液のポンプ11を停止させ
る。次で、バルブ14、15、18を全閉とし、バルブ
16、17を全開とする。この状態で、高温不凍液のポ
ンプ13を運転する。高温不凍液槽12に蓄えられた高
温不凍液は、製氷用の熱交換器6内に流入し、製氷面を
内部から加熱する。これにより、製氷面上に生成された
氷を製氷面から離脱させる。脱氷が完了すると、バルブ
14、15、18を開き、バルブ16、17を全閉した
後、圧縮機1を運転して製氷運転を繰り返す。
An example in which the compressor 1 is stopped and deicing is performed will be described with reference to FIG. When a thickness sensor (not shown) detects that the ice making amount has reached the set value, a control device (not shown) stops the compressor 1. Then, after a predetermined time elapses after the compressor 1 is stopped, the low-temperature antifreeze liquid pump 11 is stopped. Next, the valves 14, 15, and 18 are fully closed, and the valves 16 and 17 are fully opened. In this state, the high temperature antifreeze pump 13 is operated. The high-temperature antifreeze stored in the high-temperature antifreeze tank 12 flows into the ice-making heat exchanger 6 and heats the ice-making surface from the inside. Thereby, the ice generated on the ice making surface is separated from the ice making surface. When the deicing is completed, the valves 14, 15, and 18 are opened, the valves 16 and 17 are fully closed, and then the compressor 1 is operated to repeat the ice making operation.

【0024】本実施例によれば、製氷時に冷凍サイクル
を過冷却させて熱を発生させ、その熱で高温不凍液を加
熱しているので、ホットガス法や、ヒータを用いたとき
のように新たなエネルギーを使う必要が無い。したがっ
て、脱氷時に高温不凍液を利用することが可能になり、
エネルギー効率が向上する。また、過冷却させるための
装置は通常の熱交換器でよく比較的簡単であり、それ程
コスト増を引き起こさず、さらに信頼性が高い。さら
に、冷凍サイクル自体は、冷媒を過冷却させているの
で、効率が向上する。
According to the present embodiment, the refrigeration cycle is supercooled during ice making to generate heat, and the heat is used to heat the high-temperature antifreeze, so that a new method such as the hot gas method or the heater is used. There is no need to use a lot of energy. Therefore, it becomes possible to use high-temperature antifreeze during deicing,
Energy efficiency is improved. The device for supercooling is a conventional heat exchanger, which is relatively simple, does not cause a significant increase in cost, and is more reliable. Furthermore, the efficiency of the refrigeration cycle is improved because the refrigerant is supercooled.

【0025】また本実施例では、冷凍サイクル中の凝縮
液の顕熱を利用して、製氷面から脱氷させているので、
無駄なエネルギーが少ない。すなわち、凝縮液と不凍液
を熱交換する熱交換器を設け、製氷運転中には、低温不
凍液を製氷面内側に流して製氷する。一方、低温不凍液
の配管から切替バルブによって切り離された高温不凍液
槽と配管、ポンプから構成される高温ラインと上記熱交
換器を連通し、ポンプを運転して不凍液を加熱する。さ
らに、凝縮液を冷却しているので、凝縮液の蒸発潜熱が
増加し、効率の良い蓄熱運転を行なえる。また、製氷が
完了した後の脱氷の際には、不凍液配管のバルブを切替
えて、高温不凍液ラインと製氷熱交換器を連通している
ので、高温の不凍液を製氷熱交換器に供給できる。これ
らにより、エネルギーの無駄無く、効率良く、製氷面の
氷を離脱することができる。
In the present embodiment, deicing is performed from the ice making surface by utilizing the sensible heat of the condensate in the refrigeration cycle.
Less wasted energy. That is, a heat exchanger for exchanging heat between the condensate and the antifreeze is provided, and during the ice making operation, the low-temperature antifreeze is flowed inside the ice making surface to make ice. On the other hand, the heat exchanger is connected to a high-temperature line composed of a high-temperature antifreeze tank, a pipe, and a pump separated from a low-temperature antifreeze pipe by a switching valve, and the pump is operated to heat the antifreeze. Further, since the condensed liquid is cooled, latent heat of evaporation of the condensed liquid increases, and an efficient heat storage operation can be performed. Further, when deicing after the ice making is completed, the valve of the antifreeze liquid pipe is switched to connect the high temperature antifreeze liquid line and the ice making heat exchanger, so that the high temperature antifreeze liquid can be supplied to the ice making heat exchanger. Thus, the ice on the ice making surface can be efficiently separated without wasting energy.

【0026】なお、上記実施例において製氷用の熱交換
器6よりも低温不凍液槽10を低い位置に設けることが
望ましい。氷蓄熱システムをこのように構成すれば、高
温の不凍液を保有する高温不凍液槽と低温不凍液槽を分
離して設けたことにより、脱氷のための時間が短くなる
とともに、製氷運転から脱氷運転に切り替えた際には、
製氷熱交換器内に充満している低温不凍液が効率良く、
低温不凍液槽に回収されるという効果も生じる。このた
め、高温不凍液に切替えるときに、製氷用の熱交換器の
内側には低温不凍液が少量しか残らず、脱氷を効率良く
かつ短時間で行なえる。
In the above embodiment, it is desirable to provide the low-temperature antifreeze tank 10 at a position lower than the ice making heat exchanger 6. If the ice heat storage system is configured in this way, the high-temperature antifreeze tank holding the high-temperature antifreeze and the low-temperature antifreeze tank are provided separately, so that the time for deicing is shortened, and the ice making operation is switched to the deicing operation. When you switch to
The low-temperature antifreeze liquid filled in the ice making heat exchanger is efficient,
The effect of being collected in the low-temperature antifreeze tank also occurs. For this reason, when switching to the high-temperature antifreeze, only a small amount of the low-temperature antifreeze remains inside the heat exchanger for ice making, and deicing can be performed efficiently and in a short time.

【0027】次に、本発明の他の実施例である複数個に
分割された製氷熱交を自動弁により切り替えて製氷を継
続しながらブロック毎に脱氷を行う例を、図2を用いて
説明する。この図2では、製氷用の熱交換器6,6aを2
個設けている。この図2において、図1と同様の部品に
は同一の符号を付している。
Next, another embodiment of the present invention, in which a plurality of divided ice making heat exchanges are switched by an automatic valve to perform ice making for each block while continuing ice making, with reference to FIG. explain. In FIG. 2, two heat exchangers 6, 6a for ice making are connected.
Are provided. 2, the same components as those in FIG. 1 are denoted by the same reference numerals.

【0028】この図2では、図1に示した氷蓄熱部と同
様のものの他、氷生成部をもう1個設けている。すなわ
ち、低温不凍液を製氷用の熱交換器6aに導く配管およ
びこの熱交換器6aから戻す配管が分岐して設けられ、
この分岐配管中にはバルブ14a、15aが設けられてい
る。さらに、製氷用の熱交換器6aに蓄熱層7aから水
を供給するポンプ8a、この熱交換器6aの上方に位置
しこの熱交換器6aに散水する散水ノズル9aも設けられ
ている。また、高温不凍液槽12に蓄えられた高温不凍
液を脱氷時に製氷用の熱交換器6aに導く配管路も設け
られており、この配管路にはバルブ16a、17aが設
けられている。
In FIG. 2, in addition to the same components as the ice heat storage unit shown in FIG. 1, another ice generation unit is provided. That is, a pipe for guiding the low-temperature antifreeze to the heat exchanger 6a for making ice and a pipe for returning from the heat exchanger 6a are provided in a branched manner.
Valves 14a and 15a are provided in the branch pipe. Further, a pump 8a for supplying water from the heat storage layer 7a to the heat exchanger 6a for ice making, and a water spray nozzle 9a located above the heat exchanger 6a and spraying water to the heat exchanger 6a are also provided. Further, a pipe line for guiding the high-temperature antifreeze liquid stored in the high-temperature antifreeze liquid tank 12 to the ice-making heat exchanger 6a at the time of deicing is provided, and valves 16a and 17a are provided in this pipe line.

【0029】次にこのように構成した本実施例における
バルブ等の動作について説明する。第1の氷生成部の製
氷運転を開始する前に、バルブ14、15を開にし、バ
ルブ14a、15aを閉として、第1の氷生成部へは低温
不凍液を流通可能にし、第2の氷生成部には低温不凍液
の流通を不可能にする。また、バルブ16、17を閉に
し、バルブ16a、17aを開にして、第1の氷生成部に
は高温不凍液の流通を不可能にし、第2の氷生成部には
高温不凍液の流通を可能にする。この状態で圧縮機1を
運転し、ポンプ11およびポンプ13も運転する。さらに、
散水ポンプ8を運転すると、製氷用の熱交換器6に低温
不凍液が供給され、この熱交換器6の製氷面に製氷され
る。
Next, the operation of the valve and the like in the present embodiment configured as described above will be described. Before starting the ice making operation of the first ice generating unit, the valves 14 and 15 are opened and the valves 14a and 15a are closed to allow the low-temperature antifreeze to flow to the first ice generating unit, and the second ice The flow of the low-temperature antifreeze is made impossible to the generation unit. In addition, the valves 16 and 17 are closed, and the valves 16a and 17a are opened to disable the flow of the high-temperature antifreeze to the first ice generator and the flow of the high-temperature antifreeze to the second ice generator. To In this state, the compressor 1 is operated, and the pump 11 and the pump 13 are also operated. further,
When the watering pump 8 is operated, the low-temperature antifreeze is supplied to the heat exchanger 6 for ice making, and ice is made on the ice making surface of the heat exchanger 6.

【0030】一方、製氷用の熱交換器6aの製氷面に
は、高温不凍液が供給されており、この熱交換器6aの
製氷面は加熱される。この熱交換器6aの製氷面に生成
された氷は離脱し、蓄熱槽7aに落下する。この様に、
製氷用の熱交換器6aの製氷面の脱氷が完了し、かつ、
製氷用の熱交換器6の製氷面に生成された氷の量が設定
値に達すると各バルブを切り替える。具体的には、バル
ブ14、15を閉じ、バルブ14a、15aを開いて第1
の氷生成部への低温不凍液の流通を不可能にすると共に
第2の氷生成部への低温不凍液の流通を可能にする。ま
たバル16、17を開き、バルブ16a、17aを閉じ
て、第1の氷生成部へ高温不凍液を流し、第2の氷生成
部への高温不凍液の流通を不可能にする。そして、散水
ポンプ8aを運転して、製氷用の熱交換器6aの表面に製
氷する一方、製氷用の熱交換器6の表面に生成された氷
を脱氷する。以後、バルブ類を順次切り替えることによ
り、製氷用の第1の熱交換器6と製氷用の第2の熱交換
器6aとで交互に製氷が可能になり、連続して製氷が行
える。
On the other hand, a high-temperature antifreeze solution is supplied to the ice making surface of the heat exchanger 6a for making ice, and the ice making surface of the heat exchanger 6a is heated. The ice generated on the ice making surface of the heat exchanger 6a separates and falls into the heat storage tank 7a. Like this
Deicing of the ice making surface of the ice making heat exchanger 6a is completed, and
When the amount of ice generated on the ice making surface of the ice making heat exchanger 6 reaches a set value, each valve is switched. Specifically, the valves 14 and 15 are closed, the valves 14a and 15a are opened, and the first
Of the low-temperature antifreeze to the second ice generating unit and the low-temperature antifreeze to the second ice generating unit. Further, the valves 16 and 17 are opened, the valves 16a and 17a are closed, and the high-temperature antifreeze is allowed to flow to the first ice generator, and the flow of the high-temperature antifreeze to the second ice generator is disabled. Then, the water spray pump 8a is operated to make ice on the surface of the heat exchanger 6a for making ice, while deicing the ice generated on the surface of the heat exchanger 6 for making ice. Thereafter, by sequentially switching the valves, the first heat exchanger 6 for ice making and the second heat exchanger 6a for ice making can alternately make ice, and ice can be made continuously.

【0031】本実施例によれば、上記第1の実施例の効
果の他に、製氷面を複数個に分けて各製氷面を順次脱氷
しているので、製氷面から離脱した氷同士がぶつかっ
て、製氷面を損傷することを防止できる、一度に多量の
融解熱を必要としないので、ポンプ13の容量を小さく
できる等の利点もある。
According to this embodiment, in addition to the effects of the first embodiment, since the ice making surface is divided into a plurality of parts and each ice making surface is sequentially deiced, the ice separated from the ice making surface can be separated from each other. There is also an advantage that the collision can be prevented and the ice making surface can be prevented from being damaged, and since a large amount of heat of melting is not required at one time, the capacity of the pump 13 can be reduced.

【0032】なお、上記何れの実施例においても熱交換
器3を圧縮機1と凝縮器2の間に設けてもよい。このば
あい、過冷却による冷凍サイクルの効率向上は望めない
が、圧縮機を出た高温の冷媒を高温不凍液の加熱に用い
ることができるので、熱交換器3を小型化できる効果が
ある。また、凝縮器で捨てるエネルギーを有効に使うと
いう利点もある。
In any of the above embodiments, the heat exchanger 3 may be provided between the compressor 1 and the condenser 2. In this case, the efficiency of the refrigeration cycle cannot be improved by supercooling. However, since the high-temperature refrigerant that has exited the compressor can be used for heating the high-temperature antifreeze, the heat exchanger 3 can be downsized. Another advantage is that the energy discarded by the condenser is effectively used.

【0033】また、冷媒としては非塩素系の冷媒や非共
沸混合冷媒を使えば、地球環境にやさしく、環境汚染を
防止できる。このような冷媒としては、例えばR407
C、R410がある。
If a non-chlorine-based refrigerant or a non-azeotropic mixed refrigerant is used as the refrigerant, it is friendly to the global environment and can prevent environmental pollution. As such a refrigerant, for example, R407
C and R410.

【0034】さらに、上記いずれの実施例においても高
温不凍液と低温不凍液とを同一種類の液体としたが、高
温不凍液と低温不凍液とを別の種類としても良い。ただ
し、この場合、高温不凍液から低温不凍液への切り換え
時に製氷用の熱交換器内から各液が完全に取り去られる
よう、ポンプ等で製氷用の熱交換器内を引く必要があ
る。
In each of the above embodiments, the high-temperature antifreeze and the low-temperature antifreeze are of the same type, but the high-temperature antifreeze and the low-temperature antifreeze may be of different types. However, in this case, it is necessary to draw the inside of the ice making heat exchanger with a pump or the like so that each liquid is completely removed from the inside of the ice making heat exchanger when switching from the high temperature anti-freezing solution to the low temperature anti-freezing solution.

【0035】次に、上述した本発明の一実施例の具体例
を、図3に示したモリエール線図を用いて説明する。図
の横軸はエンタルピーIであり、縦軸は圧力pを示して
いる。冷凍サイクルに用いられる圧縮機1の吸込み側で
の状態は丸囲みのAであり、圧縮機1の出口では、丸囲
みBの点まで圧力、エンタルピーとも上昇する。凝縮器
として作用する熱交換器2では、エンタルピーが点Bか
ら点Cまで変化する。高温不凍液との熱交換器3が無い
場合には、膨張弁4において、圧力が点Cから点Dまで
変化する。一方、高温不凍液との熱交換器3を設ける
と、この熱交換器3において冷媒は過冷却され、エンタ
ルピーは点Cから点Eまで変化する。そして、膨張弁4
で点Eから点Fまで圧力が降下し、蒸発器である熱交換
器5において点Fから点Aまでエンタルピーが上昇す
る。
Next, a specific example of the above-described embodiment of the present invention will be described with reference to the Mollier diagram shown in FIG. The horizontal axis of the figure is enthalpy I, and the vertical axis is pressure p. The state on the suction side of the compressor 1 used in the refrigeration cycle is indicated by A in the circle. At the outlet of the compressor 1, both the pressure and the enthalpy rise to the point of B in the circle. In the heat exchanger 2 acting as a condenser, the enthalpy changes from point B to point C. When there is no heat exchanger 3 with the high-temperature antifreeze, the pressure in the expansion valve 4 changes from the point C to the point D. On the other hand, when the heat exchanger 3 with the high-temperature antifreeze is provided, the refrigerant is supercooled in this heat exchanger 3, and the enthalpy changes from the point C to the point E. And expansion valve 4
Then, the pressure drops from the point E to the point F, and the enthalpy increases from the point F to the point A in the heat exchanger 5 which is an evaporator.

【0036】一例として、冷媒R−22を使った冷凍サ
イクルをとりあげる。冷媒の蒸発温度を−10°C、凝
縮温度が37°Cの冷凍サイクルで、熱交換器3を設け
て凝縮液を25°Cまで過冷却した場合と、熱交換器3
を設けていない場合とを比較する。
As an example, a refrigeration cycle using refrigerant R-22 will be described. In a refrigeration cycle in which the evaporation temperature of the refrigerant is -10 ° C and the condensing temperature is 37 ° C, the heat exchanger 3 is provided to supercool the condensed liquid to 25 ° C.
Is compared with the case where no is provided.

【0037】蒸発器での蒸発熱量Qは、冷媒の重量流量
をG、蒸発器前後のエンタルピー差をΔiとすると、熱
交換器3を設けないときは、 Q=G×ΔI=G×(IA−ID)=G×(148.173-110.92
7) である。一方、熱交換器3を設けると過冷却するので、 Q=G×ΔI=G×(IA−IF)=G×(148.173-107.24
7) となる。したがって、蒸発器の蒸発熱量の比は、1.10と
なり、約1割だけ、過冷却により増加する。これによ
り、冷凍サイクルの効率が向上することが分かる。
Assuming that the mass flow rate of the refrigerant is G and the enthalpy difference before and after the evaporator is Δi, when the heat exchanger 3 is not provided, Q = G × ΔI = G × (I A− I D ) = G × (148.173-110.92)
7) On the other hand, since the supercooling and providing the heat exchanger 3, Q = G × ΔI = G × (I A -I F) = G × (148.173-107.24
7) Therefore, the ratio of the amount of heat of evaporation of the evaporator is 1.10, which is increased by about 10% due to supercooling. This shows that the efficiency of the refrigeration cycle is improved.

【0038】[0038]

【発明の効果】上述したように本発明によれば、脱氷の
ための不凍液の加熱用熱源として凝縮液の顕熱を利用し
ているので、余分な熱源を必要とせず、脱氷の為の熱ロ
スが少なくて済む。一方、冷凍サイクルにおいては過冷
却を利用しているので、冷凍サイクルの効率が向上す
る。さらに、圧縮機で圧縮した高温のガスをそのまま、
氷の離脱に利用している訳ではないので、圧縮機、延い
てはサイクルの大型化を防止できる。
As described above, according to the present invention, since the sensible heat of the condensate is used as a heat source for heating the antifreeze for deicing, an extra heat source is not required, and Heat loss is small. On the other hand, the efficiency of the refrigeration cycle is improved because supercooling is used in the refrigeration cycle. Furthermore, the high-temperature gas compressed by the compressor is
Since it is not used for detachment of ice, it is possible to prevent the compressor and, consequently, the cycle from becoming larger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る蓄熱システムの一実施例の模式図
であり、製氷サイクルを説明するための図。
FIG. 1 is a schematic diagram of one embodiment of a heat storage system according to the present invention, illustrating an ice making cycle.

【図2】本発明に係る蓄熱システムの一実施例の模式図
であり、脱氷サイクルを説明するための図。
FIG. 2 is a schematic diagram of one embodiment of a heat storage system according to the present invention, for illustrating a deicing cycle.

【図3】本発明の原理を説明するためのモリエール線
図。
FIG. 3 is a Mollier chart for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…凝縮器、3…熱交換器、4…膨張弁、
5…蒸発器、6…製氷用の熱交換器、7…蓄熱槽、8…
散水ポンプ、9…散水ノズル、10…低温不凍液槽、1
1…ポンプ、12…高温不凍液槽、13…ポンプ、14
…バルブ、15…バルブ、16…バルブ、17…バル
ブ、18…バルブ、19…エア抜きバルブ、20…エア
抜きバルブ。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Condenser, 3 ... Heat exchanger, 4 ... Expansion valve,
5 evaporator, 6 heat exchanger for ice making, 7 heat storage tank, 8 ...
Watering pump, 9 ... watering nozzle, 10 ... low-temperature antifreeze tank, 1
DESCRIPTION OF SYMBOLS 1 ... Pump, 12 ... High temperature antifreeze tank, 13 ... Pump, 14
... Valve, 15 ... Valve, 16 ... Valve, 17 ... Valve, 18 ... Valve, 19 ... Air release valve, 20 ... Air release valve.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と凝縮器と膨張手段と蒸発器とを順
次配管接続して形成された冷凍サイクルと、製氷手段と
を有する氷蓄熱システムにおいて、前記冷凍サイクルの
蒸発器で得られた低温不凍液と、前記圧縮機と前記凝縮
器間または前記凝縮器と前記膨張手段間に設けた熱交換
器で得られた高温不凍液とを選択的に前記製氷手段に流
通させることを特徴とする氷蓄熱システム。
1. An ice heat storage system having a refrigeration cycle formed by sequentially connecting a compressor, a condenser, an expansion means, and an evaporator with pipes, and an ice making means, wherein the refrigeration cycle is obtained by an evaporator. Ice, wherein the low-temperature antifreeze and a high-temperature antifreeze obtained by a heat exchanger provided between the compressor and the condenser or between the condenser and the expansion means are selectively passed through the ice making means. Thermal storage system.
【請求項2】圧縮機と凝縮器と膨張手段と蒸発器とを順
次配管接続して形成された冷凍サイクルと、前記蒸発器
で発生した冷熱と熱交換する低温不凍液と熱交換して氷
を生成する製氷手段とを備えた氷蓄熱システムにおい
て、 前記凝縮器と前記膨張手段との間に熱交換器を設け、こ
の熱交換器において冷凍サイクル内を流通する冷媒と熱
交換した高温不凍液を、前記製氷手段に導く配管系を設
けたことを特徴とする氷蓄熱システム。
2. A refrigeration cycle formed by sequentially connecting a compressor, a condenser, an expansion means, and an evaporator with a pipe, and a low-temperature antifreeze that exchanges heat with cold generated by the evaporator to exchange ice with ice. In the ice heat storage system comprising an ice making means for generating, a heat exchanger is provided between the condenser and the expansion means, and in this heat exchanger, a high-temperature antifreeze liquid that has exchanged heat with a refrigerant flowing in a refrigeration cycle, An ice heat storage system, wherein a piping system leading to the ice making means is provided.
【請求項3】前記熱交換器は冷媒を過冷却させるもので
あることを特徴とする請求項1または2に記載の氷蓄熱
システム。
3. The ice heat storage system according to claim 1, wherein the heat exchanger supercools the refrigerant.
【請求項4】前記蒸発器と前記製氷手段との間に低温不
凍液の流通を制御する第1のバルブを、前記熱交換器と
前記製氷手段との間に高温不凍液の流通を制御するバル
ブとを夫々設け、前記製氷手段に低温不凍液と高温不凍
液とを選択的に供給可能にしたことを特徴とする請求項
1ないし3のいずれか1項に記載の氷蓄熱システム。
4. A first valve for controlling the flow of low-temperature antifreeze between the evaporator and the ice making means, a valve for controlling the flow of high-temperature antifreeze between the heat exchanger and the ice making means. 4. The ice heat storage system according to claim 1, wherein a low-temperature antifreeze and a high-temperature antifreeze are selectively supplied to the ice making means.
【請求項5】前記製氷手段は、ハーベスト型製氷手段で
あることを特徴とする請求項1ないし4のいずれか1項
に記載の氷蓄熱システム。
5. The ice heat storage system according to claim 1, wherein said ice making means is a harvest type ice making means.
【請求項6】前記製氷手段は、製氷用熱交換器と、この
製氷用熱交換器の表面に水を散布する散布手段と、前記
製氷用熱交換器で生成された氷と製氷用熱交換器に散布
される水とを蓄える蓄熱槽とを有することを特徴とする
請求項1ないし4のいずれか1項に記載の氷蓄熱システ
ム。
6. The ice making means includes: an ice making heat exchanger; a spraying means for spraying water on a surface of the ice making heat exchanger; and ice exchange with ice generated by the ice making heat exchanger. The ice heat storage system according to any one of claims 1 to 4, further comprising a heat storage tank for storing water sprayed on the vessel.
【請求項7】圧縮機と凝縮器と膨張手段と蒸発器とを順
次配管接続して形成された冷凍サイクルと、前記蒸発器
で冷却された低温不凍液と熱交換して氷を生成する製氷
手段とを備えた氷蓄熱システムにおいて、 前記凝縮器と前記膨張手段との間に熱交換器を設け、こ
の熱交換器において冷凍サイクル内を流通する冷媒と熱
交換させた高温不凍液を、前記製氷手段に導く配管系を
設けたことを特徴とする氷蓄熱システム。
7. A refrigeration cycle formed by sequentially connecting a compressor, a condenser, an expansion means, and an evaporator to a pipe, and ice making means for generating heat by exchanging heat with a low-temperature antifreeze cooled by the evaporator. An ice heat storage system comprising: a heat exchanger provided between the condenser and the expansion means, wherein the high-temperature antifreeze liquid that has been heat-exchanged with a refrigerant flowing through a refrigeration cycle in the heat exchanger is used as the ice making means. An ice heat storage system characterized by providing a piping system leading to the ice.
【請求項8】製氷運転時には、凝縮器と膨張手段間に位
置させた熱交換器において凝縮器内を流通する冷媒と熱
交換して昇温した高温不凍液を高温不凍液槽に貯え、一
方、蒸発器で冷媒と熱交換した低温不凍液を製氷手段に
導いて製氷し、脱氷運転時には前記高温不凍液を製氷手
段に導くとともに、低温不凍液の製氷手段への流入を防
止することを特徴とする氷蓄熱システム。
8. During the ice making operation, the heat exchanger located between the condenser and the expansion means exchanges heat with the refrigerant flowing through the condenser and stores the heated high-temperature antifreeze in the high-temperature antifreeze tank while evaporating. An ice storage unit that guides the low-temperature antifreeze liquid that has exchanged heat with the refrigerant to the ice-making means to make ice, guides the high-temperature antifreeze liquid to the ice-making means during deicing operation, and prevents the low-temperature antifreeze liquid from flowing into the ice-making means. system.
【請求項9】複数の製氷手段を切替えて使用する氷蓄熱
システムにおいて、製氷運転中の製氷手段には蒸発器で
冷媒と熱交換した低温不凍液を導いて製氷し、一方、凝
縮器と膨張手段間に位置する熱交換器において熱交換し
た高温不凍液を脱氷運転中の他の製氷手段へ導いて脱氷
運転させ、その後、製氷運転をしていた前記製氷手段へ
は低温不凍液の供給を停止するとともに高温不凍液を供
給し、脱氷運転していた前記他の製氷手段へは高温不凍
液の供給を停止することを特徴とする氷蓄熱システム。
9. An ice heat storage system in which a plurality of ice making means are switched and used, and ice is made by introducing a low-temperature antifreeze liquid which has exchanged heat with a refrigerant in an evaporator to the ice making means during the ice making operation. The high-temperature antifreeze liquid that has exchanged heat in the heat exchanger located in between is guided to another ice making means during the deicing operation to perform deicing operation, and thereafter, the supply of the low-temperature antifreeze liquid to the ice making means that was performing the ice making operation is stopped. And supplying the high-temperature antifreeze to the other ice making means that has been performing the deicing operation.
【請求項10】前記製氷運転と脱氷運転とを、製氷運転
している製氷装置表面に生成される氷の厚さに基づいて
切替えることを特徴とする請求項8または9に記載の氷
蓄熱システム。
10. The ice heat storage according to claim 8, wherein the ice making operation and the deicing operation are switched based on the thickness of ice generated on the surface of the ice making device that is performing the ice making operation. system.
【請求項11】前記製氷運転と脱氷運転とを、製氷運転
している製氷装置を脱氷した後であって、製氷開始から
の運転時間に基づいて切替えることを特徴とする請求項
8または9に記載の氷蓄熱システム。
11. The ice making operation and the deicing operation are switched based on the operation time from the start of ice making after the ice making device performing the ice making operation is deiced. 10. The ice heat storage system according to 9.
【請求項12】低温の不凍液を製氷面の内側に流すとと
もに製氷面の外側に水を流して製氷し、製氷量が所定値
に達したときに加熱した不凍液を前記製氷面の内側に流
して製氷面から氷を離脱させる氷蓄熱システムにおい
て、氷を前記製氷面から離脱させる熱源として冷凍サイ
クル中を流通する冷媒の凝縮液の顕熱を用いることを特
徴とする氷蓄熱システム。
12. A low-temperature antifreeze solution is flown inside the ice making surface and water is flown outside the ice making surface to make ice. When the amount of ice making reaches a predetermined value, the heated antifreeze solution is flown inside the ice making surface. An ice heat storage system for separating ice from an ice making surface, wherein sensible heat of a condensate of a refrigerant flowing in a refrigeration cycle is used as a heat source for separating ice from the ice making surface.
JP14538798A 1998-05-27 1998-05-27 Ice thermal storage system Pending JPH11337238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14538798A JPH11337238A (en) 1998-05-27 1998-05-27 Ice thermal storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14538798A JPH11337238A (en) 1998-05-27 1998-05-27 Ice thermal storage system

Publications (1)

Publication Number Publication Date
JPH11337238A true JPH11337238A (en) 1999-12-10

Family

ID=15384080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14538798A Pending JPH11337238A (en) 1998-05-27 1998-05-27 Ice thermal storage system

Country Status (1)

Country Link
JP (1) JPH11337238A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145017A (en) * 2007-12-17 2009-07-02 Fukuoka Prefecture Icemaker using ammonia
CN110440366A (en) * 2019-08-15 2019-11-12 上海雪森林制冷设备有限公司 Passive ice-storage system
CN114322384A (en) * 2021-12-31 2022-04-12 华南理工大学 High-coupling LNG cold energy ice making process and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145017A (en) * 2007-12-17 2009-07-02 Fukuoka Prefecture Icemaker using ammonia
CN110440366A (en) * 2019-08-15 2019-11-12 上海雪森林制冷设备有限公司 Passive ice-storage system
CN114322384A (en) * 2021-12-31 2022-04-12 华南理工大学 High-coupling LNG cold energy ice making process and device
CN114322384B (en) * 2021-12-31 2022-10-21 华南理工大学 High-coupling LNG cold energy ice making process and device

Similar Documents

Publication Publication Date Title
JP5378504B2 (en) Heat pump water heater
CN109798159B (en) Distributed energy-changing method and system
JP2000179970A (en) Air conditioning system
JP2008196798A (en) Air conditioner
JP2008134045A (en) Heat pump system
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
CN101936613B (en) Integrated heat exchange system
KR101996558B1 (en) Refrigerating system utilizing cold heat of liquified gas
JP2000121107A (en) Ice storage system
JPH11337238A (en) Ice thermal storage system
KR20160060524A (en) A heat hump system having a defrost device
JP2002071169A (en) Ice heat storage type air conditioning device and method for controlling the same
JP2009222379A (en) Automatic ice maker
KR101770806B1 (en) cold or hot storage system
KR20100046705A (en) Ice thermal storage system using closed-circuit
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
KR100345579B1 (en) The combined Compact Refrigerative / Regenerative Heat-Pump System
CN109900047A (en) Wind cooling refrigerator
JPH09159210A (en) Cooling system
JP2002031429A (en) Composite cooling and heating device
KR100187774B1 (en) A regenerative cooling system
JP3802237B2 (en) Air conditioner with ice storage tank
JPH0370945A (en) Heat pump system
JPH0561539B2 (en)
JP2008292016A (en) Freezer, air conditioner and method for controlling them