JPH11336533A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JPH11336533A
JPH11336533A JP14484798A JP14484798A JPH11336533A JP H11336533 A JPH11336533 A JP H11336533A JP 14484798 A JP14484798 A JP 14484798A JP 14484798 A JP14484798 A JP 14484798A JP H11336533 A JPH11336533 A JP H11336533A
Authority
JP
Japan
Prior art keywords
exhaust
adsorbent
passage
exhaust gas
exhaust passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14484798A
Other languages
Japanese (ja)
Inventor
Shigeharu Suzuki
重治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14484798A priority Critical patent/JPH11336533A/en
Publication of JPH11336533A publication Critical patent/JPH11336533A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To delay desorption of an adsorbent more than activity of an exhaust emission controlling catalyst so as to improve exhaust emission by disposing an adsorbent arranged on the upstream from the catalyst disposed in an exhaust passage of an internal combustion engine to adsorb unburnt component in exhaust in the inner wall of a portion of the exhaust passage, which has large heat capacity. SOLUTION: Exhaust discharged from an exhaust port 12 of an internal combustion engine 10 is discharged to an exhaust passage 16 through an exhaust manifold 14. By a catalytic converter rhodium 22 as an exhaust emission controlling catalyst disposed in a downstream passage 20 of the exhaust passage 16, HC(unburnt component) and CO in exhaust are oxidized and NOx is reduced to control emission. In this case, a flexible pipe 26 having a large surface area is connected to the upstream of the three way catalytic converter 22 in the downstream passage 20, and an HC adsorbent as an adsorbing material is disposed in the interior of the pipe 26. Thus, a temperature rise of the HC adsorbing material is restrained to overcome the disadvantage that the HC adsorbing material reaches a desorption temperature before activity of the catalytic converter rhodium 22, thereby inhibiting exhaust emission of HC.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の冷間始
動時に排出される未燃成分を浄化する排気浄化装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for purifying unburned components discharged during a cold start of an internal combustion engine.

【0002】[0002]

【従来の技術】従来から内燃機関の排気中に含まれる未
燃成分、例えば炭化水素(HC)を、排気通路の途中に
設けた排気浄化触媒(三元触媒)により浄化することが
行われている。ところが、上記触媒は内燃機関の始動
時、一定の活性温度に達するまでは十分に機能せず、そ
の間にHCが浄化されずに排出されるという問題があっ
た。これを解決するため、内燃機関の排気通路にHC吸
着材を配設し、機関の冷間始動直後の所定温度以下では
排気中のHCを一時的に吸着し、所定温度以上に上昇し
たら吸着材から脱離するHCを下流の排気浄化触媒によ
って浄化する排気浄化装置が知られている。例えば、特
開平7−139344号公報で公知である。
2. Description of the Related Art Conventionally, an unburned component, for example, hydrocarbon (HC) contained in exhaust gas of an internal combustion engine is purified by an exhaust gas purifying catalyst (three-way catalyst) provided in an exhaust passage. I have. However, at the time of starting the internal combustion engine, the catalyst does not function sufficiently until a certain activation temperature is reached, and during that time, there is a problem that HC is exhausted without being purified. In order to solve this problem, an HC adsorbent is provided in an exhaust passage of the internal combustion engine to temporarily adsorb HC in the exhaust gas at a predetermined temperature immediately after a cold start of the engine, and to adsorb the HC at a predetermined temperature or higher. There is known an exhaust gas purifying apparatus that purifies HC desorbed from a fuel by a downstream exhaust gas purifying catalyst. For example, it is known from JP-A-7-139344.

【0003】上記従来技術では、排気浄化触媒(酸化触
媒)の上流に排気通路をバイパスするバイパス通路が設
けられ、このバイパス通路の内壁にHC吸着材が薄くコ
ーティングされている。機関の冷間始動直後はバイパス
通路に排気を流し、HC吸着材で排気中のHCを吸着す
る。HC吸着材が所定の脱離温度以上になると、HCが
脱離して排気通路に流れ、活性化した下流の酸化触媒で
HCを浄化する。
In the above prior art, a bypass passage that bypasses an exhaust passage is provided upstream of an exhaust purification catalyst (oxidation catalyst), and the inner wall of the bypass passage is thinly coated with an HC adsorbent. Immediately after the cold start of the engine, exhaust gas flows through the bypass passage, and the HC in the exhaust gas is adsorbed by the HC adsorbent. When the HC adsorbent reaches a predetermined desorption temperature or higher, the HC desorbs and flows into the exhaust passage, where the activated downstream oxidation catalyst purifies the HC.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記従来技
術のように排気通路の内壁にHC吸着材を薄くコーティ
ングする場合、HC吸着材がコーティングされている排
気通路が熱を放熱しやすストレートな一重排気通路のた
め、機関始動後、次第に上昇する排気温度の影響を受け
て、HC吸着材が下流の排気浄化触媒の活性よりも前に
脱離温度に達することになる。この結果、HC吸着材か
ら脱離したHCが排気浄化触媒で浄化されずに、大気に
放出される恐れがある。
When the inner wall of the exhaust passage is coated with the HC adsorbent thinly as in the above-mentioned prior art, the exhaust passage coated with the HC adsorbent has a straight single-layer structure that easily radiates heat. Because of the exhaust passage, the HC adsorbent reaches the desorption temperature before the activity of the downstream exhaust purification catalyst under the influence of the gradually rising exhaust temperature after the engine is started. As a result, HC desorbed from the HC adsorbent may be released to the atmosphere without being purified by the exhaust purification catalyst.

【0005】本発明は、上記問題点に鑑みてなされたも
のであり、HC吸着材を排気通路の内壁に設ける際、H
C吸着材を熱容量の大きな部分の内壁に設けることで、
排気浄化触媒の活性よりもHC吸着材の脱離を遅くし
て、排気エミッションの悪化を抑制することを目的とす
る。
[0005] The present invention has been made in view of the above problems, and when the HC adsorbent is provided on the inner wall of the exhaust passage, H
By providing the C adsorbent on the inner wall of the large heat capacity part,
It is an object of the present invention to slow the desorption of the HC adsorbent from the activity of the exhaust purification catalyst and suppress the deterioration of exhaust emissions.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下のような構成を採用した。すなわち、
本件の第1発明の排気浄化装置は、内燃機関の排気通路
に設けられた排気浄化触媒と、該排気浄化触媒の上流に
所定温度以下で排気中の未燃成分を吸着し、所定温度以
上で吸着した未燃成分を脱離する吸着材と、を備えた排
気浄化装置において、前記吸着材を前記排気通路の熱容
量が大きな部分の内壁に設けたことを特徴とする。
The present invention employs the following configuration to solve the above-mentioned problems. That is,
An exhaust gas purifying apparatus according to a first aspect of the present invention includes an exhaust gas purifying catalyst provided in an exhaust passage of an internal combustion engine, and an unburned component in exhaust gas adsorbed at a predetermined temperature or lower upstream of the exhaust gas purifying catalyst. An exhaust purification device comprising: an adsorbent for desorbing adsorbed unburned components; wherein the adsorbent is provided on an inner wall of a portion of the exhaust passage having a large heat capacity.

【0007】本件発明は、未燃成分を所定温度以下で吸
着する吸着材を、排気通路の熱容量の大きな部分の内壁
に設けるので、排気温度が上昇しても吸着材の温度上昇
が遅れるので、排気浄化触媒の活性化前に吸着材から未
燃成分が脱離することが抑制される。
In the present invention, since the adsorbent for adsorbing unburned components at a predetermined temperature or lower is provided on the inner wall of the portion having a large heat capacity of the exhaust passage, the temperature rise of the adsorbent is delayed even if the exhaust gas temperature rises. Unburned components are prevented from desorbing from the adsorbent before the exhaust purification catalyst is activated.

【0008】本件の第2発明の排気浄化装置は、内燃機
関の排気通路に設けられた排気浄化触媒と、該排気浄化
触媒の上流に所定温度以下で排気中の未燃成分を吸着
し、所定温度以上で吸着した未燃成分を脱離する吸着材
と、を備えた排気浄化装置において、前記吸着材を前記
排気通路の表面積が大きな部分の内壁に設けたことを特
徴とする。
An exhaust gas purifying apparatus according to a second aspect of the present invention is provided with an exhaust gas purifying catalyst provided in an exhaust passage of an internal combustion engine, and adsorbs unburned components in exhaust gas at a predetermined temperature or lower upstream of the exhaust gas purifying catalyst. An exhaust purification device comprising: an adsorbent that desorbs unburned components adsorbed at a temperature equal to or higher than a temperature, wherein the adsorbent is provided on an inner wall of a portion of the exhaust passage having a large surface area.

【0009】本件発明は、未燃成分を所定温度以下で吸
着する吸着材を、排気通路の表面積の大きな部分の内壁
に設けるので、排気温度が上昇しても吸着材の温度上昇
が遅れるので、排気浄化触媒の活性化前に吸着材から未
燃成分が脱離することが抑制される。また、相対的に吸
着材の表面積が大きくなるので未燃成分の吸着量を増加
することができる。
According to the present invention, since the adsorbent for adsorbing unburned components at a predetermined temperature or lower is provided on the inner wall of the exhaust passage having a large surface area, the temperature rise of the adsorbent is delayed even if the exhaust gas temperature rises. Unburned components are prevented from desorbing from the adsorbent before the exhaust purification catalyst is activated. In addition, since the surface area of the adsorbent becomes relatively large, the amount of adsorbed unburned components can be increased.

【0010】なお、本発明の排気通路の熱容量が大きな
部分または表面積が大きい部分とは、排気通路のフレキ
シブルパイプの内壁、内管と外管から構成される二重排
気管の内管の内壁及び排気通路が複数に分岐される分岐
部が例示される。
The portion of the exhaust passage having a large heat capacity or a large surface area according to the present invention includes the inner wall of the flexible pipe of the exhaust passage, the inner wall of the inner pipe of the double exhaust pipe comprising the inner pipe and the outer pipe, and A branch portion where the exhaust passage branches into a plurality is exemplified.

【0011】[0011]

【発明の実施の形態】以下、本発明にかかる排気浄化装
置の実施形態について図面に基づいて説明する。図1は
第1の実施形態であって、本発明を内燃機関の排気浄化
装置に適用したときの構成を示す概略構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of an exhaust emission control device according to the present invention will be described with reference to the drawings. FIG. 1 is a first embodiment and is a schematic configuration diagram showing a configuration when the present invention is applied to an exhaust gas purification device for an internal combustion engine.

【0012】内燃機関10はガソリンエンジンであっ
て、その上部側面に排気ポート12を有し、排気ポート
12から排出された排気は、排気ポート12に接続する
排気マニホールド14を経て、排気通路16に排出され
る。排気通路16は、上流通路18と下流通路20から
構成されており、下流通路20には排気浄化触媒として
の三元触媒22が設けられている。三元触媒22は排気
中の未燃燃料(HC)及び一酸化炭素(CO)を酸化す
ると共に窒素酸化物(NOx)を還元して浄化する。排
気マニホールド14には、排気ポート12から排出され
る排気の空燃比を検出するための空燃比センサ24が設
けられている。この空燃比センサの出力に基づいて内燃
機関10の排気が理論空燃比となるように燃料噴射量が
算出され、図示しない燃料噴射弁から噴射される。
The internal combustion engine 10 is a gasoline engine, and has an exhaust port 12 on an upper side surface thereof. Exhaust gas discharged from the exhaust port 12 passes through an exhaust manifold 14 connected to the exhaust port 12 to an exhaust passage 16. Is discharged. The exhaust passage 16 includes an upstream passage 18 and a downstream passage 20, and a three-way catalyst 22 as an exhaust purification catalyst is provided in the downstream passage 20. The three-way catalyst 22 oxidizes unburned fuel (HC) and carbon monoxide (CO) in the exhaust gas and reduces and purifies nitrogen oxides (NOx). The exhaust manifold 14 is provided with an air-fuel ratio sensor 24 for detecting an air-fuel ratio of exhaust gas discharged from the exhaust port 12. The fuel injection amount is calculated based on the output of the air-fuel ratio sensor so that the exhaust gas of the internal combustion engine 10 has the stoichiometric air-fuel ratio, and is injected from a fuel injection valve (not shown).

【0013】上流通路18は内管と外管から構成される
二重排気通路であり、下流通路20の上流には、排気通
路の軸方向の相対変位、軸方向の曲げ及び振動を抑制す
るフレキシブルパイプ26が設けられている。また、排
気マニホールド14と上流通路18はフランジ28で接
続され、上流通路と下流通路はフランジ30で接続され
ている。
The upstream passage 18 is a double exhaust passage composed of an inner pipe and an outer pipe, and is provided upstream of the downstream passage 20 with respect to the relative displacement, axial bending and vibration of the exhaust passage in the axial direction. A flexible pipe 26 is provided. Further, the exhaust manifold 14 and the upstream passage 18 are connected by a flange 28, and the upstream passage and the downstream passage are connected by a flange 30.

【0014】図2は下流通路のフレキシブルパイプ26
の主要部の拡大図である。フレキシブルパイプ26は上
流側の排気通路と下流側の排気通路とを接続する波状の
ベローズ28を備え、ベローズ28の外周を覆うように
アウタカバー30が設けら、ベローズ28及びアウタカ
バー30は排気通路に溶接して固定されている。また、
ベローズ28の内壁には排気通路の流れ方向に対して直
行方向に凸状の凸状内壁28aが形成されている。
FIG. 2 shows the flexible pipe 26 in the downstream passage.
It is an enlarged view of the principal part of. The flexible pipe 26 includes a wavy bellows 28 connecting the upstream exhaust passage and the downstream exhaust passage. An outer cover 30 is provided so as to cover the outer periphery of the bellows 28. The bellows 28 and the outer cover 30 are welded to the exhaust passage. It is fixed. Also,
A convex inner wall 28a is formed on the inner wall of the bellows 28 in a direction perpendicular to the flow direction of the exhaust passage.

【0015】本実施態様では吸着材としてのHC吸着材
32をベローズの内壁に所定の厚さでコーティングして
いる。また、ベローズ28の内壁の一部である凸状内壁
28aにもHC吸着材32がコーティングされている。
HC吸着材32は、ゼオライトを主成分とした材料から
構成されており、所定温度(例えば、100℃)以下で
あれば排気中の未燃燃料(HC)を吸着し、所定温度以
上になれば吸着されたHCを脱離する機能を有してい
る。なお、耐熱性を考慮すると、Si/Al比は500
以上が好ましい。また、細孔径の異なるゼオライトを用
いれば、吸着脱離のタイミングを幅広く設定することも
可能である。また、HC吸着材はコーティングの厚さを
厚くすれば吸着量が増加するが、好ましくは10μm〜
200μmの厚さが良い。
In this embodiment, the inner wall of the bellows is coated with an HC adsorbent 32 as an adsorbent with a predetermined thickness. Further, a convex inner wall 28a which is a part of the inner wall of the bellows 28 is also coated with the HC adsorbent 32.
The HC adsorbent 32 is made of a material containing zeolite as a main component. The HC adsorbent 32 adsorbs unburned fuel (HC) in exhaust gas when the temperature is equal to or lower than a predetermined temperature (for example, 100 ° C.). It has a function of desorbing the adsorbed HC. In consideration of heat resistance, the Si / Al ratio is 500
The above is preferred. When zeolites having different pore diameters are used, the timing of adsorption and desorption can be set widely. Also, the adsorption amount of the HC adsorbent increases when the thickness of the coating is increased.
A thickness of 200 μm is good.

【0016】次に本実施形態の作用を図2に基づいて説
明する。内燃機関10が冷間始動の場合、始動(t=
0)から第1の時間(t=t1)までの時間領域(I)
では、内燃機関は暖機運転としての燃料増量が実行され
る。このとき、排気ポート12からは未燃燃料(HC)
を多く含む排気が排出され、この排気はHC吸着材32
を備える下流通路20に流入する。HC吸着材32の温
度が所定温度以下であれば、排気中の未燃燃料(HC)
をHC吸着材32で一時的に吸着し、下流通路20を出
た排気は三元触媒22を通過する。時間領域(I)では
三元触媒22が活性化温度に達していないが、未燃燃料
はHC吸着材32で吸着されているので、大気への放出
が抑制されている。
Next, the operation of this embodiment will be described with reference to FIG. When the internal combustion engine 10 is cold started, the start (t =
Time domain (I) from 0) to the first time (t = t1)
In the internal combustion engine, the fuel increase is performed as a warm-up operation. At this time, unburned fuel (HC) is discharged from the exhaust port 12.
Is exhausted, and this exhaust is exhausted by the HC adsorbent 32.
Flows into the downstream passage 20 having If the temperature of the HC adsorbent 32 is equal to or lower than a predetermined temperature, the unburned fuel (HC) in the exhaust gas
Is temporarily adsorbed by the HC adsorbent 32, and the exhaust gas flowing out of the downstream passage 20 passes through the three-way catalyst 22. In the time region (I), the three-way catalyst 22 has not reached the activation temperature, but since the unburned fuel is adsorbed by the HC adsorbent 32, the release to the atmosphere is suppressed.

【0017】時間領域(I)では、排気温度が次第に上
昇するが、下流通路20のHC吸着材32は熱容量の大
きな排気通路の内壁に設けられているので、下流側の三
元触媒22の温度上昇より緩やかに昇温する。一方、三
元触媒22は排気通路の断面積全体に触媒が配置されて
いるので、排気と直接衝突する結果、熱を受けやすく、
HC吸着材32の下流であっても昇温が早い。そして、
第1の時間(t=t1)になると、三元触媒32は活性
化温度(例えば300℃)に達し、排気中のHC,C
O、NOxを浄化する状態になる。このときHC吸着材
32は、脱離温度にまで昇温されていないので、HCの
吸着を継続する。
In the time region (I), the exhaust gas temperature gradually increases. However, since the HC adsorbent 32 in the downstream passage 20 is provided on the inner wall of the exhaust passage having a large heat capacity, the temperature of the three-way catalyst 22 on the downstream side is reduced. Temperature rises more slowly than rises. On the other hand, since the three-way catalyst 22 has the catalyst disposed over the entire cross-sectional area of the exhaust passage, the three-way catalyst 22 directly collides with the exhaust gas, and thus easily receives heat.
The temperature rises quickly even downstream of the HC adsorbent 32. And
At the first time (t = t1), the three-way catalyst 32 reaches the activation temperature (for example, 300 ° C.), and the HC, C
O and NOx are purified. At this time, since the HC adsorbent 32 has not been heated to the desorption temperature, it continues to adsorb HC.

【0018】第1の時間(t=t1)から第2の時間
(t=t2)までの時間領域(II)では、HC吸着材3
2及び三元触媒22の温度が上昇する。そして、第2の
時間(t=t2)以降の時間領域(III)では、HC吸
着材の温度が脱離温度に達して、HC吸着材32に吸着
されていたHCが脱離する。脱離したHCは排気に混じ
って下流の三元触媒22に流入する。このとき、三元触
媒22は既に活性温度に達しているので、排気中のHC
は三元触媒22で浄化される。
In the time region (II) from the first time (t = t1) to the second time (t = t2), the HC adsorbent 3
The temperature of the two and three way catalysts 22 rises. Then, in the time region (III) after the second time (t = t2), the temperature of the HC adsorbent reaches the desorption temperature, and the HC adsorbed by the HC adsorbent 32 is desorbed. The desorbed HC flows into the downstream three-way catalyst 22 together with the exhaust gas. At this time, since the three-way catalyst 22 has already reached the activation temperature, the HC
Is purified by the three-way catalyst 22.

【0019】このように本実施形態では、排気通路の熱
容量が従来のストレートな一重排気通路よりも大きいベ
ローズ28の内壁にHC吸着材32を設けるので、HC
吸着材の温度上昇が抑制される効果がある。従って、下
流の三元触媒22の活性前にHC吸着材32が脱離温度
に達しないので、HCの排気エミッションを抑制でき
る。また、ベローズ28の内壁にHC吸着材32を設け
るので、排気通路の通路断面積全体にHC吸着材を設け
る従来のHC吸着材に比べ排気抵抗を抑制することがで
き、エンジンの動力性能が向上する。
As described above, in the present embodiment, the HC adsorbent 32 is provided on the inner wall of the bellows 28 having a heat capacity of the exhaust passage larger than that of the conventional straight single exhaust passage.
There is an effect that the temperature rise of the adsorbent is suppressed. Therefore, since the HC adsorbent 32 does not reach the desorption temperature before the activation of the downstream three-way catalyst 22, the HC exhaust emission can be suppressed. Further, since the HC adsorbent 32 is provided on the inner wall of the bellows 28, the exhaust resistance can be suppressed as compared with the conventional HC adsorbent in which the HC adsorbent is provided over the entire cross-sectional area of the exhaust passage, and the power performance of the engine is improved. I do.

【0020】更に従来のようにストレートな一重排気通
路の内壁にHC吸着材を設けた場合、HC吸着材と排気
中の未燃燃料(HC)が接触する面積が少ないので、H
Cの吸着量が少なくなるという問題がある。本件はベロ
ーズ28のように排気通路内で相対的に表面積が大きな
部分にHC吸着材32をコーティングしているので、H
Cの吸着量を増加する効果を有する。
Further, when an HC adsorbent is provided on the inner wall of a straight single exhaust passage as in the prior art, the area of contact between the HC adsorbent and the unburned fuel (HC) in the exhaust gas is small.
There is a problem that the adsorption amount of C decreases. In this case, the portion having a relatively large surface area in the exhaust passage, such as the bellows 28, is coated with the HC adsorbent 32.
This has the effect of increasing the amount of C adsorbed.

【0021】次に第2の実施形態について第4図に基づ
いて説明する。図4(a)は排気通路の下流通路20の
断面図であり、図4(b)はb−b線の断面図である。
本実施形態の下流通路20の内壁は、第1の実施形態の
フレキシブルパイプ26の代わりに波状の波板40が配
置されている。波板40はメタル箔(Fe−20Cr−
5Al)からなり、下流通路20の内壁に溶接にて固定
されている。本実施形態では排気が流れる波板40の内
側表面にはHC吸着材32がコーティングされている。
本実施態様ではHC吸着材32は波板40に対して均一
の厚さでコーティングされているが、他の実施態様とし
て、波板40の山に相当する部分ではHC吸着材32の
厚さを厚くして、HCの吸着量を増加させても良い。な
お、波板40の厚さは例えば100μm〜500μmの
範囲である。
Next, a second embodiment will be described with reference to FIG. FIG. 4A is a cross-sectional view of the downstream passage 20 of the exhaust passage, and FIG. 4B is a cross-sectional view taken along line bb.
On the inner wall of the downstream passage 20 of the present embodiment, a corrugated corrugated plate 40 is arranged instead of the flexible pipe 26 of the first embodiment. The corrugated sheet 40 is made of metal foil (Fe-20Cr-
5Al) and is fixed to the inner wall of the downstream passage 20 by welding. In the present embodiment, the inner surface of the corrugated plate 40 through which the exhaust gas flows is coated with the HC adsorbent 32.
In this embodiment, the HC adsorbent 32 is coated on the corrugated plate 40 with a uniform thickness. However, as another embodiment, the thickness of the HC adsorbent 32 is reduced in a portion corresponding to the peak of the corrugated plate 40. By increasing the thickness, the amount of adsorption of HC may be increased. Note that the thickness of the corrugated plate 40 is, for example, in the range of 100 μm to 500 μm.

【0022】このような構成におけるHC吸着材32の
吸着、脱離の作用は前述した実施形態と同様であるので
説明を省略する。本実施形態では下流通路20の内壁に
波板40を設け、波板40の表面にHC吸着材32をコ
ーティングしたので、HC吸着材32の表面積を大きく
することができ、HCの吸着量が多くなる。また、波板
40はHC吸着材32の温度上昇を抑制するため波板の
箔の厚さを適宜変更しても良い。また、波板40の箔の
材料組成を変更することで、熱伝導性を変更して、HC
吸着材32の温度上昇を抑制しても良い。
The operation of adsorbing and desorbing the HC adsorbent 32 in such a configuration is the same as that of the above-described embodiment, and the description is omitted. In the present embodiment, since the corrugated plate 40 is provided on the inner wall of the downstream passage 20 and the surface of the corrugated plate 40 is coated with the HC adsorbent 32, the surface area of the HC adsorbent 32 can be increased, and the amount of adsorbed HC is large. Become. In addition, the thickness of the corrugated sheet of the corrugated sheet 40 may be appropriately changed in order to suppress the temperature rise of the HC adsorbent 32. Also, by changing the material composition of the foil of the corrugated sheet 40, the thermal conductivity is changed,
The temperature rise of the adsorbent 32 may be suppressed.

【0023】次に第3の実施形態を図5に基づいて説明
する。図5は図4(b)の断面図を拡大したものに相当
する。前述の第2の実施形態は波板40の内側表面にH
C吸着材をコーティングしたのに対し、本実施形態は、
波板の内側表面及び外側表面の両方にHC吸着材をコー
ティングしたものである。また、排気ポート12から上
流通路18を介して流入する排気は、下流通路20の主
排気通路42を流れると共に、下流通路20の内壁と波
板40の間の副排気通路44にも排気を流すように排気
を誘導している。
Next, a third embodiment will be described with reference to FIG. FIG. 5 corresponds to an enlarged cross-sectional view of FIG. In the second embodiment described above, the inner surface of the corrugated sheet 40 has H
In contrast to coating the C adsorbent,
The inner surface and the outer surface of the corrugated sheet are coated with the HC adsorbent. Exhaust gas flowing from the exhaust port 12 through the upstream passage 18 flows through the main exhaust passage 42 of the downstream passage 20 and also exhausts to the sub-exhaust passage 44 between the inner wall of the downstream passage 20 and the corrugated plate 40. Exhaust is induced to flow.

【0024】このように波板40の両表面にHC吸着材
32をコーティングし、主排気通路42及び副排気通路
44に排気を流すので、HCの吸着量を多くすることが
できる。また、波板40は熱容量が大きいので、HC吸
着材の温度上昇を抑制することができる。なお、作用は
前述の第1の実施形態に類似しているので説明を省略す
る。
As described above, since the HC adsorbent 32 is coated on both surfaces of the corrugated plate 40 and the exhaust gas flows through the main exhaust passage 42 and the sub exhaust passage 44, the amount of adsorbed HC can be increased. Further, since the corrugated plate 40 has a large heat capacity, the temperature rise of the HC adsorbent can be suppressed. The operation is similar to that of the above-described first embodiment, and the description is omitted.

【0025】次に第4の実施形態を図6に基づいて説明
する。本実施態様の下流通路20は、第1の実施形態の
フレキシブルパイプ26の代わりに下流通路20の途中
で第1分岐通路60と第2分岐通路62の二つに分岐
し、下流で再び合流する。HC吸着材32は、前述の実
施形態と同様に通路の内壁にコーティングされている。
なお、分岐通路の上流先端部64は直接、流入する排気
が衝突するため、温度上昇が早い部位である。従って、
本実施態様では上流先端部にはHC吸着材32はコーテ
ィングされていない。
Next, a fourth embodiment will be described with reference to FIG. The downstream passage 20 of the present embodiment branches into two of a first branch passage 60 and a second branch passage 62 in the middle of the downstream passage 20 instead of the flexible pipe 26 of the first embodiment, and merges again downstream. . The HC adsorbent 32 is coated on the inner wall of the passage as in the above-described embodiment.
The upstream end portion 64 of the branch passage is a portion where the temperature rises quickly because the inflowing exhaust gas collides directly. Therefore,
In this embodiment, the upstream end is not coated with the HC adsorbent 32.

【0026】次に第4の実施形態の作用について、前述
の第1の実施形態と異なる作用について説明する。冷間
始動時は、内燃機関10の排気ポート12から排出され
た排気は排気マニホールド14を経て、下流通路20に
流入する。排気は上流先端部64に衝突して、第1分岐
通路60と第2分岐通路62に分けられる。このとき、
HC吸着材32は所定の脱離温度より低い状態であれ
ば、排気中の未燃燃料(HC)を吸着する。本実施態様
では、第1分岐通路60及び第2分岐通路62の両方の
内壁にHC吸着材32が設けられているので、排気とH
Cが接触する面積が大きくなるのでHCの吸着量が向上
する。
Next, the operation of the fourth embodiment, which is different from that of the first embodiment, will be described. During a cold start, the exhaust gas discharged from the exhaust port 12 of the internal combustion engine 10 flows into the downstream passage 20 via the exhaust manifold 14. The exhaust collides with the upstream end portion 64 and is divided into the first branch passage 60 and the second branch passage 62. At this time,
If the HC adsorbent 32 is in a state lower than a predetermined desorption temperature, it adsorbs unburned fuel (HC) in the exhaust gas. In the present embodiment, since the HC adsorbent 32 is provided on the inner walls of both the first branch passage 60 and the second branch passage 62, the exhaust gas and the H
Since the area where C contacts is increased, the amount of adsorption of HC is improved.

【0027】そして、排気温度の上昇に伴い、HC吸着
材32及び下流の三元触媒22の温度が上昇する。三元
触媒22は排気に排気通路内において直接排気と衝突す
る結果、活性化温度へ急速に昇温する。一方、HC吸着
材32は排気通路内壁に設けれるので、直接衝突する排
気は三元触媒22に比べ少ない。また、下流通路20自
体が分岐しており、通常のストレートな排気通路に比
べ、全体として熱容量が大きくなっている。従って、H
C吸着材32の温度上昇が三元触媒22に比べて低い。
この結果、HC吸着材32は三元触媒22の活性化後に
脱離温度に達するので、吸着されたHCは三元触媒22
で浄化される。
Then, as the exhaust gas temperature rises, the temperatures of the HC adsorbent 32 and the downstream three-way catalyst 22 rise. As a result of the three-way catalyst 22 colliding with the exhaust gas directly in the exhaust passage, the temperature of the three-way catalyst 22 rapidly rises to the activation temperature. On the other hand, since the HC adsorbent 32 is provided on the inner wall of the exhaust passage, the amount of directly colliding exhaust gas is smaller than that of the three-way catalyst 22. Further, the downstream passage 20 itself is branched, and the heat capacity as a whole is larger than that of a normal straight exhaust passage. Therefore, H
The temperature rise of the C adsorbent 32 is lower than that of the three-way catalyst 22.
As a result, the HC adsorbent 32 reaches the desorption temperature after the activation of the three-way catalyst 22, so that the adsorbed HC becomes
Purified by.

【0028】次に第5の実施形態を図7に基づいて説明
する。下流通路20は、第1の実施形態のフレキシブル
パイプ26の代わりに内管70と外管72からなる二重
排気管であって、内管70は外管72の下流方向に挿入
されている。内管の下流端部74は閉じており、内管7
0の管壁には外管内へ排気を排出するための複数の貫通
孔76を備えている。貫通孔76は外管72の内部に排
気が均一に広がるように孔が開けられている。外管72
の内壁にはHC吸着材32がコーティングされている。
Next, a fifth embodiment will be described with reference to FIG. The downstream passage 20 is a double exhaust pipe including an inner pipe 70 and an outer pipe 72 instead of the flexible pipe 26 of the first embodiment, and the inner pipe 70 is inserted downstream of the outer pipe 72. The downstream end 74 of the inner pipe is closed and the inner pipe 7 is closed.
The 0 tube wall is provided with a plurality of through holes 76 for discharging exhaust gas into the outer tube. The through hole 76 is provided so that the exhaust gas can be uniformly spread inside the outer tube 72. Outer tube 72
Is coated with an HC adsorbent 32.

【0029】次に第5の実施形態の作用について、前述
の第1の実施形態と異なる作用について説明する。冷間
始動時は、内燃機関10の排気ポート12から排出され
た排気は排気マニホールド14を経て、下流通路20に
流入する。排気は内管70の各貫通孔76から外管72
の内部に放射状に排出され、外管72の内部で均一に拡
散する。このとき、外管72の内壁に設けられたHC吸
着材32が所定の脱離温度より低い状態であれば、貫通
孔76から排出された排気中の未燃燃料(HC)を吸着
する。しかも排気が外管72内で十分に拡散されている
ので、排気中のHCとの接触面積が大きくなり、HCの
吸着量も増加する。
Next, the operation of the fifth embodiment different from that of the first embodiment will be described. During a cold start, the exhaust gas discharged from the exhaust port 12 of the internal combustion engine 10 flows into the downstream passage 20 via the exhaust manifold 14. Exhaust gas passes through each through hole 76 of the inner pipe 70 through the outer pipe 72.
Is radially discharged into the inside of the outer tube 72 and uniformly diffuses inside the outer tube 72. At this time, if the HC adsorbent 32 provided on the inner wall of the outer pipe 72 is in a state lower than a predetermined desorption temperature, it adsorbs unburned fuel (HC) in the exhaust gas discharged from the through hole 76. In addition, since the exhaust gas is sufficiently diffused in the outer tube 72, the contact area with the HC in the exhaust gas increases, and the amount of adsorbed HC also increases.

【0030】そして、排気温度の上昇に伴い、HC吸着
材32及び下流の三元触媒22の温度が上昇する。この
とき、三元触媒22は急速に活性化温度に昇温するが、
下流通路20のHC吸着材32は内管70と外管72の
二重管構造であるので、熱容量が大きい。従って、排気
熱を受けても温度上昇が抑制されるので、下流の三元触
媒22よりもHC吸着材32の昇温は緩やかとなる。こ
の結果、HC吸着材32は三元触媒22の活性化後に脱
離温度に達するので、吸着されたHCは三元触媒22で
浄化される。
Then, as the exhaust gas temperature rises, the temperatures of the HC adsorbent 32 and the downstream three-way catalyst 22 rise. At this time, the three-way catalyst 22 rapidly rises to the activation temperature,
Since the HC adsorbent 32 in the downstream passage 20 has a double pipe structure of the inner pipe 70 and the outer pipe 72, it has a large heat capacity. Therefore, the temperature rise is suppressed even when the exhaust heat is received, so that the temperature rise of the HC adsorbent 32 becomes slower than that of the downstream three-way catalyst 22. As a result, the HC adsorbent 32 reaches the desorption temperature after the activation of the three-way catalyst 22, so that the adsorbed HC is purified by the three-way catalyst 22.

【0031】次に第6の実施形態を図8に基づいて説明
する。本実施形態の下流通路20は、第1の実施形態の
フレキシブルパイプ26の代わりにストレートな一重の
排気通路であるが、熱容量を大きくするため排気管の管
壁を厚くしたものである。この管壁はステンレス鋼(S
US)からなり、その厚さは例えば1mm〜2mmの範
囲である。下流通路20の内壁にはHC吸着材32が均
一の厚さでコーティングされている。また、下流通路2
0には三角柱の形状の排気整流板80が複数設けられて
おり、各整流板80は互いに通路の軸の回転方向に90
°位相をずらして設けられている。この整流板80は通
路内で均一に拡散するように設けられている。
Next, a sixth embodiment will be described with reference to FIG. The downstream passage 20 of this embodiment is a straight single exhaust passage instead of the flexible pipe 26 of the first embodiment, but has a thick exhaust pipe wall in order to increase the heat capacity. This pipe wall is made of stainless steel (S
US), the thickness of which ranges, for example, from 1 mm to 2 mm. The inner wall of the downstream passage 20 is coated with an HC adsorbent 32 with a uniform thickness. In addition, downstream passage 2
A plurality of exhaust gas rectifying plates 80 each having a triangular prism shape are provided at 0.
° The phases are shifted. The current plate 80 is provided so as to be uniformly diffused in the passage.

【0032】次に第6の実施形態の作用について、前述
の第1の実施形態と異なる作用について説明する。冷間
始動時は、内燃機関10の排気ポート12から排出され
た排気は排気マニホールド14を経て、下流通路20に
流入する。排気は整流板80により通路内部で均一に拡
散する。このとき、内壁に設けられたHC吸着材32が
所定の脱離温度より低い状態であれば、排気中の未燃燃
料(HC)を吸着する。
Next, the operation of the sixth embodiment different from that of the first embodiment will be described. During a cold start, the exhaust gas discharged from the exhaust port 12 of the internal combustion engine 10 flows into the downstream passage 20 via the exhaust manifold 14. The exhaust gas is uniformly diffused inside the passage by the flow regulating plate 80. At this time, if the HC adsorbent 32 provided on the inner wall is in a state lower than a predetermined desorption temperature, unburned fuel (HC) in the exhaust gas is adsorbed.

【0033】そして、排気温度の上昇に伴い、HC吸着
材32及び下流の三元触媒22の温度が上昇する。この
とき、三元触媒22は急速に活性化温度に昇温するが、
下流通路20のHC吸着材32は下流通路20の管壁が
厚いので、熱容量が大きい。従って、排気熱を受けても
温度上昇が抑制されるので、下流の三元触媒22よりも
HC吸着材32の昇温は緩やかとなる。この結果、HC
吸着材32は三元触媒22の活性化後に脱離温度に達す
るので、吸着されたHCは三元触媒22で浄化される。
Then, as the exhaust gas temperature rises, the temperatures of the HC adsorbent 32 and the downstream three-way catalyst 22 rise. At this time, the three-way catalyst 22 rapidly rises to the activation temperature,
The HC adsorbent 32 in the downstream passage 20 has a large heat capacity because the pipe wall of the downstream passage 20 is thick. Therefore, the temperature rise is suppressed even when the exhaust heat is received, so that the temperature rise of the HC adsorbent 32 becomes slower than that of the downstream three-way catalyst 22. As a result, HC
Since the adsorbent 32 reaches the desorption temperature after the activation of the three-way catalyst 22, the adsorbed HC is purified by the three-way catalyst 22.

【0034】上記各実施形態でフレキシブルパイプ、二
重排気管、分岐通路、波板を備えた排気通路にHC吸着
材をコーティングすること構成したが、これに限定され
ない。この他に、例えば、上流通路と下流通路の接続部
であるフランジ30近傍に設けて良いし、上記種々の排
気通路の部分を組み合わせてHC吸着材をコーティング
してもよい。
In each of the above embodiments, the flexible pipe, the double exhaust pipe, the branch passage, and the exhaust passage provided with the corrugated plate are coated with the HC adsorbent. However, the present invention is not limited to this. In addition, for example, it may be provided in the vicinity of the flange 30 which is a connection portion between the upstream passage and the downstream passage, or may be coated with the HC adsorbent by combining the above various exhaust passage portions.

【0035】[0035]

【発明の効果】本件の発明にかかる排気浄化装置によれ
ば、排気通路の内壁にHC吸着材を設ける際に、排気通
路の熱容量が大きな部分の内壁に設けるので、排気浄化
触媒の活性化前に吸着材が脱離温度に上昇することが抑
えられる。従って、脱離した未燃成分は活性化した排気
浄化触媒で浄化されるので、排気エミッションの悪化が
抑制される。
According to the exhaust purifying apparatus of the present invention, when the HC adsorbent is provided on the inner wall of the exhaust passage, the HC adsorbent is provided on the inner wall of the portion where the heat capacity of the exhaust passage is large. The rise of the adsorbent to the desorption temperature is suppressed. Therefore, since the desorbed unburned components are purified by the activated exhaust purification catalyst, deterioration of exhaust emissions is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる排気浄化装置の第1の実施形態
の概略を示す図
FIG. 1 is a view schematically showing an exhaust gas purifying apparatus according to a first embodiment of the present invention.

【図2】吸着材を設けた排気通路の全体構造を示す図FIG. 2 is a diagram showing the overall structure of an exhaust passage provided with an adsorbent;

【図3】本発明の第1の実施形態の温度変化を説明する
FIG. 3 is a diagram illustrating a temperature change according to the first embodiment of the present invention.

【図4】本発明にかかる排気浄化装置の第2の実施形態
を説明する図
FIG. 4 is a view for explaining a second embodiment of the exhaust gas purification apparatus according to the present invention.

【図5】本発明にかかる排気浄化装置の第3の実施形態
を説明する図
FIG. 5 is a diagram illustrating a third embodiment of the exhaust gas purification apparatus according to the present invention.

【図6】本発明にかかる排気浄化装置の第4の実施形態
を説明する図
FIG. 6 is a diagram illustrating a fourth embodiment of the exhaust gas purification apparatus according to the present invention.

【図7】本発明にかかる排気浄化装置の第5の実施形態
を説明する図
FIG. 7 is a view for explaining a fifth embodiment of the exhaust gas purification apparatus according to the present invention.

【図8】本発明にかかる排気浄化装置の第6の実施形態
を説明する図
FIG. 8 is a diagram for explaining a sixth embodiment of the exhaust gas purification apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

10・・内燃機関 12・・排気ポート 14・・排気マニホールド 18・・上流通路 20・・下流通路 22・・三元触媒 26・・フレキシブルパイプ 28・・ベローズ 32・・HC吸着材 40・・波板 60・・第1分岐通路 62・・第2分岐通路 70・・内管 72・・外管 76・・貫通孔 80・・整流板 10. Internal combustion engine 12 Exhaust port 14 Exhaust manifold 18 Upstream passage 20 Downstream passage 22 Three-way catalyst 26 Flexible pipe 28 Bellows 32 HC adsorbent 40 Corrugated plate 60 First branch passage 62 Second branch passage 70 Inner tube 72 Outer tube 76 Through hole 80 Rectifier plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 7/08 ZAB F01N 7/08 ZABA ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 7/08 ZAB F01N 7/08 ZABA

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に設けられた排気浄
化触媒と、該排気浄化触媒の上流に所定温度以下で排気
中の未燃成分を吸着し、所定温度以上で吸着した未燃成
分を脱離する吸着材と、を備えた排気浄化装置におい
て、前記吸着材を前記排気通路の熱容量が大きな部分の
内壁に設けたことを特徴とする排気浄化装置。
An exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, adsorbs unburned components in exhaust at a predetermined temperature or less upstream of the exhaust purification catalyst, and removes unburned components adsorbed at a predetermined temperature or more. An exhaust purification device comprising: an adsorbent that is desorbed; and wherein the adsorbent is provided on an inner wall of a portion of the exhaust passage having a large heat capacity.
【請求項2】 内燃機関の排気通路に設けられた排気浄
化触媒と、該排気浄化触媒の上流に所定温度以下で排気
中の未燃成分を吸着し、所定温度以上で吸着した未燃成
分を脱離する吸着材と、を備えた排気浄化装置におい
て、前記吸着材を前記排気通路の表面積が大きな部分の
内壁に設けたことを特徴とする排気浄化装置。
2. An exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, and an unburned component adsorbed at a predetermined temperature or lower upstream of the exhaust purification catalyst and adsorbed at a predetermined temperature or higher. An exhaust purification device comprising: an adsorbent that is desorbed; wherein the adsorbent is provided on an inner wall of a portion of the exhaust passage having a large surface area.
【請求項3】 前記排気通路の熱容量が大きな部分が排
気通路のフレキシブルパイプであることを特徴とする請
求項1または2記載の排気浄化装置。
3. The exhaust gas purification apparatus according to claim 1, wherein a portion of the exhaust passage having a large heat capacity is a flexible pipe of the exhaust passage.
【請求項4】 前記排気通路の熱容量が大きな部分が内
管と外管から構成される二重排気管であることを特徴と
する請求項1または2記載の排気浄化装置。
4. The exhaust gas purification apparatus according to claim 1, wherein a portion of the exhaust passage having a large heat capacity is a double exhaust pipe including an inner pipe and an outer pipe.
【請求項5】 前記排気通路の熱容量が大きな部位が排
気通路が複数に分岐される分岐部であることを特徴とす
る請求項1または2記載の排気浄化装置。
5. The exhaust gas purifying apparatus according to claim 1, wherein a portion of the exhaust passage having a large heat capacity is a branch portion where the exhaust passage is branched into a plurality.
JP14484798A 1998-05-26 1998-05-26 Exhaust emission control device Pending JPH11336533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14484798A JPH11336533A (en) 1998-05-26 1998-05-26 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14484798A JPH11336533A (en) 1998-05-26 1998-05-26 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JPH11336533A true JPH11336533A (en) 1999-12-07

Family

ID=15371814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14484798A Pending JPH11336533A (en) 1998-05-26 1998-05-26 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JPH11336533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327454A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Exhaust system of internal combustion engine
DE102011088041A1 (en) * 2011-12-08 2013-06-13 Witzenmann Gmbh Flexible duct element for use in exhaust system of diesel engine of motor car, has flexible hollow body for conveying effluent stream, where parts of element are comprised of and/or partially coated with catalytic active material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327454A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Exhaust system of internal combustion engine
DE102011088041A1 (en) * 2011-12-08 2013-06-13 Witzenmann Gmbh Flexible duct element for use in exhaust system of diesel engine of motor car, has flexible hollow body for conveying effluent stream, where parts of element are comprised of and/or partially coated with catalytic active material

Similar Documents

Publication Publication Date Title
US5315824A (en) Cold HC adsorption and removal apparatus for an internal combustion engine
EP0953738B1 (en) Exhaust emission control system of internal combustion engine
JP2005299631A (en) Automobile exhaust emission control system
US20040083716A1 (en) Method of treating gasoline exhaust gases
EP3699408A1 (en) Exhaust gas purification system for vehicle and method of controlling the same
JP3518338B2 (en) Exhaust gas purification device for internal combustion engine
JPH1182000A (en) Exhaust gas purifying device in internal combustion engine
JP2855986B2 (en) Exhaust gas purification device
JP2001173437A (en) Exhaust emission control device for internal combustion engine
JP3716738B2 (en) Exhaust gas purification device for internal combustion engine
JP3779828B2 (en) Exhaust gas purification device for internal combustion engine
JP2008175136A (en) Exhaust emission control system
JP2000045751A (en) Exhaust emission control device for internal combustion engine
KR100523620B1 (en) Exhaust emission control device for engine
US6656435B1 (en) Honeycomb body with adsorber material, in particular, for a hydrocarbon trap
JPH0693845A (en) Exhaust emission control device for engine
JPH11336533A (en) Exhaust emission control device
JP4273797B2 (en) Exhaust gas purification device for internal combustion engine
JP3587670B2 (en) Exhaust gas purification equipment for automobiles
JP4501306B2 (en) Exhaust gas purification device for internal combustion engine
US6840984B2 (en) Device for adsorbing at least one component of an exhaust gas
JP3402132B2 (en) Engine exhaust purification device
JP2002138825A (en) Exhaust emission control device for internal combustion engine
JPH0742539A (en) Exhaust emission control device
JP4410976B2 (en) Exhaust purification device