JP2007327454A - Exhaust system of internal combustion engine - Google Patents

Exhaust system of internal combustion engine Download PDF

Info

Publication number
JP2007327454A
JP2007327454A JP2006160651A JP2006160651A JP2007327454A JP 2007327454 A JP2007327454 A JP 2007327454A JP 2006160651 A JP2006160651 A JP 2006160651A JP 2006160651 A JP2006160651 A JP 2006160651A JP 2007327454 A JP2007327454 A JP 2007327454A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
ratio sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006160651A
Other languages
Japanese (ja)
Other versions
JP4816268B2 (en
Inventor
Koichi Hoshi
幸一 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006160651A priority Critical patent/JP4816268B2/en
Publication of JP2007327454A publication Critical patent/JP2007327454A/en
Application granted granted Critical
Publication of JP4816268B2 publication Critical patent/JP4816268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Silencers (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for making both compatible in restraint of damage by flooding of an air-fuel ratio sensor and an early improvement in the purification ratio of exhaust emission, by raising the temperature of the air-fuel ratio sensor in the optimal timing in response to an attitude of a vehicle, when starting an internal combustion engine in a cold state. <P>SOLUTION: When starting the internal combustion engine in the cold state (S101 and S102), a forward inclination of the vehicle is detected (S103), and delay time Δt for starting heating of the air-fuel ratio sensor is derived in response to the detected forward inclination of the vehicle (S104). Starting of current-carrying to a heater of the air-fuel ratio sensor is delayed based on its delay time Δt (S105). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気システムに関し、特に加熱により昇温した状態で前記内燃機関の排気の空燃比を取得可能となる空燃比センサを備えた排気システムに関する。   The present invention relates to an exhaust system of an internal combustion engine, and more particularly to an exhaust system including an air-fuel ratio sensor that can acquire the air-fuel ratio of the exhaust of the internal combustion engine in a state where the temperature is raised by heating.

従来、内燃機関においては、排気管路内に空燃比センサ(酸素濃度センサを含む)を設けて、排気の空燃比を検出することにより、空燃比フィードバック制御などを行っている。この空燃比フィードバック制御により排気の空燃比を最適化し、これにより排気浄化触媒の浄化性能が適正に維持される。   Conventionally, in an internal combustion engine, an air-fuel ratio sensor (including an oxygen concentration sensor) is provided in an exhaust pipe and air-fuel ratio feedback control is performed by detecting the air-fuel ratio of exhaust gas. By this air-fuel ratio feedback control, the air-fuel ratio of the exhaust is optimized, and thereby the purification performance of the exhaust purification catalyst is properly maintained.

空燃比センサに備わったセンサ素子は、一般に、活性化温度以上に加熱された状態で空燃比の測定が可能となる。従って、空燃比センサにはセンサ素子加熱用のセンサヒータが配設されることが多い。   In general, the sensor element provided in the air-fuel ratio sensor can measure the air-fuel ratio in a state of being heated to an activation temperature or higher. Accordingly, the air-fuel ratio sensor is often provided with a sensor heater for heating the sensor element.

ところで、内燃機関の冷間始動時においては、前回の機関停止後に排気管路内の排気ガスが冷却され、また始動後に機関から排出される排気ガスが低温の排気管路壁面に触れることにより冷却されて凝縮水が発生し、この凝縮水が排気管路内に溜まる場合があった。そして、この凝縮水が加熱により高温となった空燃比センサにかかると、熱衝撃により該空燃比センサが破損する場合があった。   By the way, at the time of cold start of the internal combustion engine, the exhaust gas in the exhaust pipe is cooled after the previous engine stop, and the exhaust gas discharged from the engine after the start is cooled by touching the wall surface of the low temperature exhaust pipe. As a result, condensed water is generated, and this condensed water sometimes accumulates in the exhaust pipe. When the condensed water is applied to the air-fuel ratio sensor that has been heated to a high temperature, the air-fuel ratio sensor may be damaged due to thermal shock.

上記の問題点に対して、内燃機関の排気管路の温度を内燃機関への吸入空気量から推定し、推定した排気管路の温度が凝縮水が発生しない所定の温度に達することを条件に、ヒータ付き酸素センサのヒータに通電する技術などが提案されている(特許文献1参照。)。   To solve the above problem, the temperature of the exhaust pipe of the internal combustion engine is estimated from the amount of intake air to the internal combustion engine, and the estimated temperature of the exhaust pipe reaches a predetermined temperature at which no condensed water is generated. A technique for energizing a heater of an oxygen sensor with a heater has been proposed (see Patent Document 1).

しかし、上記技術においては、車両の姿勢によっては、始動時に既に排気管路に溜まっている凝縮水を除去しづらく、空燃比センサの昇温時にまでに凝縮水を完全に除去できない場合があった。その結果、空燃比センサの被水による破損を完全に防止できないおそれがあった。一方、車両が凝縮水の溜まりづらい姿勢で停車していた場合には、排気管路内に凝縮水が溜まっていないにも拘らず、空燃比センサの昇温を遅らせてしまうおそれがあった。その結果、始動直後における排気エミッションの浄化率の向上の妨げになる場合があった。
特開平8−15213号公報 特開2004−257261号公報
However, in the above technique, depending on the attitude of the vehicle, it may be difficult to remove the condensed water that has already accumulated in the exhaust pipe at the time of starting, and the condensed water may not be completely removed by the time the temperature of the air-fuel ratio sensor rises. . As a result, the air-fuel ratio sensor may not be completely prevented from being damaged by water. On the other hand, when the vehicle is stopped in a posture in which the condensed water is difficult to accumulate, there is a possibility that the temperature rise of the air-fuel ratio sensor may be delayed although the condensed water does not accumulate in the exhaust pipe. As a result, there is a case where the improvement of the exhaust emission purification rate immediately after the start is hindered.
JP-A-8-15213 JP 2004-257261 A

本発明は、上記従来技術に鑑みてなされたものであり、その目的とするところは、内燃機関の冷間始動時において、車両の姿勢に応じて空燃比センサを最適なタイミングで昇温させ、空燃比センサの被水による破損の抑制と、排気エミッションの浄化率の早期の向上とを両立させる技術を提供することである。   The present invention has been made in view of the above prior art, and its object is to raise the temperature of the air-fuel ratio sensor at an optimal timing according to the attitude of the vehicle at the time of cold start of the internal combustion engine, An object of the present invention is to provide a technique that achieves both suppression of damage to the air-fuel ratio sensor due to flooding and early improvement of the exhaust emission purification rate.

上記目的を達成するための本発明は、車両の前傾角度に応じて、空燃比センサが活性化して空燃比取得可能となるタイミングを変更することを最大の特徴とする。   The present invention for achieving the above object is characterized in that the timing at which the air-fuel ratio sensor is activated and the air-fuel ratio can be acquired is changed according to the forward lean angle of the vehicle.

より詳しくは、内燃機関からの排気が通過する排気管路と、
前記排気管路に配設され、加熱により昇温した状態で前記内燃機関の排気の空燃比を取得可能となる空燃比センサと、
前記空燃比センサを加熱して空燃比の取得が可能な状態とさせる加熱手段と、
前記内燃機関が搭載された車両の前傾角度を検出する傾き検出手段と、
を備えた内燃機関の排気システムであって、
前記内燃機関の始動時において、前記傾き検出手段が検出した車両の前傾角度に応じて、前記空燃比センサ加熱手段による加熱で前記空燃比センサが空燃比を取得可能となる時期を変更する昇温時間変更手段をさらに備えることを特徴とする。
More specifically, an exhaust line through which exhaust from the internal combustion engine passes,
An air-fuel ratio sensor disposed in the exhaust pipe and capable of acquiring the air-fuel ratio of the exhaust gas of the internal combustion engine in a state of being heated by heating;
Heating means for heating the air-fuel ratio sensor so that the air-fuel ratio can be acquired;
Inclination detecting means for detecting a forward inclination angle of a vehicle on which the internal combustion engine is mounted;
An exhaust system for an internal combustion engine comprising:
When the internal combustion engine is started, according to the forward lean angle of the vehicle detected by the inclination detection means, the time at which the air-fuel ratio sensor can acquire the air-fuel ratio by heating by the air-fuel ratio sensor heating means is changed. A temperature time changing means is further provided.

ここで、内燃機関が搭載された車両が前傾している場合には、水が排気管路の排気口から車外に抜け難い状態となる。従って、車両が前傾した状態で停車していた場合には、次回の始動時に排気管路における空燃比センサよりも上流側に凝縮水が溜まっている可能性が高くなる。また、車両の前傾の角度が大きければ、それだけ水が排気管路の排気口から車外に抜け難い状態となる。従って、前記車両の停車中の前傾角度によって、始動後に排気管路の温度が上昇し凝縮水が除去されるまでに要する時間は異なる。   Here, when the vehicle on which the internal combustion engine is mounted is tilted forward, it is difficult for water to escape from the exhaust port of the exhaust pipe to the outside of the vehicle. Therefore, when the vehicle is stopped with the vehicle leaning forward, there is a high possibility that condensed water is accumulated upstream of the air-fuel ratio sensor in the exhaust pipe at the next start. In addition, the greater the forward tilt angle of the vehicle, the more difficult it is for water to escape from the exhaust port of the exhaust pipe. Therefore, the time required for the temperature of the exhaust pipe to rise after the start and the condensed water is removed differs depending on the forward tilt angle when the vehicle is stopped.

そこで、本発明においては、前記内燃機関が搭載された車両の前傾角度を検出する傾き検出手段を備えるようにし、前記内燃機関の冷間始動時において、前記傾き検出手段が検出した車両の前傾角度に応じて、前記空燃比センサ加熱手段による加熱で前記空燃比センサが空燃比を取得可能となる時期を変更するようにした。   In view of this, in the present invention, there is provided an inclination detection means for detecting a forward inclination angle of a vehicle on which the internal combustion engine is mounted, and the front of the vehicle detected by the inclination detection means at the cold start of the internal combustion engine is provided. The timing at which the air-fuel ratio sensor can acquire the air-fuel ratio by the heating by the air-fuel ratio sensor heating means is changed according to the inclination angle.

これによれば、車両の前傾角度に応じて最適な時期に空燃比センサを空燃比を取得可能な状態とすることができる。その結果、凝縮水の量に対して空燃比センサの昇温が早すぎ、空燃比センサが被水によって破損してしまうことや、凝縮水が溜まっていないにも拘らず空燃比センサの昇温が遅すぎ、始動直後における排気エミッションの浄化率が不要に悪化することを抑制できる。なお、上記において加熱とは、例えばヒータによるヒータ加熱を意味する。   According to this, the air-fuel ratio sensor can be brought into a state in which the air-fuel ratio can be acquired at an optimal time according to the forward tilt angle of the vehicle. As a result, the temperature of the air-fuel ratio sensor rises too quickly with respect to the amount of condensed water, and the air-fuel ratio sensor is damaged by the water, or the temperature of the air-fuel ratio sensor is increased even though condensed water does not accumulate. However, it is possible to prevent the exhaust emission purification rate immediately after starting from being deteriorated unnecessarily. In the above, heating means heater heating by a heater, for example.

具体的には、前記昇温時間変更手段は、前記傾き検出手段によって検出された前記車両の前傾角度が所定角度以上の場合に、前記加熱手段による加熱で前記空燃比センサが空燃比を取得可能となる時期を遅くするようにしてもよい。   Specifically, the temperature raising time changing means is such that the air-fuel ratio sensor acquires the air-fuel ratio by heating by the heating means when the forward lean angle of the vehicle detected by the inclination detecting means is equal to or greater than a predetermined angle. You may make it delay the time when it becomes possible.

ここで所定角度とは、車両の前傾角度がこれ以上の場合には、停車中に凝縮水が排気管路から抜けにくく、始動時には排気管路に凝縮水が溜まっている可能性が高いと判断できる前傾角度であり、予め実験的に求めるようにしてもよい。この場合は、車両の前傾角度が前記所定角度以上であるときには、排気管路に凝縮水が溜まっている可能性が高いので空燃比センサが加熱により空燃比を取得可能となる時期を遅くする。   Here, the predetermined angle means that if the forward tilt angle of the vehicle is more than this, it is difficult for condensed water to escape from the exhaust pipe during stopping, and there is a high possibility that the condensed water has accumulated in the exhaust pipe during startup. This is a forward tilt angle that can be determined, and may be obtained experimentally in advance. In this case, when the forward leaning angle of the vehicle is equal to or greater than the predetermined angle, there is a high possibility that condensed water has accumulated in the exhaust pipe, so the time when the air-fuel ratio sensor can acquire the air-fuel ratio by heating is delayed. .

これにより、内燃機関の始動開始とともに空燃比センサを加熱した場合に空燃比センサが凝縮水を被水する危険性が高い場合にのみ、空燃比センサが加熱により空燃比を取得可能となる時期を遅らせることができる。そして、空燃比センサが凝縮水を被水する危険性が少ないにも拘らず、無駄に空燃比センサが空燃比を取得可能となる時期を遅らせることを抑制でき、始動直後の排気エミッションの浄化率の悪化を抑制することができる。   Thus, when the air-fuel ratio sensor is heated when the internal combustion engine is started, only when there is a high risk that the air-fuel ratio sensor will receive condensed water, the time when the air-fuel ratio sensor can acquire the air-fuel ratio by heating is determined. Can be delayed. Although the air-fuel ratio sensor is less likely to get condensed water, it is possible to prevent the air-fuel ratio sensor from delaying the time when the air-fuel ratio sensor can acquire the air-fuel ratio, and to reduce the exhaust emission purification rate immediately after startup. Can be prevented.

例えば前記所定角度を0度とした場合には、車両が後傾した状態で停車していたときには、空燃比センサが空燃比を取得可能となる時間を遅れさせないので、始動直後から良好な排気エミッションの浄化率を得ることができる。   For example, when the predetermined angle is set to 0 degree, when the vehicle is parked in a backward tilted state, the time during which the air-fuel ratio sensor can acquire the air-fuel ratio is not delayed. The purification rate can be obtained.

また、本発明においては、前記昇温時間変更手段は、
前記傾き検出手段によって検出された前記車両の前傾角度が大きいほど、前記加熱手段
による加熱で前記空燃比センサが空燃比を取得可能となる時期を遅くするようにしてもよい。
In the present invention, the temperature raising time changing means is
The greater the forward lean angle of the vehicle detected by the inclination detection means, the later the time at which the air-fuel ratio sensor can acquire the air-fuel ratio by heating by the heating means may be delayed.

そうすれば、排気管路に凝縮水が溜まっている可能性が高いほど、あるいは、排気管路に溜まっていると予想される凝縮水の量が多いほど、空燃比センサの温度上昇を遅くすることができる。従って、冷間始動時における空燃比センサの凝縮水の被水による破損の抑制と、排気エミッションの浄化率の悪化の抑制とをより精度よくバランスさせることができる。   Then, the higher the possibility that condensed water is accumulated in the exhaust pipe, or the more condensed water that is expected to be accumulated in the exhaust pipe, the slower the temperature rise of the air-fuel ratio sensor. be able to. Therefore, it is possible to more accurately balance the suppression of the damage due to the condensate of the air-fuel ratio sensor at the cold start and the suppression of the deterioration of the exhaust emission purification rate.

また、本発明においては、前記昇温時間変更手段は、
前記加熱手段による加熱の開始時期を遅らせることによって、前記空燃比センサが空燃比を取得可能となる時期を遅くするようにしてもよい。
In the present invention, the temperature raising time changing means is
The timing when the air-fuel ratio sensor can acquire the air-fuel ratio may be delayed by delaying the heating start timing by the heating means.

そうすれば、加熱手段による加熱が開始されていない時期には万が一空燃比センサへの凝縮水の被水があったとしても空燃比センサが破損する危険性はない。従って、より確実に空燃比センサの破損を抑制することができる。   By doing so, there is no risk that the air-fuel ratio sensor will be damaged even if the air-fuel ratio sensor is exposed to condensate water when heating by the heating means is not started. Therefore, damage to the air-fuel ratio sensor can be suppressed more reliably.

また、本発明においては、前記昇温時間変更手段は、
前記加熱手段による前記空燃比センサの昇温速度を小さくすることによって、前記空燃比センサが空燃比を取得可能となる時期を遅くしてもよい。
In the present invention, the temperature raising time changing means is
The timing at which the air-fuel ratio sensor can acquire the air-fuel ratio may be delayed by reducing the temperature increase rate of the air-fuel ratio sensor by the heating means.

そうすれば、前記加熱手段による加熱の開始自体は遅らせずに加熱を開始させ、空燃比センサを徐々に昇温させることができる。そうすれば、実際に凝縮水が除去されて空燃比センサの凝縮水の被水の危険性がなくなった後、早急に空燃比センサを空燃比を取得可能な状態とすることができ、始動後の排気エミッションの浄化率をより早急に向上させることができる。   Then, heating can be started without delaying the start of heating by the heating means, and the air-fuel ratio sensor can be gradually raised in temperature. Then, after the condensed water is actually removed and there is no danger of receiving the condensed water of the air-fuel ratio sensor, the air-fuel ratio sensor can be immediately brought into a state where the air-fuel ratio can be acquired. The exhaust gas purification rate can be improved more quickly.

前記排気管路は、該排気管路の所定箇所より上流側が車両上側に傾斜する傾斜部を有し、前記空燃比センサは該傾斜部に設けられるようにしてもよい。   The exhaust pipe line may have an inclined part whose upstream side is inclined to the upper side of the vehicle from a predetermined portion of the exhaust pipe line, and the air-fuel ratio sensor may be provided in the inclined part.

すなわち、排気管路の上流側が車両上流に傾斜する構造にすることにより、車両の停車時に凝縮水が溜まりづらく抜けやすい状態とすることができる。そして、前記空燃比センサが傾斜部に設けられることにより、より確実に空燃比センサの被水による破損を抑制することができる。ここで、所定箇所とは、前記排気管路における空燃比センサの下流側の箇所を意味する。   That is, by adopting a structure in which the upstream side of the exhaust pipe is inclined toward the upstream side of the vehicle, it is possible to make it difficult for condensed water to accumulate and to easily escape when the vehicle stops. Then, by providing the air-fuel ratio sensor at the inclined portion, it is possible to more reliably prevent the air-fuel ratio sensor from being damaged by water. Here, the predetermined location means a location on the downstream side of the air-fuel ratio sensor in the exhaust pipe.

また、本発明においては、前記排気管路は、該排気管路の所定箇所より上流側が車両上側に傾斜する傾斜部を有し、前記空燃比センサは該傾斜部に設けられ、
前記昇温時間変更手段は、
前記傾き検出手段によって検出された前記車両の前傾角度が前記傾斜部における傾斜角以上の場合に、前記加熱手段による加熱で前記空燃比センサが空燃比を取得可能となる時期を遅くするようにしてもよい。
Further, in the present invention, the exhaust pipe line has an inclined part whose upper side is inclined to the upper side of the vehicle from a predetermined portion of the exhaust pipe line, and the air-fuel ratio sensor is provided in the inclined part,
The temperature raising time changing means includes
When the forward inclination angle of the vehicle detected by the inclination detection means is greater than or equal to the inclination angle of the inclination portion, the timing at which the air-fuel ratio sensor can acquire the air-fuel ratio by heating by the heating means is delayed. May be.

すなわち、車両の前傾角度が前述の傾斜部の傾斜角以上である状態で車両が停車した場合には、傾斜部が水平より前傾した状態となる。そうすると、車両の前傾角度が前述の傾斜部の傾斜角より小さい場合と比較して、傾斜部に凝縮水が溜まる危険性が高くなる。そこで、このような場合には、前記加熱手段による加熱で前記空燃比センサが空燃比を取得可能となる時期を遅くするようにした。   That is, when the vehicle stops in a state where the forward tilt angle of the vehicle is equal to or greater than the tilt angle of the tilt portion, the tilt portion is tilted forward from the horizontal. If it does so, compared with the case where the forward inclination angle of a vehicle is smaller than the inclination angle of the above-mentioned inclination part, the danger that condensed water will accumulate in an inclination part will become high. Therefore, in such a case, the time when the air-fuel ratio sensor can acquire the air-fuel ratio by heating by the heating means is delayed.

そうすれば、排気管路に傾斜部を有した構成においても、なおかつ凝縮水が溜まる危険
性が比較的高い場合には、空燃比センサが空燃比を取得可能となる時期を遅くするので、空燃比センサの凝縮水の被水による破損をより確実に抑制することができる。
By doing so, even in a configuration having an inclined portion in the exhaust pipe, and when the risk of collecting condensed water is relatively high, the air-fuel ratio sensor delays the time when the air-fuel ratio can be acquired. It is possible to more reliably suppress damage due to the condensate of the fuel ratio sensor.

また、本発明においては、前記排気管路の途中には、可撓性材料で形成され該排気管路の屈曲を許容するフレキ管を有し、
前記空燃比センサは前記排気管路における前記フレキ管の上流側に設けられるようにしてもよい。
In the present invention, in the middle of the exhaust pipe, a flexible pipe formed of a flexible material and allowing the exhaust pipe to be bent is provided.
The air / fuel ratio sensor may be provided upstream of the flexible pipe in the exhaust pipe.

すなわち、排気管路の途中にフレキ管が設けられた構成においては、フレキ管の上流側あるいは下流側の排気管とフレキ管との境界部あるいは、フレキ管の途中に凝縮水が溜まり易いことが分かっている。従って、空燃比センサをフレキ管の上流側に配置することにより、より確実に空燃比センサへの凝縮水の被水を抑制することができる。   That is, in a configuration in which a flexible pipe is provided in the middle of the exhaust pipe, condensed water tends to accumulate at the boundary between the exhaust pipe and the flexible pipe upstream or downstream of the flexible pipe or in the middle of the flexible pipe. I know it. Therefore, by placing the air-fuel ratio sensor on the upstream side of the flexible pipe, it is possible to more reliably suppress the condensate water from entering the air-fuel ratio sensor.

なお、上記した本発明の課題を解決する手段については、可能なかぎり組み合わせて用いることができる。   The means for solving the above-described problems of the present invention can be used in combination as much as possible.

本発明にあっては、内燃機関の冷間始動時において、車両の姿勢に応じて空燃比センサを最適なタイミングで昇温させ、空燃比センサの被水による破損の抑制と、排気エミッションの浄化率の早期の向上とを両立させることができる。   In the present invention, when the internal combustion engine is cold-started, the air-fuel ratio sensor is heated at an optimal timing according to the attitude of the vehicle, so that the air-fuel ratio sensor is prevented from being damaged by water and the exhaust emission is purified. It is possible to achieve both an early improvement in rate.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings.

先ず、図1及び図2を用いて、本実施例において空燃比センサへの被水を抑制するための構成について説明する。図1は、本実施例における内燃機関1及び排気系を示している。4気筒内燃機関である内燃機関1の4つの排気ポートには、排気マニホールド2の4つの枝管が接続されている。本実施例における排気系は、排気マニホールド2において、排気ポートに接続されている4本の枝管の各2本ずつを合流させ、合流した後の2本の枝管をさらに合流させ、最終的に集合部2aにおいて排気が1本に集合されるようなロングデュアル排気系であってもよい。   First, the configuration for suppressing water exposure to the air-fuel ratio sensor in this embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 shows an internal combustion engine 1 and an exhaust system in the present embodiment. Four branch pipes of the exhaust manifold 2 are connected to four exhaust ports of the internal combustion engine 1 that is a four-cylinder internal combustion engine. In the exhaust system in this embodiment, in the exhaust manifold 2, two of the four branch pipes connected to the exhaust port are joined together, and the two branch pipes that have joined together are joined together. Alternatively, a long dual exhaust system in which exhaust gas is collected into one in the collecting portion 2a may be used.

排気マニホールド2は、排気管3に接続される。この排気管3の途中には内燃機関1の揺れや振動を抑制するためのフレキ管4が設けられている。ここで、排気管3におけるフレキ管4の上流側を上流排気管3a、下流側を下流排気管3bとする。下流排気管3bには排気浄化触媒5が備えられている。   The exhaust manifold 2 is connected to the exhaust pipe 3. In the middle of the exhaust pipe 3, a flexible pipe 4 is provided for suppressing shaking and vibration of the internal combustion engine 1. Here, the upstream side of the flexible pipe 4 in the exhaust pipe 3 is an upstream exhaust pipe 3a, and the downstream side is a downstream exhaust pipe 3b. An exhaust purification catalyst 5 is provided in the downstream exhaust pipe 3b.

ここで、下流排気管3bは、車両の床面に略平行に配置され、車両が水平の状態にある場合には、略水平となるように配置される。また、排気マニホールド2及び下流排気管3bには、内燃機関1からの排気の空燃比をフィードバック制御によって制御するための空燃比センサ6、サブO2センサ7が備えられている。この空燃比センサ6、サブO2センサ7には、図示しないセンサ素子を活性化温度まで昇温させ、空燃比センサ6、サブO2
ンサ7が空燃比の検出を可能な状態にさせる電熱ヒータ6a、7aが設けられている。なお、サブO2センサ7は本実施例において空燃比センサに相当する。電熱ヒータ7aは本
実施例において加熱手段に相当する。
Here, the downstream exhaust pipe 3b is disposed substantially parallel to the floor surface of the vehicle, and is disposed so as to be substantially horizontal when the vehicle is in a horizontal state. The exhaust manifold 2 and the downstream exhaust pipe 3b are provided with an air-fuel ratio sensor 6 and a sub O 2 sensor 7 for controlling the air-fuel ratio of the exhaust from the internal combustion engine 1 by feedback control. The air-fuel ratio sensor 6 and sub-O 2 sensor 7 include an electric heater that raises the temperature of a sensor element (not shown) to an activation temperature and enables the air-fuel ratio sensor 6 and sub-O 2 sensor 7 to detect the air-fuel ratio. 6a and 7a are provided. The sub O 2 sensor 7 corresponds to an air-fuel ratio sensor in this embodiment. The electric heater 7a corresponds to a heating means in this embodiment.

また、本実施例においては、車両姿勢センサ10が設けられている。この車両姿勢センサ10の概略構成を図2に示す。この車両姿勢センサ10には、常時回転する回転体10
aが設けられている。そして、回転体10aが外力が加わらない限り回転軸を空間に対して常に一定方向に保とうする性質を利用して、2つのセンサ素子10b、10cによって2方向に対して車両の傾き角度を計測可能とする。この車両姿勢センサ10は本実施例において傾き検出手段に相当する。
In the present embodiment, a vehicle attitude sensor 10 is provided. A schematic configuration of the vehicle attitude sensor 10 is shown in FIG. The vehicle attitude sensor 10 includes a rotating body 10 that rotates constantly.
a is provided. Then, the tilt angle of the vehicle is measured with respect to two directions by the two sensor elements 10b and 10c by utilizing the property that the rotating body 10a always keeps the rotation axis in a constant direction with respect to the space unless an external force is applied. Make it possible. This vehicle attitude sensor 10 corresponds to an inclination detecting means in this embodiment.

また、内燃機関1には、機関制御用の電子制御ユニット(ECU:Electronic Control
Unit)20が併設されている。ECU20は、双方向性バスによって相互に接続された
、CPU、ROM、RAM等から構成され、車両姿勢センサ10、空燃比センサ6、サブO2センサ7を含めた各種のセンサが電気配線を介して接続されている。
The internal combustion engine 1 includes an electronic control unit (ECU: Electronic Control) for engine control.
Unit) 20 is attached. The ECU 20 includes a CPU, a ROM, a RAM, and the like that are connected to each other by a bidirectional bus. Various sensors including the vehicle attitude sensor 10, the air-fuel ratio sensor 6, and the sub O 2 sensor 7 are connected via electric wiring. Connected.

また、ECU20には、内燃機関1における図示しない燃料噴射弁等の機能部分が電気配線を介して接続され、ECU20が各種センサの出力信号値をパラメータとして各種機能部分を制御することが可能になっている。   Also, the ECU 20 is connected to functional parts such as a fuel injection valve (not shown) in the internal combustion engine 1 through electric wiring, and the ECU 20 can control various functional parts using output signal values of various sensors as parameters. ing.

ところで、排気系3において、サブO2センサ7の上流側に凝縮水が溜まっていた場合
に、内燃機関1の発進時やレーシング時に凝縮水がサブO2センサ7にかかると、サブO2センサ7が温度衝撃によって破損するおそれがあった。これに対し、冷間始動開始時から排気管3の温度が上昇して凝縮水が除去されるまでサブO2センサ7の電熱ヒータ7aへ
の通電開始を遅らせる対応が行われる場合がある。
Incidentally, in the exhaust system 3, when the condensed water had accumulated on the upstream side of the sub-O 2 sensor 7, the condensed water at the time and racing start of the internal combustion engine 1 according to the sub-O 2 sensor 7, the sub-O 2 sensor 7 could be damaged by temperature shock. On the other hand, there is a case in which the start of energization of the sub O 2 sensor 7 to the electric heater 7a is delayed until the temperature of the exhaust pipe 3 rises and the condensed water is removed from the start of the cold start.

ここで、冷間始動時に、排気管3に溜まる凝縮水の量は、車両が始動前に停車していた間の、車両の前傾角度に関連性がある。すなわち、例えば、車両が後傾姿勢で停車していた場合には、凝縮水は排気管3の排気口から車外に排出される可能性が高い。それに対し、図3に示すように車両が始動前に前傾姿勢で停車していた婆には、凝縮水が車両前方に流れる傾向が強くなるので、多量の凝縮水が排気管3中に残っている可能性が高くなる。   Here, the amount of condensed water accumulated in the exhaust pipe 3 at the time of cold start is related to the forward tilt angle of the vehicle while the vehicle was stopped before starting. That is, for example, when the vehicle is parked in a backward leaning posture, the condensed water is likely to be discharged from the exhaust port of the exhaust pipe 3 to the outside of the vehicle. On the other hand, as shown in FIG. 3, when the vehicle is parked in a forward leaning position before starting, the condensed water tends to flow forward, so that a large amount of condensed water remains in the exhaust pipe 3. There is a high possibility of being.

このような傾向に対し、本実施例においては、サブO2センサ7への加熱開始を遅らせ
る際のディレイ時間を、車両の前傾角度によって変更させることとした。
In contrast to this tendency, in this embodiment, the delay time for delaying the start of heating of the sub O 2 sensor 7 is changed depending on the forward tilt angle of the vehicle.

図4には、本実施例におけるサブO2センサ加熱制御ルーチンを示す。本ルーチンはE
CU20のROMに記憶されたプログラムであり、ECU20によって車両の電源ON中は所定期間毎に実行される。
FIG. 4 shows a sub O 2 sensor heating control routine in this embodiment. This routine is E
This program is stored in the ROM of the CU 20 and is executed by the ECU 20 every predetermined period while the vehicle is powered on.

本ルーチンにおけるS101においては、内燃機関1が始動されたかどうかが判定される。具体的には図示しないスタータモータあるいは点火栓への供給電流を検出することによって判定してもよい。S101において内燃機関1が始動していないと判定された場合には一旦本ルーチンを終了する。一方、内燃機関1が始動していると判定された場合にはS102に進む。   In S101 in this routine, it is determined whether or not the internal combustion engine 1 has been started. Specifically, the determination may be made by detecting a supply current to a starter motor or a spark plug (not shown). If it is determined in S101 that the internal combustion engine 1 has not been started, this routine is temporarily terminated. On the other hand, if it is determined that the internal combustion engine 1 has been started, the process proceeds to S102.

S102においては、内燃機関1の水温が所定値以下かどうかが判定される。具体的には図示しない冷却水温センサの出力信号をECU20に入力することによって判定される。ここで、内燃機関1の水温が所定値より高いと判定された場合には、今回の始動は冷間始動ではないと判断できるので、そのまま本ルーチンを終了する。一方、内燃機関1の水温が所定値以下と判定された場合にはS103に進む。ここで所定値とは内燃機関1の冷却水温がこれより高い場合には、内燃機関1及び排気管3の温度が既に高温になっており、凝縮水が排気管3に溜まっている可能性が極めて低いと考えられる冷却水温であり、予め実験的に求められてもよい。   In S102, it is determined whether the water temperature of the internal combustion engine 1 is equal to or lower than a predetermined value. Specifically, it is determined by inputting an output signal of a coolant temperature sensor (not shown) to the ECU 20. Here, if it is determined that the water temperature of the internal combustion engine 1 is higher than the predetermined value, it can be determined that the current start is not a cold start, and thus the present routine is terminated. On the other hand, when it is determined that the water temperature of the internal combustion engine 1 is equal to or lower than the predetermined value, the process proceeds to S103. Here, when the cooling water temperature of the internal combustion engine 1 is higher than the predetermined value, there is a possibility that the temperatures of the internal combustion engine 1 and the exhaust pipe 3 are already high, and condensed water is accumulated in the exhaust pipe 3. The cooling water temperature is considered to be extremely low, and may be obtained experimentally in advance.

S103においては、車両の前傾角度が検出される。具体的には車両姿勢センサ10の出力信号がECU20に読み込まれる。   In S103, the forward lean angle of the vehicle is detected. Specifically, the output signal of the vehicle attitude sensor 10 is read into the ECU 20.

S104においては、サブO2センサ7を加熱する電熱ヒータ7aへの通電開始時間を
遅らせるためのディレイ時間Δtが導出される。このディレイ時間Δtは車両の傾き角と、サブO2センサ7の凝縮水の被水を抑制するためのディレイ時間Δtとの関係を予め実
験的に求めてマップ化しておき、このマップからS103において検出された前傾角度に応じたディレイ時間Δtが読み出される。
In S104, a delay time Δt for delaying the energization start time to the electric heater 7a for heating the sub O 2 sensor 7 is derived. The delay time Δt is obtained by experimentally mapping the relationship between the inclination angle of the vehicle and the delay time Δt for suppressing the condensate water exposure of the sub O 2 sensor 7. A delay time Δt corresponding to the detected forward tilt angle is read out.

この場合の車両の前傾角度とディレイ時間Δtとの関係を図5に示す。ここで、車両の前傾角度が凝縮水発生角θ1以上である場合には、前傾角度が大きくなるほどディレイ時間Δtが大きく設定される。車両の前傾角度が凝縮水発生角θ1より小さい場合には、ディレイ時間Δtは0に設定される。   FIG. 5 shows the relationship between the forward tilt angle of the vehicle and the delay time Δt in this case. Here, when the forward tilt angle of the vehicle is equal to or greater than the condensed water generation angle θ1, the delay time Δt is set to be larger as the forward tilt angle increases. When the forward tilt angle of the vehicle is smaller than the condensed water generation angle θ1, the delay time Δt is set to zero.

ここで凝縮水発生角θ1は、車両の前傾角度がこれ以上である場合に、凝縮水が排気管3に溜まり得る状態となり、前傾角度がこの角度より大きくなるほど凝縮水が排気管3に溜まり易くなる前傾角度であり、予め実験的に求めるようにしてもよい。車両の構成にもよるが、凝縮水発生角θ1は例えば0度としてもよい。S104の処理が終了するとS105に進む。   Here, the condensed water generation angle θ1 is a state in which condensed water can be accumulated in the exhaust pipe 3 when the forward tilt angle of the vehicle is greater than this, and the condensed water enters the exhaust pipe 3 as the forward tilt angle becomes larger than this angle. It is a forward tilt angle that makes it easy to accumulate, and may be obtained experimentally in advance. Although depending on the configuration of the vehicle, the condensed water generation angle θ1 may be set to 0 degrees, for example. When the process of S104 ends, the process proceeds to S105.

S105においては、S104において導出されたディレイ時間Δtに基づいて電熱ヒータ7aに通電が行われ、O2センサ7の昇温制御が行われる。 In S105, the electric heater 7a is energized based on the delay time Δt derived in S104, and the temperature rise control of the O 2 sensor 7 is performed.

以上、説明したように、本実施例においては車両の前傾角度が凝縮水発生角θ1より小さい場合には、電熱ヒータ7aへの通電のディレイ時間Δtは零とした。また、前傾角度が凝縮水発生角θ1以上の場合には、それ以上に車両の前傾角度が大きくなるほどディレイ時間Δtを大きくするようにした。   As described above, in this embodiment, when the forward tilt angle of the vehicle is smaller than the condensed water generation angle θ1, the delay time Δt for energizing the electric heater 7a is set to zero. In addition, when the forward tilt angle is equal to or greater than the condensed water generation angle θ1, the delay time Δt is increased as the forward tilt angle of the vehicle is further increased.

そうすれば、排気管3に凝縮水が溜まらない前傾角度範囲においてはディレイ時間を零とするので、サブO2センサ7を可及的に早期に空燃比の検出が可能な状態とすることが
でき、始動直後の排気エミッションの浄化率を向上させることができる。
By doing so, the delay time is set to zero in the forward tilt angle range where the condensed water does not accumulate in the exhaust pipe 3, so that the sub-O 2 sensor 7 can be detected as early as possible. It is possible to improve the purification rate of exhaust emission immediately after starting.

また、車両の前傾角度が、排気管3に凝縮水が溜まり得る角度範囲である場合においては前傾角度が大きくなるほどディレイ時間Δtを長くするので、凝縮水の溜まり易さに応じた最適なディレイ時間Δtを設定することができる。これにより、始動直後の排気エミッションの浄化率の向上と、サブO2センサ7の被水による破損の抑制とを両立させるこ
とができる。ここで、上記のサブO2センサ加熱制御ルーチンを実行するECU20は本
実施例において昇温時間変更手段に相当する。
Further, when the forward tilt angle of the vehicle is within an angle range in which condensed water can be collected in the exhaust pipe 3, the delay time Δt becomes longer as the forward tilt angle becomes larger. The delay time Δt can be set. As a result, it is possible to achieve both improvement in the purification rate of exhaust emission immediately after start-up and suppression of breakage of the sub O 2 sensor 7 due to water. Here, the ECU 20 that executes the sub O 2 sensor heating control routine corresponds to the temperature raising time changing means in the present embodiment.

なお、上記の実施例においては、車両の前傾角度が凝縮水発生角θ1以上の場合には、それより前傾角度が増加するに従ってディレイ時間Δtを増加させた。これに対し、車両の前傾角度が凝縮水発生角θ1以上の場合には、図6に示すようにディレイ時間Δtを一律に設定するようにしてもよい。そうすれば、より簡単な制御によって、車両の前傾角度が凝縮水が溜まらない角度範囲である場合にはディレイ時間Δtを零とし、凝縮水が溜まり得る角度範囲においてのみ、電熱ヒータ7aへの通電開始のディレイを実行することができる。   In the above embodiment, when the forward tilt angle of the vehicle is equal to or greater than the condensed water generation angle θ1, the delay time Δt is increased as the forward tilt angle increases. On the other hand, when the forward tilt angle of the vehicle is equal to or greater than the condensed water generation angle θ1, the delay time Δt may be set uniformly as shown in FIG. Then, by simpler control, when the forward tilt angle of the vehicle is an angle range in which condensed water does not collect, the delay time Δt is set to zero, and only in an angle range in which condensed water can be collected, the electric heater 7a is supplied to the electric heater 7a. A delay in starting energization can be executed.

また、車両が後傾した状態で停車していた場合にも、車両の構造上、凝縮水が発生する可能性がある場合には、凝縮水発生角をθ1ではなく、後傾側の角度θ2、例えば−10度としてもよい。そうすれば、より確実に、サブO2センサ7の被水による破損を抑制す
ることができる。この場合の、車両の前傾角度とディレイ時間Δtとの関係の例を図7に示す。
Further, even when the vehicle is parked in a backward tilted state, if there is a possibility that condensed water is generated due to the structure of the vehicle, the condensed water generation angle is not θ1, but the angle θ2 on the rearward tilt side, For example, it may be −10 degrees. By doing so, it is possible to more reliably prevent the sub O 2 sensor 7 from being damaged due to water. An example of the relationship between the forward tilt angle of the vehicle and the delay time Δt in this case is shown in FIG.

また、車両が後傾した状態で停車していた場合にも、車両の構造上、凝縮水が発生する可能性がある場合には、車両の前傾角度が凝縮水発生角θ1より小さい場合にも電熱ヒータ7aへの通電に対して若干のディレイ時間を設けるようにしてもよい。この場合の、車両の前傾角度とディレイ時間Δtとの関係の例を図8に示す。   In addition, even when the vehicle is parked in a backward tilted state, if there is a possibility that condensed water may be generated due to the structure of the vehicle, the forward tilt angle of the vehicle is smaller than the condensed water generation angle θ1. Alternatively, a slight delay time may be provided for energization of the electric heater 7a. An example of the relationship between the forward tilt angle of the vehicle and the delay time Δt in this case is shown in FIG.

また、上記の実施例においては、サブO2センサ7の電熱ヒータ7aに対する通電開始
時期を遅らせることによってサブO2センサ7が空燃比を検出可能となる(サブO2センサ7の素子温度が活性化温度に達する)時期を遅らせたが、サブO2センサ7を加熱する際
の温度勾配を小さくすることによってサブO2センサ7が空燃比検出可能となる時期(サ
ブO2センサ7の素子温度が活性化温度に達する時期)を遅らせるようにしてもよい。
In the above embodiments, the sub-O 2 sub O 2 sensor 7 by delaying the energization start timing for the electric heater 7a of the sensor 7 is capable of detecting the air-fuel ratio (element temperature of the sub-O 2 sensor 7 is activated The timing at which the sub O 2 sensor 7 can detect the air-fuel ratio by reducing the temperature gradient when heating the sub O 2 sensor 7 (the element temperature of the sub O 2 sensor 7) is delayed. May be delayed).

すなわち、図9に示すように車両の前傾角度が凝縮水発生角θ1より小さい場合には、サブO2センサ7の加熱時における電熱ヒータ7aへの供給電流を最大にすることにより
、サブO2センサ7の温度勾配は最大としている。そして車両の前傾角度がθ1以上の場
合には、それより前傾角度が大きくなるにつれて電熱ヒータ7aに供給する電流値を減少させ、サブO2センサ7の温度勾配を徐々に小さくするようにしてもよい。
That is, as shown in FIG. 9, when the forward tilt angle of the vehicle is smaller than the condensed water generation angle θ1, the sub-O 2 sensor 7 is heated to maximize the supply current to the electric heater 7a. 2 The temperature gradient of the sensor 7 is the maximum. When the forward tilt angle of the vehicle is equal to or greater than θ1, the current value supplied to the electric heater 7a is decreased as the forward tilt angle becomes larger than that, and the temperature gradient of the sub O 2 sensor 7 is gradually decreased. May be.

図9に示すような、車両の前傾角度に応じてサブO2センサ7の温度勾配を変更する場
合の制御についてさらに説明する。この制御においては、車両の前傾角度が凝縮水発生角θ1以上の場合にはサブO2センサ7の温度勾配を小さくするが、この途中、内燃機関1
の冷却水温が上昇し凝縮水が発生しない温度となった時点で、サブO2センサ7の温度勾
配を最大に戻すようにしてもよい。そうすれば、サブO2センサ7の凝縮水の被水の危険
性がなくなった時点で、サブO2センサ7の温度がある程度まで昇温されているため、そ
の後迅速にサブO2センサ7を空燃比を検出可能な状態にすることができる(サブO2センサ7の素子温度を迅速に活性化温度まで昇温することができる。)なお、上記において凝縮水発生角θ1及びθ2は本実施例において所定角度に相当する。
The control when the temperature gradient of the sub O 2 sensor 7 is changed according to the forward tilt angle of the vehicle as shown in FIG. 9 will be further described. In this control, when the forward tilt angle of the vehicle is equal to or greater than the condensed water generation angle θ1, the temperature gradient of the sub O 2 sensor 7 is reduced.
The temperature gradient of the sub O 2 sensor 7 may be returned to the maximum when the cooling water temperature rises to a temperature at which condensed water is not generated. That way, when the risk of the water of condensation of the sub O 2 sensor 7 is used up, the temperature of the sub-O 2 sensor 7 is raised to a certain extent, then quickly sub O 2 sensor 7 The air-fuel ratio can be detected (the element temperature of the sub O 2 sensor 7 can be quickly raised to the activation temperature.) In the above, the condensed water generation angles θ1 and θ2 are set in this embodiment. In the example, it corresponds to a predetermined angle.

次に、本発明の実施例2について説明する。本実施例においては、排気管における凝縮水の発生をより確実に抑制する、排気システムの構成及び制御について説明する。   Next, a second embodiment of the present invention will be described. In the present embodiment, the configuration and control of the exhaust system that more reliably suppress the generation of condensed water in the exhaust pipe will be described.

図10には、本実施例における内燃機関及び排気系について図示する。実施例1と同じ構成については実施例1と同じ符号を付して説明は省略する。なお、図10においてECU20の表示は省略する。   FIG. 10 illustrates an internal combustion engine and an exhaust system in the present embodiment. The same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted. In addition, the display of ECU20 is abbreviate | omitted in FIG.

本実施例においては、排気管13には、排気浄化触媒25の他、冷間始動時などに排気の温度上昇を促進する等の目的で前置触媒15が設けられている。この前置触媒15は、排気管13に対して車両下側に突出しないように設けられている。また、排気浄化触媒25と前置触媒15との間にはフレキ管14が設けられている。前置触媒15の上流側における排気管を上流排気管13a、前置触媒15とフレキ管14との間の排気管を中流排気管13b、フレキ管14の下流側の排気管を下流排気管13cとする。   In this embodiment, in addition to the exhaust purification catalyst 25, the exhaust pipe 13 is provided with a pre-catalyst 15 for the purpose of accelerating the temperature rise of the exhaust gas at the time of cold start or the like. The pre-catalyst 15 is provided so as not to protrude downward from the vehicle with respect to the exhaust pipe 13. A flexible pipe 14 is provided between the exhaust purification catalyst 25 and the front catalyst 15. The upstream exhaust pipe 13a is the exhaust pipe upstream of the pre-catalyst 15, the intermediate exhaust pipe 13b is the exhaust pipe between the pre-catalyst 15 and the flexible pipe 14, and the downstream exhaust pipe 13c is the downstream exhaust pipe of the flexible pipe 14. And

本実施例においては、排気管13は、中流排気管13bの途中より上流側が車両上側に傾斜角αで傾斜している。そして、傾斜部分にサブO2センサ17及び電熱ヒータ17a
が設けられている。ここで、中流排気管13bの途中における傾斜部分の端部は、本実施例において所定箇所に相当する。また、傾斜部分は本実施例において傾斜部に相当する。
In the present embodiment, the exhaust pipe 13 is inclined at an inclination angle α on the upper side of the vehicle from the middle of the midstream exhaust pipe 13b. Then, the sub O 2 sensor 17 and the electric heater 17a are disposed on the inclined portion.
Is provided. Here, the end of the inclined portion in the middle of the midstream exhaust pipe 13b corresponds to a predetermined location in the present embodiment. The inclined portion corresponds to the inclined portion in this embodiment.

この構成によれば、サブO2センサ17は、中流排気管13bにおいて車両上側に傾斜
している部分に設けられているため、サブO2センサ17の上流側には凝縮水が極めて溜
まりづらくすることができる。これにより、冷間始動時におけるサブO2センサ17の被
水を抑制することができる。
According to this configuration, the sub O 2 sensor 17 is provided in the middle-stream exhaust pipe 13b at a portion inclined to the upper side of the vehicle, so that condensed water is extremely difficult to collect on the upstream side of the sub O 2 sensor 17. be able to. Thus, it is possible to suppress the water sub-O 2 sensor 17 at the time of cold start.

また、本実施例においては前述のように、前置触媒15は、排気管13に対して車両下側に突出しない構成となっているので、前置触媒15の下側に凝縮水が溜まることを抑制することができる。さらに、一般的にフレキ管14の途中または、フレキ管14と中流排気管13bまたは下流排気管13cとの結合部分に凝縮水が溜まり易い傾向があるが、本実施例においてはサブO2センサ17はフレキ管14の上流側に配置されているので、例
えフレキ管14に凝縮水が溜まったとしてもサブO2センサ17が被水することを抑制で
きる。
Further, in the present embodiment, as described above, the pre-catalyst 15 is configured not to protrude below the vehicle with respect to the exhaust pipe 13, so that condensed water accumulates below the pre-catalyst 15. Can be suppressed. Further, in general, condensed water tends to accumulate in the middle of the flexible pipe 14 or in a joint portion between the flexible pipe 14 and the midstream exhaust pipe 13b or the downstream exhaust pipe 13c. In this embodiment, the sub O 2 sensor 17 Is disposed on the upstream side of the flexible pipe 14, even if condensed water accumulates in the flexible pipe 14, it is possible to prevent the sub O 2 sensor 17 from getting wet.

次に、本実施例におけるサブO2センサ加熱制御ルーチンについて説明する。本実施例
におけるサブO2センサ加熱制御ルーチンと、実施例1において説明したものとの相違点
は、S104の処理において、ディレイ時間Δtが読み出されるマップが異なる点である。実施例1においては、マップ上の凝縮水発生角θ1を0度としたが、本実施例においては、凝縮水発生角θ1はαに設定される。このようにすれば、排気管13における傾斜部分が水平よりも前傾した状態となった場合に、サブO2センサ17の加熱をディレイする
ことができる。
Next, the sub O 2 sensor heating control routine in the present embodiment will be described. The difference between the sub O 2 sensor heating control routine in the present embodiment and that described in Embodiment 1 is that the map from which the delay time Δt is read out in the processing of S104. In the first embodiment, the condensed water generation angle θ1 on the map is set to 0 degree, but in the present embodiment, the condensed water generation angle θ1 is set to α. In this way, heating of the sub O 2 sensor 17 can be delayed when the inclined portion of the exhaust pipe 13 is tilted forward from the horizontal.

従って、傾斜部分に設けられたサブO2センサ17が、冷間始動時において凝縮水を被
水するおそれがある状態に限ってサブO2センサ17の加熱をディレイさせることができ
る。その結果、サブO2センサ17への凝縮水の被水の可能性がない場合には、サブO2センサ17の加熱を遅らせることがなく、始動直後の排気エミッションの浄化率を向上させることができる。
Therefore, the sub-O 2 sensor 17 provided in the inclined portion, it is possible to delay the heating of sub-O 2 sensor 17 only in a state where there is a risk of the water condensate at the time of cold start. As a result, when there is no possibility that the sub O 2 sensor 17 is exposed to condensed water, the heating of the sub O 2 sensor 17 is not delayed, and the purification rate of exhaust emission immediately after startup can be improved. it can.

本発明の実施例1に係る内燃機関及び排気系の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine and an exhaust system according to Embodiment 1 of the present invention. 本発明の実施例に係る車両姿勢センサの概略構成を示す図である。It is a figure which shows schematic structure of the vehicle attitude | position sensor which concerns on the Example of this invention. 本発明の実施例に係る車両の前傾状態を説明するための図である。It is a figure for demonstrating the forward leaning state of the vehicle which concerns on the Example of this invention. 本発明の実施例1に係るサブO2センサ加熱制御ルーチンを示すフローチャートである。It is a flowchart showing a sub-O 2 sensor heating control routine according to the first embodiment of the present invention. 本発明の実施例1に係る車両の前傾角度とサブO2センサの加熱におけるディレイ時間との関係を示すグラフである。It is a graph showing the relationship between the delay time in the heating of the anteversion angle and the sub-O 2 sensor for a vehicle according to a first embodiment of the present invention. 本発明の実施例1に係る車両の前傾角度とサブO2センサの加熱におけるディレイ時間との関係の第2の例を示すグラフである。It is a graph showing a second example of the relationship between the delay time in the heating of the anteversion angle and the sub-O 2 sensor for a vehicle according to a first embodiment of the present invention. 本発明の実施例1に係る車両の前傾角度とサブO2センサの加熱におけるディレイ時間との関係の第3の例を示すグラフである。It is a graph showing a third example of the relationship between the delay time in the heating of the anteversion angle and the sub-O 2 sensor for a vehicle according to a first embodiment of the present invention. 本発明の実施例1に係る車両の前傾角度とサブO2センサの加熱におけるディレイ時間との関係の第4の例を示すグラフである。It is a graph showing a fourth example of the relationship between the delay time in the heating of the anteversion angle and the sub-O 2 sensor for a vehicle according to a first embodiment of the present invention. 本発明の実施例1に係る車両の前傾角度とサブO2センサの加熱における温度勾配(ヒータへの供給電流)との関係を示すグラフである。Is a graph showing the relationship between the temperature gradient (the current supplied to the heater) in the heating of the anteversion angle and the sub-O 2 sensor for a vehicle according to a first embodiment of the present invention. 本発明の実施例2に係る内燃機関及び排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine and exhaust system which concern on Example 2 of this invention.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・排気マニホールド
3、13・・・排気管
4、14・・・フレキ管
5、25・・・排気浄化装置
6・・・空燃比センサ
7、17・・・サブO2センサ
10・・・車両姿勢センサ
15・・・前置触媒
20・・・ECU
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Exhaust manifold 3, 13 ... Exhaust pipe 4, 14 ... Flexible pipe 5, 25 ... Exhaust gas purification device 6 ... Air-fuel ratio sensor 7, 17 ... Sub O 2 sensor 10 ... vehicle attitude sensor 15 ... pre-catalyst 20 ... ECU

Claims (8)

内燃機関からの排気が通過する排気管路と、
前記排気管路に配設され、加熱により昇温した状態で前記内燃機関の排気の空燃比を取得可能となる空燃比センサと、
前記空燃比センサを加熱して空燃比の取得が可能な状態とさせる加熱手段と、
前記内燃機関が搭載された車両の前傾角度を検出する傾き検出手段と、
を備えた内燃機関の排気システムであって、
前記内燃機関の始動時において、前記傾き検出手段が検出した車両の前傾角度に応じて、前記加熱手段による加熱で前記空燃比センサが空燃比を取得可能となる時期を変更する昇温時間変更手段をさらに備えることを特徴とする内燃機関の排気システム。
An exhaust line through which the exhaust from the internal combustion engine passes;
An air-fuel ratio sensor disposed in the exhaust pipe and capable of acquiring the air-fuel ratio of the exhaust gas of the internal combustion engine in a state of being heated by heating;
Heating means for heating the air-fuel ratio sensor so that the air-fuel ratio can be acquired;
Inclination detecting means for detecting a forward inclination angle of a vehicle on which the internal combustion engine is mounted;
An exhaust system for an internal combustion engine comprising:
When the internal combustion engine is started, a temperature rise time change for changing the timing at which the air-fuel ratio sensor can acquire the air-fuel ratio by heating by the heating means, according to the forward lean angle of the vehicle detected by the inclination detecting means An exhaust system for an internal combustion engine, further comprising means.
前記昇温時間変更手段は、
前記傾き検出手段によって検出された前記車両の前傾角度が所定角度以上の場合に、前記加熱手段による加熱で前記空燃比センサが空燃比を取得可能となる時期を遅くすることを特徴とする請求項1に記載の内燃機関の排気システム。
The temperature raising time changing means includes
The timing at which the air-fuel ratio sensor can acquire the air-fuel ratio is delayed by heating by the heating unit when the forward tilt angle of the vehicle detected by the tilt detection unit is greater than or equal to a predetermined angle. Item 6. An exhaust system for an internal combustion engine according to Item 1.
前記昇温時間変更手段は、
前記傾き検出手段によって検出された前記車両の前傾角度が大きいほど、前記加熱手段による加熱で前記空燃比センサが空燃比を取得可能となる時期を遅くすることを特徴とする請求項1に記載の内燃機関の排気システム。
The temperature raising time changing means includes
2. The timing at which the air-fuel ratio sensor can acquire the air-fuel ratio by heating by the heating unit is delayed as the forward tilt angle of the vehicle detected by the tilt detection unit increases. The internal combustion engine exhaust system.
前記昇温時間変更手段は、
前記加熱手段による加熱の開始時期を遅らせることによって、前記空燃比センサが空燃比を取得可能となる時期を遅くすることを特徴とする請求項2または3に記載の内燃機関の排気システム。
The temperature raising time changing means includes
The exhaust system for an internal combustion engine according to claim 2 or 3, wherein the timing at which the air-fuel ratio sensor can acquire the air-fuel ratio is delayed by delaying the heating start timing by the heating means.
前記昇温時間変更手段は、
前記加熱手段による前記空燃比センサの昇温速度を小さくすることによって、前記空燃比センサが空燃比を取得可能となる時期を遅くすることを特徴とする請求項2または3に記載の内燃機関の排気システム。
The temperature raising time changing means includes
4. The internal combustion engine according to claim 2, wherein a time at which the air-fuel ratio sensor can acquire the air-fuel ratio is delayed by decreasing a temperature rising rate of the air-fuel ratio sensor by the heating unit. Exhaust system.
前記排気管路は、該排気管路の所定箇所より上流側が車両上側に傾斜する傾斜部を有し、前記空燃比センサは該傾斜部に設けられたことを特徴とする請求項1から5のいずれかに記載の内燃機関の排気システム。   6. The exhaust pipe according to claim 1, wherein the exhaust pipe has an inclined portion whose upstream side is inclined toward the vehicle upper side from a predetermined portion of the exhaust pipe, and the air-fuel ratio sensor is provided in the inclined portion. An exhaust system for an internal combustion engine according to any one of the above. 前記排気管路は、該排気管路の所定箇所より上流側が車両上側に傾斜する傾斜部を有し、前記空燃比センサは該傾斜部に設けられ、
前記昇温時間変更手段は、
前記傾き検出手段によって検出された前記車両の前傾角度が前記傾斜部における傾斜角以上の場合に、前記加熱手段による加熱で前記空燃比センサが空燃比を取得可能となる時期を遅くすることを特徴とする請求項1に記載の内燃機関の排気システム。
The exhaust pipe has an inclined portion whose upstream side is inclined to the vehicle upper side from a predetermined portion of the exhaust pipe, and the air-fuel ratio sensor is provided in the inclined portion,
The temperature raising time changing means includes
When the forward inclination angle of the vehicle detected by the inclination detection means is equal to or greater than the inclination angle of the inclination portion, the time when the air-fuel ratio sensor can acquire the air-fuel ratio by heating by the heating means is delayed. The exhaust system for an internal combustion engine according to claim 1, wherein the exhaust system is an exhaust system.
前記排気管路の途中には、可撓性材料で形成され該排気管路の屈曲を許容するフレキ管を有し、
前記空燃比センサは前記排気管路における前記フレキ管の上流側に設けられたことを特徴とする請求項1から7のいずれかに記載の内燃機関の排気システム。
In the middle of the exhaust pipe, a flexible pipe that is formed of a flexible material and allows the exhaust pipe to bend,
The exhaust system for an internal combustion engine according to any one of claims 1 to 7, wherein the air-fuel ratio sensor is provided on the upstream side of the flexible pipe in the exhaust pipe.
JP2006160651A 2006-06-09 2006-06-09 Exhaust system for internal combustion engine Expired - Fee Related JP4816268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160651A JP4816268B2 (en) 2006-06-09 2006-06-09 Exhaust system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160651A JP4816268B2 (en) 2006-06-09 2006-06-09 Exhaust system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007327454A true JP2007327454A (en) 2007-12-20
JP4816268B2 JP4816268B2 (en) 2011-11-16

Family

ID=38928068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160651A Expired - Fee Related JP4816268B2 (en) 2006-06-09 2006-06-09 Exhaust system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4816268B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150381A (en) * 2007-11-30 2009-07-09 Yamaha Motor Co Ltd Control device of oxygen sensor for automotive vehicle and air-fuel ratio control device and automotive vehicle incorporating the same
WO2012137282A1 (en) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
WO2020246302A1 (en) * 2019-06-03 2020-12-10 株式会社豊田自動織機 Ammonia combustion system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112120A (en) * 1997-06-13 1999-01-06 Calsonic Corp Exhaust system for vehicle
JPH11336533A (en) * 1998-05-26 1999-12-07 Toyota Motor Corp Exhaust emission control device
JP2004225617A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Protective device for sensor
JP2004353495A (en) * 2003-05-27 2004-12-16 Toyota Motor Corp Sensor protective device for detecting internal combustion engine exhaust gas component
JP2005042637A (en) * 2003-07-23 2005-02-17 Hitachi Unisia Automotive Ltd Heater control device of exhaust emission sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112120A (en) * 1997-06-13 1999-01-06 Calsonic Corp Exhaust system for vehicle
JPH11336533A (en) * 1998-05-26 1999-12-07 Toyota Motor Corp Exhaust emission control device
JP2004225617A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Protective device for sensor
JP2004353495A (en) * 2003-05-27 2004-12-16 Toyota Motor Corp Sensor protective device for detecting internal combustion engine exhaust gas component
JP2005042637A (en) * 2003-07-23 2005-02-17 Hitachi Unisia Automotive Ltd Heater control device of exhaust emission sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150381A (en) * 2007-11-30 2009-07-09 Yamaha Motor Co Ltd Control device of oxygen sensor for automotive vehicle and air-fuel ratio control device and automotive vehicle incorporating the same
WO2012137282A1 (en) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
WO2020246302A1 (en) * 2019-06-03 2020-12-10 株式会社豊田自動織機 Ammonia combustion system

Also Published As

Publication number Publication date
JP4816268B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4710615B2 (en) Heater control device for gas sensor
JP2007009878A (en) Exhaust pipe temperature estimating device for internal combustion engine
JP5798059B2 (en) Engine control device
JP2009257198A (en) Diagnosis apparatus for internal combustion engine
JP4816268B2 (en) Exhaust system for internal combustion engine
JP2008261820A (en) Exhaust fine particle measuring device of internal combustion engine
JP4802577B2 (en) Exhaust sensor heater control device
JP4737482B2 (en) Catalyst deterioration detection device for internal combustion engine
EP2029876B1 (en) Control apparatus and method for air-fuel ratio sensor
JP2007321561A (en) Heater control device of exhaust gas sensor
JP2008014235A (en) Heater control device for exhaust sensor
JP4888426B2 (en) Exhaust gas sensor control device
JP4135380B2 (en) Exhaust gas sensor heater control device
JP4396534B2 (en) Heater control device
WO2014080846A1 (en) Gas concentration sensor and method for warming up same
JP2004360563A (en) Exhaust gas detection device
JPH09184443A (en) Heater control device for air-fuel ratio sensor in downstream of catalyst
JP4170167B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008286153A (en) Vehicle control device
JP4821703B2 (en) Gas sensor control device
JP2001073827A (en) Exhaust gas sensor and its control device
JP2009091949A (en) Gas sensor controlling device
JP4780465B2 (en) Oxygen sensor failure diagnosis device
JP5630135B2 (en) Air-fuel ratio detection device
JP2008106698A (en) Exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees