JPH11335719A - Intermediate vessel for separating non-metallic inclusion and method for separating non-metallic inclusion - Google Patents

Intermediate vessel for separating non-metallic inclusion and method for separating non-metallic inclusion

Info

Publication number
JPH11335719A
JPH11335719A JP14628698A JP14628698A JPH11335719A JP H11335719 A JPH11335719 A JP H11335719A JP 14628698 A JP14628698 A JP 14628698A JP 14628698 A JP14628698 A JP 14628698A JP H11335719 A JPH11335719 A JP H11335719A
Authority
JP
Japan
Prior art keywords
blowing
molten metal
gas
intermediate container
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14628698A
Other languages
Japanese (ja)
Other versions
JP3632442B2 (en
Inventor
Yuji Miki
祐司 三木
Kenichi Tanmachi
健一 反町
Yasuo Kishimoto
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14628698A priority Critical patent/JP3632442B2/en
Publication of JPH11335719A publication Critical patent/JPH11335719A/en
Application granted granted Critical
Publication of JP3632442B2 publication Critical patent/JP3632442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an intermediate vessel for separating non-metallic inclusion which can efficiently and economically separate the non-metallic inclusion in molten metal, and a method for separating the non-metallic inclusion. SOLUTION: At the time of blowing while giving the rotation in the horizontal direction to the molten metal, gas blowing parts 3 having slender blowing surfaces 3a and 3b formed on the inner surface 1a, are arranged on the side surface and/or the bottom surface of the vessel. The gas blowing part is suitable to be a slit-like nozzle or a slender porous refractory. Further, the relation among the dimensional ratio (n) in the blowing surface, the gas blowing quantity Q and the rotating flow velocity V of the molten metal, is set so as to satisfy (Q/V)/n <=3.7×10<-4> to execute the separation of the non-metallic inclusion in the molten metal. In the gas blowing part, plural tubular nozzles may be used. In such a case, the relation among the distance L between mutually nozzles, the gas blowing quantity Q and the rotating flow speed V of the molten metal, may be set so as to satisfy Q/(L.V)<=1.7×10<-2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属中の非金
属介在物の分離を促進し、品質の高い金属製品を生産す
るための溶融金属の非金属介在物分離用中間容器および
溶融金属の非金属介在物分離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intermediate container for separating non-metallic inclusions of molten metal for promoting the separation of non-metallic inclusions in molten metal and producing high quality metal products, and an intermediate container for separating molten metal. The present invention relates to a method for separating nonmetallic inclusions.

【0002】[0002]

【従来の技術】鋼等の製造に一般に広く用いられている
連続鋳造法におけるタンディッシュにおいて溶融金属中
の非金属介在物の浮上分離をさらに徹底することは、製
品の品質レベルを決める重要な技術課題である。溶融金
属中の非金属介在物を分離する方法としては、例えば特
開昭58−22317号公報に、容器内の溶鋼を磁界によって
水平回転させ、溶鋼に遠心力を与えて非金属介在物を回
転中心部に集中させ、かつ浮上させながら溶鋼の回転中
心から遠い容器の底部から溶鋼を流出させる非金属介在
物の除去方法が提案されている。
2. Description of the Related Art Thorough separation of non-metallic inclusions in a molten metal in a tundish in a continuous casting method generally used widely in the production of steel and the like is an important technique for determining a product quality level. It is an issue. As a method for separating non-metallic inclusions in molten metal, for example, Japanese Patent Application Laid-Open No. 58-22317 discloses a method in which molten steel in a container is horizontally rotated by a magnetic field, and a centrifugal force is applied to the molten steel to rotate the non-metallic inclusions. There has been proposed a method of removing nonmetallic inclusions in which molten steel flows out from the bottom of a vessel far from the rotation center of molten steel while being concentrated and floated at a central portion.

【0003】また、特開平4-365809号公報には、溶融金
属に遠心力を与え、さらにArなどのガスを吹き込む非金
属介在物除去装置が開示されている。この非金属介在物
除去装置(図6(a))は、溶融金属を水平回転させる
回転槽からなり、回転槽の側壁内面から中心に向かって
半径の1/4 範囲までの底面および/または側壁底部から
湯面高さの1/4 範囲までの側面にガス吹込み用の通気性
耐火物を埋設し、さらに回転槽に連設する浮上槽を備え
たものである。
Further, Japanese Patent Application Laid-Open No. 4-365809 discloses a non-metallic inclusion removing apparatus which applies a centrifugal force to a molten metal and further blows a gas such as Ar. This non-metallic inclusion removing device (FIG. 6 (a)) is composed of a rotating tank for horizontally rotating molten metal, and has a bottom and / or side wall extending from the inner surface of the side wall of the rotating tank to a center to a quarter of the radius. It has a buried refractory for gas injection on the side from the bottom to a quarter of the height of the molten metal, and a floating tank connected to the rotating tank.

【0004】また、特開平7-316627号公報には、溶融金
属の注入・注出機能を有する中間保持容器(図6
(b))で、溶融金属を水平回転させるともに、注湯ノ
ズル直下の中間保持容器の底部から上方に向けてガスを
吹込む溶融金属中の非金属介在物の除去方法が提案され
ている。
Japanese Patent Application Laid-Open No. Hei 7-316627 discloses an intermediate holding container having a function of pouring and discharging molten metal (see FIG. 6).
In (b)), a method of removing non-metallic inclusions in the molten metal by horizontally rotating the molten metal and blowing gas upward from the bottom of the intermediate holding container immediately below the pouring nozzle has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
4-365809号公報、特開平7-316627号公報に記載された技
術では、溶融金属に吹き込まれたガスの気泡が粗大化す
ると、非金属介在物の捕捉分離効率が下がるため、微細
気泡を吹き込むことが重要となる。しかしながら、大量
の気泡を吹き込むと、単位体積当たりの気泡の数が多く
なって気泡の合体が起こり、気泡が粗大化して、溶鋼表
面へ吹き抜けたりして、非金属介在物の捕捉分離効果が
低減してしまう。このように、吹き込まれたガスの気泡
が粗大化すると、同量のガスを吹き込んでも非金属介在
物が分離されないだけでなく、溶鋼表面の撹乱が生じ、
スラグの巻き込みや溶鋼再酸化が助長される恐れがあっ
た。
SUMMARY OF THE INVENTION
In the technology described in 4-365809, JP-A-7-316627, when the gas bubbles blown into the molten metal are coarsened, the efficiency of capturing and separating nonmetallic inclusions is reduced, so that fine bubbles are blown. It becomes important. However, when a large amount of air bubbles are blown, the number of air bubbles per unit volume increases and the coalescence of the air bubbles occurs, and the air bubbles become coarse and blow out to the molten steel surface, thereby reducing the effect of capturing and separating nonmetallic inclusions. Resulting in. In this way, when the gas bubbles blown are coarsened, non-metallic inclusions are not separated even if the same amount of gas is blown, and disturbance of the molten steel surface occurs,
There is a possibility that slag entrainment and reoxidation of molten steel may be promoted.

【0006】本発明は、上記した従来技術の問題を有利
に解決し、効率的かつ経済的に溶融金属中の非金属介在
物を分離できる非金属介在物分離用中間容器および非金
属介在物分離方法を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems of the prior art, and enables an efficient and economical separation of non-metallic inclusions in a molten metal. The aim is to propose a method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を達成するために、鋭意検討した結果、溶融金属中の非
金属介在物を効率的に分離、除去するためには溶融金属
に回転力を付与するとともに、均一分散した大量の微細
気泡を吹き込むことが有効であることに想到した。回転
する溶融金属にガス気泡を吹き込むと、気泡は溶融金属
の回転流によって剪断力を受けることで分断され、微細
化されるものと考えられるが、同時に気泡は溶融金属の
流動により流され、吹き込まれた気泡が均一に分散しに
くくなる。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, in order to efficiently separate and remove nonmetallic inclusions in the molten metal, It has been found that it is effective to apply a rotational force and to blow a large amount of fine bubbles uniformly dispersed. When gas bubbles are blown into a rotating molten metal, the bubbles are considered to be broken down by being subjected to a shearing force due to the rotating flow of the molten metal and become finer, but at the same time, the bubbles are flowed and blown by the flow of the molten metal. It becomes difficult for the air bubbles to be uniformly dispersed.

【0008】そこで、本発明者らは、ガス吹込部の形状
に注目し、容器に配設されるガス吹込み部が容器内面に
形成する吹込面を、吹込面の溶融金属の回転流に沿う方
向の長さが、吹込面内でそれと直交する方向の長さより
短く、具体的には1/2 以下となる、細長い吹込面とする
のが、気泡を均一に分散させ、ガス体積分率を場所的に
均一にするのに有効であることを見いだした。具体的に
は、ガス吹込部は、スリット状ノズルあるいは細長い多
孔性耐火物(ポーラスプラグ)とするのがよい。また、
ガス吹込部として、管状のノズルを複数配設してもよ
く、この場合には複数の管状のノズルを離隔して配置
し、吹き込む気泡が合体するのを防止する必要があるこ
とを知見した。
Therefore, the present inventors pay attention to the shape of the gas blowing portion, and change the blowing surface formed on the inner surface of the container by the gas blowing portion provided in the container along the rotating flow of the molten metal on the blowing surface. The length of the direction is shorter than the length in the direction orthogonal to the inside of the blowing surface, specifically, it is less than 1/2, so that an elongated blowing surface is used to uniformly disperse bubbles and reduce the gas volume fraction. It has been found that it is effective to make the location uniform. Specifically, the gas blowing section is preferably a slit-shaped nozzle or an elongated porous refractory (porous plug). Also,
It has been found that a plurality of tubular nozzles may be provided as the gas blowing section, and in this case, it is necessary to arrange the plurality of tubular nozzles apart from each other to prevent the blown bubbles from uniting.

【0009】さらに、上記した形状のガス吹込部を用
い、容器内壁近くの溶融金属流速と吹き込むガス流量を
最適化することにより、溶融金属中に大量の微細気泡を
吹き込むことができ、溶融金属中の非金属介在物を効率
よく捕捉し、溶融金属の清浄度を向上することができる
ことを見いだした。本発明は、上記した知見に基づいて
構成されたものである。
Further, by optimizing the flow rate of the molten metal near the inner wall of the container and the flow rate of the gas to be blown using the gas blowing section having the above-described shape, a large amount of fine bubbles can be blown into the molten metal. It has been found that non-metallic inclusions can be efficiently captured and the cleanliness of the molten metal can be improved. The present invention has been made based on the above findings.

【0010】すなわち、本発明は、溶融金属に水平方向
の回転力を付与する回転力付与手段と該溶融金属中にガ
スを吹込むためのガス吹込部を備える溶融金属の非金属
介在物分離用中間容器において、前記中間容器は実質円
筒状の側壁と底面を有し、前記ガス吹込部は前記中間容
器の側壁および/または底面に設けられ、さらに前記ガ
ス吹込部が前記中間容器内面に形成する吹込面を、前記
ガス吹込部が側壁に設けられる場合は該吹込面が水平面
となす交線の最大長さwと、該吹込面内で該交線と直交
する直交線の最大長さlの比n=l/w が2以上である吹
込面とし、前記ガス吹込部が底面に設けられる場合は該
吹込面を、該吹込面の円周方向の最大長さwと、該吹込
面の半径方向の最大長さlの比n=l/w が2以上である
吹込面とすることを特徴とする非金属介在物分離用中間
容器であり、前記吹込面は、スリット状とするのがよ
く、また、前記ガス吹込部は、多孔質耐火物を用いても
よい。本発明の中間容器は溶融金属の連続鋳造用タンデ
ィッシュとするのが好ましい。
That is, the present invention provides an intermediate container for separating non-metallic inclusions of molten metal, comprising a rotating force applying means for applying a rotating force to the molten metal in the horizontal direction, and a gas blowing section for blowing gas into the molten metal. , The intermediate container has a substantially cylindrical side wall and a bottom surface, the gas blowing portion is provided on a side wall and / or a bottom surface of the intermediate container, and the gas blowing portion is formed on an inner surface of the intermediate container. When the gas blowing portion is provided on the side wall, a ratio n of a maximum length w of an intersection line formed by the blowing surface with a horizontal plane and a maximum length 1 of an orthogonal line orthogonal to the intersection line in the blowing surface = L / w is 2 or more, and when the gas blowing portion is provided on the bottom surface, the blowing surface is defined by the maximum length w of the blowing surface in the circumferential direction and the radial length of the blowing surface. It is assumed that the blowing surface is such that the ratio n of the maximum length 1 is 1 or more. Non-metallic inclusions separating intermediate container to symptom, the blow surface, good to the slit-like, also, the gas blowing section may use a porous refractory. The intermediate container of the present invention is preferably a tundish for continuous casting of molten metal.

【0011】また、本発明は、上記した非金属介在物分
離用中間容器を用いて、回転力付与手段により溶融金属
に水平方向の回転力を付与するとともに、ガス吹込部か
ら溶融金属にガスを吹込み溶融金属中の非金属介在物を
分離除去するにあたり、前記ガス吹込み部が前記中間容
器内面に形成する吹込面の寸法比nと、ガス吹込み量Q
と、溶融金属の回転流速Vとの関係を次(1)式 (Q/V)/n≦3.7 ×10-4 ………(1) (ここに、Q:ガス吹込み量(Nm3/sec )、V:溶融金
属の回転流速(m/sec )、n:l/w、w:吹込面が水
平面となす交線の最大長さ(m )、または、吹込面の円
周方向の最大長さ(m )、l:吹込面が水平面となす交
線と吹込面内で直交する直交線の最大長さ(m )、また
は吹込面の半径方向の最大長さ(m ))を満たす条件と
することを特徴とする溶融金属の非金属介在物分離方法
である。
Further, the present invention provides a method for applying a horizontal rotational force to a molten metal by a rotational force applying means by using the above-mentioned intermediate container for separating nonmetallic inclusions, and supplying a gas to the molten metal from a gas blowing section. In separating and removing nonmetallic inclusions in the blown molten metal, a dimensional ratio n of a blowing surface formed by the gas blowing portion on the inner surface of the intermediate container, and a gas blowing amount Q
And the rotational velocity V of the molten metal is expressed by the following equation (1) (Q / V) /n≦3.7×10 −4 (1) (where, Q: gas injection amount (Nm 3 / sec), V: rotational speed of the molten metal (m / sec), n: l / w, w: maximum length (m) of the line of intersection of the blowing surface with the horizontal plane, or maximum in the circumferential direction of the blowing surface Length (m), l: Condition that satisfies the maximum length (m) of an orthogonal line that intersects with the line of intersection between the blowing surface and the horizontal plane and the orthogonal line in the blowing surface, or the maximum radial length (m) of the blowing surface A method for separating non-metallic inclusions of molten metal, characterized in that:

【0012】また、本発明は、溶融金属に水平方向の回
転力を付与する回転力付与手段と該溶融金属中にガスを
吹込むためのガス吹込み部を備える溶融金属の非金属介
在物分離用中間容器において、前記中間容器は実質円筒
状の側壁と底面を有し、前記ガス吹込み部は前記中間容
器の壁側および/または側面に設けられ、さらに前記ガ
ス吹込み部は隔離して複数個設けられた管状ノズルから
なることを特徴とする非金属介在物分離用中間容器であ
り、前記中間容器を溶融金属の連続鋳造用タンディッシ
ュとするのが好ましい。
[0012] The present invention also provides an intermediate for separating non-metallic inclusions of molten metal, comprising a rotational force applying means for applying a horizontal rotational force to the molten metal, and a gas blowing section for blowing gas into the molten metal. In the container, the intermediate container has a substantially cylindrical side wall and a bottom surface, the gas blowing portion is provided on a wall side and / or a side surface of the intermediate container, and the gas blowing portion is separated from a plurality of gas blowing portions. An intermediate container for separating non-metallic inclusions, comprising a tubular nozzle provided, wherein the intermediate container is preferably a tundish for continuous casting of molten metal.

【0013】上記した非金属介在物分離用中間容器を用
いて、回転力付与手段により溶融金属に水平方向の回転
力を付与するとともに、ガス吹込部から溶融金属にガス
を吹込み溶融金属中の非金属介在物を分離除去するにあ
たり、前記ガス吹込部のノズル相互間の距離Lと、ガス
吹込み量Qと、溶融金属の回転流速Vとが次(2)式 Q/(L・V)≦1.7 ×10-2 ………(2) (ここに、Q:ガス吹込み量(Nm3/sec )、V:溶湯の
回転流速(m/sec )、L:ノズル相互間の距離(m )、
ガス吹込部が側壁の場合は、水平方向の平均距離(m
)、ガス吹込部が底面の場合は、円周方向の距離(m
))の関係を満たす条件とすることを特徴とする溶融
金属の非金属介在物分離方法である。
Using the intermediate container for separating nonmetallic inclusions described above, a rotating force is applied to the molten metal in a horizontal direction by a rotating force applying means, and a gas is blown into the molten metal from a gas blowing portion to cause the molten metal to have a molten metal. In separating and removing the non-metallic inclusions, the distance L between the nozzles of the gas blowing section, the gas blowing amount Q, and the rotational velocity V of the molten metal are expressed by the following equation (2): Q / (LV) ≦ 1.7 × 10 -2 (2) (where, Q: gas injection amount (Nm 3 / sec), V: rotational speed of molten metal (m / sec), L: distance between nozzles (m ),
If the gas inlet is on the side wall, the average horizontal distance (m
), When the gas inlet is on the bottom, the distance in the circumferential direction (m
A method for separating non-metallic inclusions of molten metal, characterized by satisfying the conditions of (1) and (2).

【0014】[0014]

【発明の実施の形態】本発明の非金属介在物分離用中間
容器1は、溶融金属4を取鍋20等から注湯ノズル13を介
し注入させ、溶融金属4に回転力を付与し回転流6とな
し、該回転流6にガスを微細気泡5として大量に吹込む
ことができ、溶融金属4中の非金属介在物の捕捉除去を
促進し、溶融金属の清浄度を向上させることができる。
非金属介在物を分離除去された溶融金属は、注出ノズル
17を介し注出される。本発明の中間容器の1例を図1に
示す。
BEST MODE FOR CARRYING OUT THE INVENTION In an intermediate container 1 for separating nonmetallic inclusions according to the present invention, a molten metal 4 is poured from a ladle 20 or the like via a pouring nozzle 13, and a rotating force is applied to the molten metal 4 to rotate the molten metal 4. 6, a large amount of gas can be blown into the rotary flow 6 as fine bubbles 5, thereby facilitating capture and removal of nonmetallic inclusions in the molten metal 4 and improving the cleanliness of the molten metal. .
The molten metal from which nonmetallic inclusions have been separated and removed
It is poured out via 17. One example of the intermediate container of the present invention is shown in FIG.

【0015】本発明の中間容器1は、溶融金属4に水平
方向の回転力を付与する回転力付与手段2と該溶融金属
4中にガス5を吹込むためのガス吹込部3を備える。本
発明の中間容器1の形状は、溶融金属に水平方向の均一
な回転流を付与するために実質円筒形の側壁と、これを
下側で閉止する底面を有する。なお、実質円筒形とは、
円筒形の他、水平方向の回転流に支障を生じない程度に
これを変形した形状、例えば逆円錐台形などが含まれ
る。
The intermediate container 1 of the present invention includes a rotating force applying means 2 for applying a rotating force to the molten metal 4 in a horizontal direction, and a gas blowing section 3 for blowing a gas 5 into the molten metal 4. The shape of the intermediate container 1 of the present invention has a substantially cylindrical side wall for imparting a uniform horizontal rotating flow to the molten metal, and a bottom surface which closes the lower side. In addition, the substantially cylindrical shape is
In addition to the cylindrical shape, a shape obtained by deforming the rotational flow so as not to hinder the horizontal flow, such as an inverted truncated cone, is included.

【0016】溶融金属に水平方向の回転流を付与する回
転付与手段2として、中間容器1の外部に移動磁場の発
生装置を設けて、電磁力によって溶融金属に駆動力を与
えるのがよい。また、ガス吹込部3は、図2に示すよう
に中間容器1の側壁および/または底面に設けられる。
ガス吹込部3が中間容器内面1aと形成する面を吹込面
3a、3bと称し、本発明では、この吹込面の形状を細
長い形状とする。具体的には、ガス吹込部は、吹込面が
下記条件を満足する、スリット状ノズルあるいは細長い
多孔性耐火物(ポーラスプラグ)とするのがよい。
As a rotation applying means 2 for applying a horizontal rotating flow to the molten metal, it is preferable to provide a moving magnetic field generating device outside the intermediate container 1 and to apply a driving force to the molten metal by an electromagnetic force. The gas blowing section 3 is provided on the side wall and / or the bottom of the intermediate container 1 as shown in FIG.
The surface formed by the gas blowing section 3 with the inner surface 1a of the intermediate container is referred to as blowing surfaces 3a and 3b. In the present invention, the shape of the blowing surface is elongated. Specifically, the gas blowing section is preferably a slit-shaped nozzle or an elongated porous refractory (porous plug) whose blowing surface satisfies the following conditions.

【0017】ガス吹込部が側壁に設けられる場合は、吹
込面3aが水平面sとなす交線の最大長さwと、該吹込
面内で該交線と直交する直交線の最大長さlの比n=l/
w が2以上である細長い吹込面とするのが好ましい。こ
れにより、溶融金属中に吹き込まれたガスは、回転流の
作用により微細な気泡となり、さらに気泡同士合体する
こともなく均一に分散され、ガス体積分率を場所的に均
一になる。
When the gas blowing portion is provided on the side wall, the maximum length w of the intersection line formed by the blowing surface 3a and the horizontal plane s and the maximum length l of the orthogonal line perpendicular to the intersection line in the blowing surface are defined. Ratio n = 1 /
It is preferable to use an elongated blowing surface where w is 2 or more. As a result, the gas blown into the molten metal becomes fine bubbles due to the action of the rotating flow, and is further uniformly dispersed without coalescence of the bubbles, so that the gas volume fraction is locally uniform.

【0018】ガス吹込部が底面に設けられる場合は、吹
込面の円周方向の最大長さwと、該吹込面の半径方向の
最大長さlの比n=l/w が2以上である吹込面3bとす
るのが好ましい。また、本発明では、上記した非介在物
分離用中間容器を用いて、回転力付与手段により溶融金
属に水平方向の回転力を付与するとともに、ガス吹込部
から溶融金属にガスを吹込み溶融金属中の非介在物を分
離除去する。本発明者の知見によれば、溶融金属の流速
をV(m/sec) 、ガス吹込量をQ(Nm3/sec) とすると、気
泡の分散はV/Qに比例してよくなる。Vを一定とする
と、気泡の分散を良くするためには、Qを少なくする必
要があるが、Qを少なくすると、気泡数が少なくなり非
介在物を捕捉する機会が少なくなる。一方、回転流の流
速が十分に大きい場合は、ガス吹込面の、溶融金属の水
平回転流に沿う方向の長さ、すなわち水平面となす交線
の最大長さw(m )を、該交線と吹込面内で直交する直
交線の最大長さl(m )の1/n とすれば、n倍のガスを
吹き込んでも、吹込面が正方形の場合と同等の気泡分散
密度が得られる。このような考えをもとに、本発明者ら
は、(Q/V)/nというパラメータを考えた。
When the gas blowing portion is provided on the bottom surface, the ratio n = l / w of the maximum circumferential length w of the blowing surface to the maximum radial length l of the blowing surface is 2 or more. It is preferable to use the blowing surface 3b. Further, in the present invention, using the intermediate container for separating non-inclusions described above, while applying a rotating force in the horizontal direction to the molten metal by the rotating force applying means, a gas is blown into the molten metal from the gas blowing unit to form the molten metal. Non-inclusions are separated and removed. According to the knowledge of the present inventor, when the flow rate of the molten metal is V (m / sec) and the gas injection amount is Q (Nm 3 / sec), the dispersion of bubbles is improved in proportion to V / Q. When V is constant, it is necessary to reduce Q in order to improve the dispersion of bubbles. However, when Q is reduced, the number of bubbles is reduced and the chance of capturing non-inclusions is reduced. On the other hand, when the flow velocity of the rotating flow is sufficiently large, the length of the gas injection surface in the direction along the horizontal rotating flow of the molten metal, that is, the maximum length w (m) of the line of intersection with the horizontal plane is determined by the intersection line And 1 / n of the maximum length l (m) of an orthogonal line perpendicular to the blowing surface, even if the gas is blown n times, a bubble dispersion density equivalent to that of a square blowing surface can be obtained. Based on such an idea, the present inventors considered a parameter of (Q / V) / n.

【0019】吹込面の寸法比nと、ガス吹込み量Qと、
溶融金属の回転流速Vとの関係を次(1)式 (Q/V)/n≦3.7 ×10-4 ………(1) ここに、Q:ガス吹込み量(Nm3/sec )、V:溶融金属
の回転流速(m/sec )、n:l/w、w:吹込面が水平
面となす交線の最大長さ(m )、または、吹込面の円周
方向の最大長さ(m )、l:吹込面が水平面となす交線
と吹込面内で直交する直交線の最大長さ(m )、または
吹込面の半径方向の最大長さ(m )を満たす条件とする
のが好ましい。
The dimensional ratio n of the blowing surface, the gas blowing amount Q,
The relationship between the rotational speed V of the molten metal and the rotational speed V is expressed by the following equation (1): (Q / V) /n≦3.7×10 −4 (1) where, Q: gas injection amount (Nm 3 / sec), V: Rotational flow velocity of the molten metal (m / sec), n: l / w, w: maximum length (m) of the line of intersection of the blowing surface with the horizontal plane, or maximum length of the blowing surface in the circumferential direction ( m), l: The condition is to satisfy the maximum length (m) of the line of intersection of the blowing surface with the horizontal plane and the orthogonal line perpendicular to the blowing surface, or the maximum length (m) of the blowing surface in the radial direction. preferable.

【0020】(Q/V)/nが3.7 ×10-4以下であれ
ば、気泡の合体する機会が少なく、非金属介在物の分離
がよい。本発明では、ガス吹込部として、上記したスリ
ット状ノズルあるいは細長い多孔性耐火物(ポーラスプ
ラグ)に代表される細長い形状のガス吹込部に代えて、
管状のノズルを使用したガス吹込部としてもよい。管状
のノズルとしては、ステンレスパイプのような高融点金
属のパイプを使用するのが好ましい。管状のノズルとす
る場合には、複数の管状のノズルを、中間容器の底面お
よび/または側壁に、離隔して、配置するのが好まし
い。管状ノズルが側壁に配設された場合には、各ノズル
は側壁面の一定の高さ位置で、等間隔にノズル相互間の
平均距離Lで配置するのが好ましく、また、千鳥状に配
置してもよい。なお、千鳥状に配置した場合には、ノズ
ル相互間の距離Lは、同一高さにあるノズル相互間の水
平距離を使用するものとする。
When (Q / V) / n is not more than 3.7 × 10 -4 , there is little opportunity for bubbles to coalesce and good separation of nonmetallic inclusions is achieved. In the present invention, as the gas blowing section, instead of the slit-shaped nozzle or the elongated gas blowing section represented by the elongated porous refractory (porous plug),
It may be a gas blowing section using a tubular nozzle. As the tubular nozzle, it is preferable to use a high melting point metal pipe such as a stainless steel pipe. In the case of a tubular nozzle, it is preferable to arrange a plurality of tubular nozzles on the bottom surface and / or side wall of the intermediate container so as to be separated from each other. When the tubular nozzles are arranged on the side wall, it is preferable that the nozzles are arranged at a constant height position on the side wall surface, at equal intervals, at an average distance L between the nozzles, and in a staggered manner. You may. In the case of the staggered arrangement, the distance L between the nozzles uses the horizontal distance between the nozzles at the same height.

【0021】上記したように、ガス吹込部として管状の
ノズルを複数個隔離して配設した非金属介在物分離用中
間容器を用いて、回転力付与手段により溶融金属に水平
方向の回転力を付与するとともに、ガス吹込部から溶融
金属にガスを吹込み溶融金属中の非金属介在物を分離除
去する。この際、管状ノズルの数が多い場合には、気泡
が合体する機会も増加するが、管状ノズル相互間の水平
方向平均距離をL(m)とすると、Lが大きいほど、気泡
の分散が良くなる。このことから、溶融金属の流速をV
(m/sec) 、ガス吹込量をQ(Nm3/sec) とすると、気泡の
分散はL・V/Qに比例してよくなる。そこで、本発明
者らは、ガス吹込部に、管状ノズルを用いたときには、
Q/(LV)をパラメータとして使用することを考えた。
As described above, by using the intermediate container for separating non-metallic inclusions in which a plurality of tubular nozzles are separated from each other as the gas blowing section, the horizontal rotational force is applied to the molten metal by the rotational force applying means. At the same time, a gas is blown into the molten metal from the gas blowing section to separate and remove nonmetallic inclusions in the molten metal. At this time, when the number of tubular nozzles is large, the chances of bubbles being combined also increase, but assuming that the average horizontal distance between tubular nozzles is L (m), the larger L is, the better the dispersion of bubbles is. Become. From this, the flow rate of the molten metal is set to V
(m / sec), and assuming that the gas injection amount is Q (Nm 3 / sec), the dispersion of bubbles is improved in proportion to L · V / Q. Therefore, the present inventors, when using a tubular nozzle for the gas blowing portion,
We considered using Q / (LV) as a parameter.

【0022】ガス吹込部のノズル相互間の距離Lと、ガ
ス吹込み量Qと、溶融金属の回転流速Vとを次(2)式 Q/(L・V)≦1.7 ×10-2 ………(2) (ここに、Q:ガス吹込み量(Nm3/sec )、V:溶湯の
回転流速(m/sec )、L:ノズル相互間の距離(m )、
ガス吹込部が側壁の場合は、水平方向の平均距離(m
)、ガス吹込部が底面の場合は、円周方向の距離(m
))の関係を満たす条件とするのが好ましい。Q/
(L・V)を1.7 ×10-2以下とすることにより、気泡の
分散が良くなる。
The distance L between the nozzles of the gas injection section, the gas injection amount Q, and the rotational speed V of the molten metal are expressed by the following equation (2): Q / (LV) ≦ 1.7 × 10 −2. ... (2) (where, Q: gas injection amount (Nm 3 / sec), V: rotational speed of molten metal (m / sec), L: distance between nozzles (m),
If the gas inlet is on the side wall, the average horizontal distance (m
), When the gas inlet is on the bottom, the distance in the circumferential direction (m
It is preferable that the conditions satisfy the relationship of)). Q /
By setting (LV) to 1.7 × 10 -2 or less, the dispersion of bubbles is improved.

【0023】本発明の中間容器は、例えば特開平4−36
5809号公報や特開平7−316627号公報に本発明者らが開
示する如き連続鋳造用タンディッシュが有利に適合す
る。
The intermediate container of the present invention is disclosed in, for example, JP-A-4-36.
A tundish for continuous casting as disclosed by the present inventors in JP-A-5809 and JP-A-7-316627 is advantageously applicable.

【0024】[0024]

【実施例】図1に示す形状の30ton タンディッシュに、
取鍋から160tonの溶鋼をスループット量:3ton /minで
注入させ、溶鋼に水平方向の回転流を付与するととも
に、溶鋼4中にガスを気泡5として吸込み、非金属介在
物を分離除去した。このような処理を行ったのち、タン
ディッシュから注出した溶鋼中の非金属介在物量を測定
し、タンディッシュによる溶鋼の非金属介在物の分離状
況を調査した。用いた溶鋼成分はC=0.02%、Si=0.01
%、Al=0.02%の低炭アルミキルド鋼とした。
EXAMPLE A 30 ton tundish of the shape shown in FIG.
160 tons of molten steel were injected from a ladle at a throughput of 3 tons / min to impart a horizontal rotating flow to the molten steel, and gas was sucked into the molten steel 4 as bubbles 5 to separate and remove nonmetallic inclusions. After such treatment, the amount of nonmetallic inclusions in the molten steel poured from the tundish was measured, and the state of separation of the nonmetallic inclusions in the molten steel by the tundish was investigated. The molten steel components used were C = 0.02%, Si = 0.01
%, Al = 0.02% low carbon aluminum killed steel.

【0025】本発明例では、内径0.9mの円筒容器と、容
器外側に溶鋼に回転力を付与する回転力付与手段2とし
て回転磁気発生装置と、容器側壁または底面にガスを吹
き込むガス吹込部3とを有する中間容器1を用いた。回
転磁気発生装置により、溶鋼に最外周における回転流速
を0.8m/sとする回転流を付与しながら、溶鋼中にガス吹
込部からArガスを吹き込んだ。なお、ガス吹込部は、表
1に示す各種の大きさのスリット状ノズル、多孔性耐火
物(ポーラスプラグ)、および複数の管状ノズルを用い
た。
In the embodiment of the present invention, a cylindrical container having an inner diameter of 0.9 m, a rotating magnetic generator as a rotating force applying means 2 for applying a rotating force to molten steel on the outside of the container, and a gas blowing unit 3 for blowing gas into the side wall or bottom surface of the container. Was used. Ar gas was blown into the molten steel from the gas blowing part while applying a rotating flow with a rotating flow rate of 0.8 m / s at the outermost circumference to the molten steel by the rotating magnetic generator. In addition, the gas injection part used the slit-shaped nozzle of various sizes shown in Table 1, a porous refractory (porous plug), and a plurality of tubular nozzles.

【0026】また、比較例として、本発明例と同一の容
器を用いて溶鋼回転のみ(ガス吹込なし)、ガス吹込の
み(溶鋼回転付与せず)を施した場合についても実験し
た。なお、スリット状ノズル、多孔性耐火物(ポーラス
プラグ)についてのガス吹込部の大きさは、ガス吹込部
が側壁にある場合には、中間容器内面とガス吹込部とが
形成する吹込面の水平面となす交線の最大長さw、該交
線と吹込面内で直交する直交線の最大長さlとで表示す
る。ガス吹込部が底面にある場合には、吹込面の円周方
向の最大長さwと、吹込面の半径方向の最大長さlとで
表示した。一方、管状ノズルの場合のガス吹込部の大き
さは、ノズル相互間の距離Lで表示する。ノズル相互間
の距離Lは、ノズルが容器側壁にある場合には、ノズル
間の容器壁面に沿う水平平均距離とし、底面にある場合
には、円周方向の平均距離とした。溶鋼の非金属介在物
の分離状況は、タンディッシュから注出した溶鋼中の介
在物量を測定し、溶鋼に回転を施したのみの場合(比較
例1)の介在物量を基準として、比較例1(溶鋼に回転
のみを施す)に対する比で示した。それらの結果を表1
に示す。
Further, as a comparative example, experiments were conducted using the same container as the example of the present invention, in which only molten steel rotation (without gas injection) and only gas injection (without molten steel rotation) were performed. The size of the gas blowing portion for the slit-shaped nozzle and the porous refractory (porous plug) is, when the gas blowing portion is on the side wall, the horizontal plane of the blowing surface formed by the inner surface of the intermediate container and the gas blowing portion. The maximum length w of the intersection line and the maximum length 1 of an orthogonal line orthogonal to the intersection line in the blowing plane. When the gas blowing section is located on the bottom surface, the maximum length w of the blowing surface in the circumferential direction and the maximum length l of the blowing surface in the radial direction are indicated. On the other hand, the size of the gas blowing portion in the case of a tubular nozzle is indicated by the distance L between the nozzles. The distance L between the nozzles was the horizontal average distance between the nozzles along the container wall surface when the nozzle was on the container side wall, and the circumferential average distance when the nozzle was on the bottom surface. The separation state of the non-metallic inclusions in the molten steel was determined by measuring the amount of inclusions in the molten steel poured out of the tundish and comparing the amount of inclusions in the case where the molten steel was simply rotated (Comparative Example 1) with reference to Comparative Example 1 (Only rotation is applied to molten steel). Table 1 shows the results.
Shown in

【0027】なお、No.6は、ガス吹込部として、図5に
示すように複数の管状ノズルを容器底面に配置した例で
あり、No.9は、図3に示すように複数の管状ノズルを容
器側壁の同一高さ上に等間隔に配置した例であり、No.1
0 は、図4に示すように複数の管状ノズルを容器器側壁
に千鳥状に配設した例である。
No. 6 is an example in which a plurality of tubular nozzles are arranged on the bottom of the container as shown in FIG. 5 as a gas blowing portion, and No. 9 is a plurality of tubular nozzles as shown in FIG. No. 1 was placed at the same height on the same side wall of the container.
0 is an example in which a plurality of tubular nozzles are arranged in a staggered manner on the side wall of the container as shown in FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から、本発明例は、いずれも注出した
溶鋼中の非金属介在物量は低く、非金属介在物の捕捉効
果が大きいことがわかる。これに対し、溶鋼回転流速、
ガス吹込量とガス吹込部の形状、間隔との関係が本発明
の範囲から外れる比較例は、非金属介在物の捕捉効果が
小さい。
From Table 1, it can be seen that, in each of the examples of the present invention, the amount of nonmetallic inclusions in the poured steel is low, and the effect of trapping nonmetallic inclusions is large. On the other hand, molten steel rotation velocity,
In the comparative example in which the relationship between the gas injection amount and the shape and interval of the gas injection unit is out of the range of the present invention, the effect of capturing nonmetallic inclusions is small.

【0030】[0030]

【発明の効果】本発明によれば、溶融金属中の非金属介
在物の分離が効率的かつ経済的に実施でき製品欠陥が低
減し、製品品質が向上するという産業上格別の効果を奏
する。また、高清浄度鋼の生産効率が格段に向上すると
いう効果も期待できる。
According to the present invention, non-metallic inclusions in the molten metal can be efficiently and economically separated, product defects are reduced, and product quality is improved. In addition, the effect that the production efficiency of high cleanliness steel is remarkably improved can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例を示す断面模式図である。FIG. 1 is a schematic sectional view showing one embodiment of the present invention.

【図2】本発明の中間容器におけるガス吹込部配置の1
例を示す模式図である。
FIG. 2 shows the arrangement of the gas blowing section in the intermediate container of the present invention.
It is a schematic diagram which shows an example.

【図3】管状ノズル配置の1実施例を示す模式図であ
る。
FIG. 3 is a schematic view showing one embodiment of a tubular nozzle arrangement.

【図4】千鳥状の管状ノズル配置の1実施例を示す模式
図である。
FIG. 4 is a schematic diagram showing one embodiment of a staggered tubular nozzle arrangement.

【図5】管状ノズル配置の1実施例を示す模式図であ
る。
FIG. 5 is a schematic view showing one embodiment of a tubular nozzle arrangement.

【図6】従来のタンディッシュの1例を示す模式図であ
る。
FIG. 6 is a schematic view showing an example of a conventional tundish.

【符号の説明】[Explanation of symbols]

1 中間容器 1a 容器内面 2 回転付与手段 3 ガス吹込部 3a 吹込面(側壁) 3b 吹込面(底面) 4 溶融金属 5 気泡(ガス) 6 回転方向 11 回転槽 12 浮上槽 13 注湯ノズル 14 磁場発生装置 15 通気性耐火物 16 気泡 17 注出ノズル 19 仕切り壁 20 取鍋 O 回転中心(回転軸) s 水平面 DESCRIPTION OF SYMBOLS 1 Intermediate container 1a Container inner surface 2 Rotation applying means 3 Gas blowing part 3a Blowing surface (side wall) 3b Blowing surface (bottom surface) 4 Molten metal 5 Bubbles (gas) 6 Rotation direction 11 Rotating tank 12 Floating tank 13 Pouring nozzle 14 Magnetic field generation Equipment 15 Breathable refractory 16 Bubbles 17 Discharge nozzle 19 Partition wall 20 Ladle O Rotation center (rotation axis) s Horizontal plane

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属に水平方向の回転力を付与する
回転力付与手段と該溶融金属中にガスを吹込むためのガ
ス吹込部を備える溶融金属の非金属介在物分離用中間容
器において、前記中間容器は実質円筒状の側壁と底面を
有し、前記ガス吹込部は前記中間容器の側壁および/ま
たは底面に設けられ、さらに前記ガス吹込部が前記中間
容器内面に形成する吹込面を、前記ガス吹込部が側壁に
設けられる場合は該吹込面が水平面となす交線の最大長
さwと、該吹込面内で該交線と直交する直交線の最大長
さlの比n=l/w が2以上である吹込面とし、前記ガス
吹込部が底面に設けられる場合は該吹込面を、該吹込面
の円周方向の最大長さwと、該吹込面の半径方向の最大
長さlの比n=l/w が2以上である吹込面とすることを
特徴とする非金属介在物分離用中間容器。
1. An intermediate container for separating non-metallic inclusions of molten metal, comprising: a rotating force applying means for applying a rotating force in a horizontal direction to the molten metal; and a gas blowing unit for blowing gas into the molten metal. The container has a substantially cylindrical side wall and a bottom surface, the gas blowing portion is provided on a side wall and / or a bottom surface of the intermediate container, and the gas blowing portion forms a gas blowing surface formed on the inner surface of the intermediate container with the gas. When the blowing portion is provided on the side wall, a ratio n = l / w of a maximum length w of an intersection line formed by the blowing surface with a horizontal plane and a maximum length 1 of an orthogonal line orthogonal to the intersection line within the blowing surface. When the gas blowing portion is provided on the bottom surface, the blowing surface is defined as a maximum circumferential length w of the blowing surface and a maximum radial length l of the blowing surface. Non-metallic interposition, characterized in that the blowing surface has a ratio n = l / w of 2 or more. Separating intermediate container.
【請求項2】 前記請求項1に記載の非金属介在物分離
用中間容器を用いて、回転力付与手段により溶融金属に
水平方向の回転力を付与するとともに、ガス吹込部から
溶融金属にガスを吹込み溶融金属中の非金属介在物を分
離除去するにあたり、前記ガス吹込み部が前記中間容器
内面に形成する吹込面の寸法比nと、ガス吹込み量Q
と、溶融金属の回転流速Vとの関係を下記(1)式を満
たす条件とすることを特徴とする溶融金属の非金属介在
物分離方法。 記 (Q/V)/n≦3.7 ×10-4 ………(1) ここに、Q:ガス吹込み量(Nm3/sec )、 V:溶融金属の回転流速(m/sec )、 n:l/w、 w:吹込面が水平面となす交線の最大長さ(m )、また
は、 、吹込面の円周方向の最
大長さ(m ) l:吹込面が水平面となす交線と吹込面内で直交する直
交線の最大長さ(m )、または吹込面の半径方向の最大
長さ(m )
2. Using the intermediate container for separating non-metallic inclusions according to claim 1, applying a rotating force in a horizontal direction to the molten metal by a rotating force applying means, and applying a gas to the molten metal from a gas blowing unit. In separating and removing nonmetallic inclusions in the molten metal, a dimensional ratio n of a blowing surface formed by the gas blowing portion on the inner surface of the intermediate container, and a gas blowing amount Q
And the rotational velocity V of the molten metal satisfying the following expression (1). Note (Q / V) /n≦3.7×10 −4 (1) where, Q: gas injection amount (Nm 3 / sec), V: rotational velocity of molten metal (m / sec), n : L / w, w: maximum length (m) of the line of intersection of the blowing surface with the horizontal plane, or, maximum length in the circumferential direction of the blowing surface (m) l: with the line of intersection of the blowing surface with the horizontal plane The maximum length of orthogonal lines that are orthogonal within the blowing plane (m) or the maximum radial length of the blowing plane (m)
【請求項3】 溶融金属に水平方向の回転力を付与する
回転力付与手段と該溶融金属中にガスを吹込むためのガ
ス吹込み部を備える溶融金属の非金属介在物分離用中間
容器において、前記中間容器は実質円筒状の側壁と底面
を有し、前記ガス吹込み部は前記中間容器の側壁および
/または側面に設けられ、さらに前記ガス吹込み部は隔
離して複数個設けられた管状のノズルからなることを特
徴とする非金属介在物分離用中間容器。
3. An intermediate container for separating non-metallic inclusions of molten metal, comprising: a rotating force applying means for applying a rotating force in a horizontal direction to the molten metal; and a gas blowing section for blowing gas into the molten metal. The intermediate container has a substantially cylindrical side wall and a bottom surface, the gas injection portion is provided on a side wall and / or a side surface of the intermediate container, and the gas injection portion is provided with a plurality of separated tubular members. An intermediate container for separating nonmetallic inclusions, comprising a nozzle.
【請求項4】 前記請求項3に記載の非金属介在物分離
用中間容器を用いて、回転力付与手段により溶融金属に
水平方向の回転力を付与するとともに、ガス吹込部から
溶融金属にガスを吹込み溶融金属中の非金属介在物を分
離除去するにあたり、前記ガス吹込部のノズル相互間の
距離Lと、ガス吹込み量Qと、溶融金属の回転流速Vと
が下記(2)式の関係を満たす条件とすることを特徴と
する溶融金属の非金属介在物分離方法。 記 Q/(L・V)≦1.7 ×10-2 ………(2) ここに、Q:ガス吹込み量(Nm3 /sec ) V:溶湯の回転流速(m /sec ) L:ノズル相互間の距離(m ) ガス吹込部が側壁の場合は、水平方向の平均距離(m ) ガス吹込部が底面の場合は、円周方向の距離(m )
4. Using the intermediate container for separating non-metallic inclusions according to claim 3, applying a rotational force to the molten metal in a horizontal direction by a rotational force applying means, and applying a gas to the molten metal from a gas blowing unit. In separating and removing non-metallic inclusions in the molten metal, the distance L between the nozzles of the gas injection section, the gas injection amount Q, and the rotational velocity V of the molten metal are expressed by the following equation (2). A method for separating non-metallic inclusions of molten metal, characterized by satisfying the following conditions: Note Q / (LV) ≦ 1.7 × 10 −2 (2) where, Q: gas injection amount (Nm 3 / sec) V: melt flow rate (m / sec) L: nozzle mutual Distance (m) Average distance in the horizontal direction when the gas inlet is on the side wall (m) Distance in the circumferential direction (m) when the gas inlet is on the bottom
JP14628698A 1998-05-27 1998-05-27 Non-metallic inclusion separation method Expired - Fee Related JP3632442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14628698A JP3632442B2 (en) 1998-05-27 1998-05-27 Non-metallic inclusion separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14628698A JP3632442B2 (en) 1998-05-27 1998-05-27 Non-metallic inclusion separation method

Publications (2)

Publication Number Publication Date
JPH11335719A true JPH11335719A (en) 1999-12-07
JP3632442B2 JP3632442B2 (en) 2005-03-23

Family

ID=15404274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14628698A Expired - Fee Related JP3632442B2 (en) 1998-05-27 1998-05-27 Non-metallic inclusion separation method

Country Status (1)

Country Link
JP (1) JP3632442B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247211B2 (en) 2000-11-27 2007-07-24 Sumitomo Metal Industries, Ltd. Method of manufacture of ultra-low carbon steel
CN112760454A (en) * 2020-12-23 2021-05-07 二重(德阳)重型装备有限公司 Purification method for molten steel of die casting tundish
CN114472818A (en) * 2021-12-27 2022-05-13 东北大学 Device for effectively removing impurities by blowing at bottom of cyclone chamber and using method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247211B2 (en) 2000-11-27 2007-07-24 Sumitomo Metal Industries, Ltd. Method of manufacture of ultra-low carbon steel
CN112760454A (en) * 2020-12-23 2021-05-07 二重(德阳)重型装备有限公司 Purification method for molten steel of die casting tundish
CN114472818A (en) * 2021-12-27 2022-05-13 东北大学 Device for effectively removing impurities by blowing at bottom of cyclone chamber and using method

Also Published As

Publication number Publication date
JP3632442B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
US3517726A (en) Method of introducing molten metal into a continuous casting mold
US3578064A (en) Continuous casting apparatus
JP2006035272A (en) Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
JP4556804B2 (en) Molten metal injection tube and injection method
JPH11335719A (en) Intermediate vessel for separating non-metallic inclusion and method for separating non-metallic inclusion
JPH09295109A (en) Method for continuously casting clean molten metal
JP6135462B2 (en) Method for preventing outflow of non-metallic inclusions in molten metal
JPH0563529B2 (en)
JP4289182B2 (en) Tundish injection tube
JP2005000957A (en) Method for removing inclusion in tundish, and weir used therefor
JP2001300698A (en) Apparatus for reducing inclusion in molten metal
JP3264238B2 (en) Tundish for casting clean steel
JPH07164116A (en) Tundish for continuously casting steel and method of continuously casting steel for using this tundish
JP3520640B2 (en) Method for removing nonmetallic inclusions in molten metal
JP2976848B2 (en) Highly clean method for molten steel in tundish
JPH07316627A (en) Method for removing inclusion in molten metal
JP7200811B2 (en) Steel continuous casting method
JPH07290210A (en) Method and device for removing non-metallic inclusion in molten metal
JPH11216541A (en) Method and device to remove non-metallic inclusion in molten metal
JPH04365809A (en) Device for removing non-metallic inclusion in molten metal
JPH08150448A (en) Method and device for preventing clogging of ladle nozzle
JPH05105933A (en) Method for treating residual slag in tundish
JPH09192800A (en) Immersion nozzle for continuous casting
JPH0647691B2 (en) Method of reducing inclusions in molten steel
JPH0217733Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees