JPH11333258A - Control of operating pressure in membrane separation process - Google Patents

Control of operating pressure in membrane separation process

Info

Publication number
JPH11333258A
JPH11333258A JP14716498A JP14716498A JPH11333258A JP H11333258 A JPH11333258 A JP H11333258A JP 14716498 A JP14716498 A JP 14716498A JP 14716498 A JP14716498 A JP 14716498A JP H11333258 A JPH11333258 A JP H11333258A
Authority
JP
Japan
Prior art keywords
pressure
liquid
membrane separation
treated
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14716498A
Other languages
Japanese (ja)
Other versions
JP4137231B2 (en
Inventor
Yoshio Konishi
嘉雄 小西
Kazutaka Takada
一貴 高田
Katsuyoshi Tanida
克義 谷田
Yoshie Takeo
由重 竹尾
Tadashi Enomoto
正 榎本
Mitsushige Shimada
光重 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP14716498A priority Critical patent/JP4137231B2/en
Publication of JPH11333258A publication Critical patent/JPH11333258A/en
Application granted granted Critical
Publication of JP4137231B2 publication Critical patent/JP4137231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To vary the pressure of a liquid to be treated introduced into a membrane separation device in compliance with the density of the liquid to be treated so that the device is operated by the maximum value (optimum operating pressure) of the operating pressure in the linear proportional relation with the penetrating flux density. SOLUTION: A liquid to be treated stored in a storage tank 1 for the liquid to be treated is pressurized by a pressurizing feed pump 3 and introduced into a membrane separation device 5. A densitometer 2 and a pressure gauge 4 are disposed on a feed line 8 for the liquid to be treated formed all through from the storage tank 1 for the liquid to be treated to the membrane separation device 5. The optimum operating pressure is inputted into the desitometer 2, and the pressure measured by the pressure gauge 4 is fed back to the densitometer 2 and the feed pressure for the liquid to be treated of the pressurizing feed pump 3 is adjusted so that the device can be operated by the optimum operating pressure for the density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラテックス濃縮、
コロイドシリカ濃縮、有価物回収、廃液処理、金属分
級、水道水濾過、活性汚泥処理等に有用な膜分離プロセ
スの操作圧力の制御方法に関する。
The present invention relates to a latex concentrate,
The present invention relates to a method for controlling an operation pressure of a membrane separation process useful for colloidal silica concentration, valuable resource recovery, waste liquid treatment, metal classification, tap water filtration, activated sludge treatment, and the like.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】膜分
離装置では、加圧ポンプで被処理液を分離膜に供給し、
分離膜によりその被処理液は溶質が除去された透過液
と、溶質が濃縮された濃縮液とに分離される。このよう
な膜分離装置において操作圧力を制御するには、一般的
に、手動または自動の圧力調整弁により行われる。例え
ば、特開平10−43552号公報には、図8に示すよ
うな膜分離プロセスの操作圧力の制御方法が開示されて
いる。この公報に開示された発明は、5MPaを超える
ような高圧域の制御を行う際に圧力調整弁への負担が大
きくなり、安定した圧力制御が困難になることがあるの
で、低圧域から高圧域までの任意の圧力で常に安定に制
御することが可能な膜分離プロセスの操作圧力の制御方
法を提供するものであり、以下に説明するような発明が
開示されている。すなわち、原液タンク21に収容され
た原液は加圧送給ポンプ22により分離膜モジュール2
3の原液入口24に供給され、分離膜モジュール23に
おいて、溶質が除かれた透過液と溶質が濃縮された濃縮
液とに分離され、透過液は透過液出口25から排出さ
れ、濃縮液は濃縮液出口26から管路27に排出され
る。管路27には、自動調圧弁28およびオリフィス2
9が直列に配置されており、このオリフィス29は、あ
る一定の流速、一定の溶液密度および粘度において、5
MPaの圧力損失を発生する。オリフィス29にはバイ
パス回路30が設けられ、そのバイパス回路30に仕切
弁31が配置されている。上記のように構成される膜分
離プロセスにおいて、5MPaまでの低圧域での圧力制
御を行う場合には、バイパス回路30の仕切弁31を開
くことによりオリフィス29の効果が排除され、自動調
圧弁28のみで圧力制御が行われる。一方、10MPa
までの高圧域での圧力制御を行う場合には、バイパス回
路30の仕切弁31を閉じることによりオリフィス29
で5MPaの圧力損失を発生させ、残り5MPaの圧力
が自動調圧弁28で制御される。このように、上記公報
に記載された圧力制御方法は、操作圧力範囲を大小に分
けて、それぞれの圧力範囲において圧力を制御しようと
するものである。ところが、このような圧力制御方法で
は、膜分離装置において満足な膜分離ができないことが
ある。
2. Description of the Related Art In a membrane separation apparatus, a liquid to be treated is supplied to a separation membrane by a pressure pump.
The liquid to be treated is separated by the separation membrane into a permeate from which the solute has been removed and a concentrate from which the solute has been concentrated. In such a membrane separation device, the operation pressure is generally controlled by a manual or automatic pressure regulating valve. For example, Japanese Patent Laid-Open Publication No. Hei 10-43552 discloses a method for controlling the operating pressure of the membrane separation process as shown in FIG. According to the invention disclosed in this publication, when controlling a high-pressure range exceeding 5 MPa, a load on a pressure regulating valve is increased, and stable pressure control may be difficult. The present invention provides a method for controlling the operating pressure of a membrane separation process that can always be stably controlled at an arbitrary pressure up to and including the invention described below. That is, the stock solution stored in the stock solution tank 21 is separated from the separation membrane module 2 by the pressurized feed pump 22.
3 and is separated into a permeate from which the solute has been removed and a concentrated solution in which the solute has been concentrated in the separation membrane module 23. The permeate is discharged from the permeate outlet 25, and the concentrate is concentrated. The liquid is discharged from a liquid outlet 26 to a conduit 27. An automatic pressure regulating valve 28 and an orifice 2
9 are arranged in series, the orifice 29 having a constant flow rate, a constant solution density and viscosity
A pressure loss of MPa occurs. A bypass circuit 30 is provided in the orifice 29, and a gate valve 31 is disposed in the bypass circuit 30. When performing pressure control in a low pressure range up to 5 MPa in the membrane separation process configured as described above, the effect of the orifice 29 is eliminated by opening the gate valve 31 of the bypass circuit 30, and the automatic pressure regulating valve 28. Pressure control is performed only by the pressure control. On the other hand, 10MPa
When the pressure control is performed in the high pressure range up to the orifice 29, the gate valve 31 of the bypass circuit 30 is closed to close the orifice 29.
Causes a pressure loss of 5 MPa, and the remaining pressure of 5 MPa is controlled by the automatic pressure regulating valve 28. As described above, the pressure control method described in the above publication divides the operating pressure range into large and small, and attempts to control the pressure in each pressure range. However, with such a pressure control method, satisfactory membrane separation may not be performed in the membrane separation apparatus.

【0003】例えば、微小孔を有する透過性膜を備えた
クロスフロー型膜分離装置によりラテックスを濃縮する
場合、透過性膜により被処理ラテックスを透過成分と非
透過成分とに分離し、この非透過成分を再び膜分離装置
入側に供給して同じく透過性膜により透過成分と非透過
成分に分離し、同様の操作を繰り返すことによって非透
過成分の濃度を高めていく場合、操作圧力と、透過性膜
を透過する透過液の透過流束との関係は直線比例関係に
はなく、図2に示すような関係にある。図2において、
記号○、□、△、◇は、それぞれ、濃度1%、5%、1
0%、20%を示す。図2に示すように、濃度1%の場
合、操作圧力約10kg/cm2 までは、操作圧力と透
過流束は直線比例関係にあるが、それ以上に操作圧力が
大きくなっても、透過流束は増えない。また、濃度5
%、10%、20%の場合、透過流束と直線比例関係に
ある操作圧力の最大値は、それぞれ、約8kg/c
2 、約4kg/cm2 、約2kg/cm2 である。上
記各濃度において、透過流束と直線比例関係にある最大
操作圧力以上の圧力を被処理液に加えても、透過流束は
ほとんど増えず、逆に膜表面にゲル層が形成されたり、
膜の流路が閉塞されるというような弊害が発生する可能
性がある。このように、被処理液の濃度によって適正な
操作圧力が変化する関係にある場合に、上記公報に記載
されたような圧力制御方法では、高い透過流束は得られ
ず、上記したような弊害が発生するだけである。
For example, when the latex is concentrated by a cross-flow type membrane separation device having a permeable membrane having micropores, the latex to be treated is separated into a permeable component and a non-permeable component by the permeable membrane, and this non-permeable component is separated. When the components are supplied again to the inlet side of the membrane separation device and separated into permeate components and non-permeate components by the same permeable membrane, and the same operation is repeated to increase the concentration of the non-permeate components, the operation pressure and the permeation The relationship with the permeate flux of the permeate passing through the permeable membrane is not in a linear proportional relationship, but in a relationship as shown in FIG. In FIG.
The symbols ○, □, Δ, and Δ indicate concentrations of 1%, 5%, and 1%, respectively.
0% and 20% are shown. As shown in FIG. 2, when the concentration is 1%, the operating pressure and the permeation flux are linearly proportional up to the operation pressure of about 10 kg / cm 2. The bunch does not increase. In addition, the density 5
%, 10%, and 20%, the maximum value of the operating pressure, which is linearly proportional to the permeation flux, is about 8 kg / c, respectively.
m 2 , about 4 kg / cm 2 and about 2 kg / cm 2 . At each of the above concentrations, even if a pressure equal to or higher than the maximum operating pressure in a linear proportional relationship with the permeation flux is applied to the liquid to be treated, the permeation flux hardly increases, and conversely, a gel layer is formed on the membrane surface,
There is a possibility that an adverse effect such as blockage of the flow path of the membrane may occur. As described above, when there is a relationship in which the appropriate operation pressure changes depending on the concentration of the liquid to be treated, the pressure control method as described in the above publication cannot obtain a high permeation flux, and Only occurs.

【0004】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、透過
流束と直線比例関係にある操作圧力の最大値(最適操作
圧力)で操作しうるように、被処理液の濃度に応じて膜
分離装置に供給する被処理液の圧力を変化しうる膜分離
プロセスの操作圧力の制御方法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to determine the maximum value of the operating pressure (optimal operating pressure) which is linearly proportional to the permeation flux. An object of the present invention is to provide a method for controlling an operation pressure of a membrane separation process, which can change a pressure of a liquid to be treated supplied to a membrane separation apparatus according to a concentration of the liquid to be treated so as to be operable.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の要旨は、被処理液貯留タンクに貯留した被処
理液を加圧して膜分離装置に供給し、この膜分離装置に
配置した透過性膜により被処理液を透過液と濃縮液に分
離し、透過液を系外に排出し、濃縮液を被処理液貯留タ
ンクに戻し、上記操作を繰り返して行うことにより濃縮
液の濃度を高める膜分離プロセスにおいて、被処理液の
濃度を測定し、その濃度における最適操作圧力で濾過操
作をしうるように、膜分離装置に供給される被処理液の
圧力を変化させることを特徴とする膜分離プロセスの操
作圧力の制御方法を第一の発明とし、上記第一の発明に
おいて、被処理液貯留タンクから膜分離装置に至る被処
理液送給経路に圧送手段と圧力計をこの順で配し、被処
理液貯留タンクまたは被処理液貯留タンクから膜分離装
置に至る被処理液送給経路に濃度計を配し、最適操作圧
力で操作しうるように、上記濃度計の指示により圧送手
段の圧力を変化させることを特徴とする膜分離プロセス
の操作圧力の制御方法を第二の発明とし、上記第一の発
明において、被処理液貯留タンクから膜分離装置に至る
被処理液送給経路に圧送手段と圧力計をこの順で配し、
被処理液貯留タンクまたは被処理液貯留タンクから膜分
離装置に至る被処理液送給経路に濃度計を配し、被処理
液送給経路の濃度計と圧力計の間に自動圧力調整弁を配
し、該自動圧力調整弁から被処理液貯留タンクに至るバ
イパス経路を設け、最適操作圧力で操作しうるように、
上記濃度計の指示により自動圧力調整弁の圧力を変化さ
せることを特徴とする膜分離プロセスの操作圧力の制御
方法を第三の発明とし、上記第一の発明において、被処
理液貯留タンクから膜分離装置に至る被処理液送給経路
に圧送手段と圧力計をこの順で配し、被処理液貯留タン
クまたは被処理液貯留タンクから膜分離装置に至る被処
理液送給経路に濃度計を配し、膜分離装置から被処理液
貯留タンクに至る濃縮液送給経路に自動圧力調整弁を配
し、最適操作圧力で操作しうるように、上記濃度計の指
示により自動圧力調整弁の圧力を変化させることを特徴
とする膜分離プロセスの操作圧力の制御方法を第四の発
明とし、上記第一の発明において、被処理液貯留タンク
から膜分離装置に至る被処理液送給経路に圧送手段と圧
力計をこの順で配し、被処理液貯留タンクまたは被処理
液貯留タンクから膜分離装置に至る被処理液送給経路に
濃度計を配し、被処理液送給経路の濃度計と圧力計の間
に自動圧力調整弁を配し、該自動圧力調整弁から被処理
液貯留タンクに至るバイパス経路を設け、さらに、膜分
離装置から被処理液貯留タンクに至る濃縮液送給経路に
自動圧力調整弁を配し、最適操作圧力で操作しうるよう
に、上記濃度計の指示により自動圧力調整弁の圧力を変
化させることを特徴とする膜分離プロセスの操作圧力の
制御方法を第五の発明とし、上記第二、第三、第四また
は第五の発明において、膜分離装置から透過液を排出す
る透過液排出経路に積算流量計を配し、以下の式により
算出される計算濃度を濃度計により測定された計測濃度
に代えて用いることを特徴とする膜分離プロセスの操作
圧力の制御方法を第六の発明とする。 計算濃度=(被処理液の原液量×初期濃度)/(被処理
液の原液量−積算流量値) 以上のように構成される本発明によれば、被処理液の濃
度に適した最適操作圧力で膜分離を行うために、あらか
じめ被処理液の操作圧力と透過流束の関係について、濃
度をパラメーターとして、例えば、図2に示すような相
関図を求めておく。そして、その図を元にして、図3に
示すような濃度と最適操作圧力(透過流束と直線比例関
係にある操作圧力の最大値)の相関図を得る。そこで、
被処理液貯留タンクから膜分離装置に至る被処理液送給
経路に配した濃度計による計測濃度または積算流量計で
積算した透過液の流量より算出した計算濃度に応じて、
最適操作圧力で操作しうるように、膜分離装置に送給す
る被処理液の圧力を変化させることにより、効率的に膜
分離を行うことができる。
In order to achieve the above object, the gist of the present invention is to pressurize a liquid to be treated stored in a liquid to be treated storage tank, supply the liquid to a membrane separation apparatus, and arrange the liquid in the membrane separation apparatus. The liquid to be treated is separated into a permeated liquid and a concentrated liquid by the permeable membrane, the permeated liquid is discharged out of the system, the concentrated liquid is returned to the liquid to be treated storage tank, and the concentration of the concentrated liquid is obtained by repeating the above operation. In the membrane separation process, the pressure of the liquid to be treated supplied to the membrane separation device is changed so that the concentration of the liquid to be treated is measured and the filtration operation can be performed at the optimum operating pressure at the concentration. The method for controlling the operating pressure of the membrane separation process to be performed is referred to as a first invention, and in the first invention, a pressure feeding means and a pressure gauge are provided in this order on a processing liquid supply path from the processing liquid storage tank to the membrane separation device. To the storage tank for the liquid to be treated. Arranges a concentration meter in the processing liquid supply path from the processing liquid storage tank to the membrane separation device, and changes the pressure of the pressure feeding means according to the instruction of the concentration meter so that the operation can be performed at the optimum operating pressure. The method for controlling the operation pressure of the membrane separation process is characterized by the second invention, and in the first invention, the pressure-feeding means and the pressure gauge are provided on the liquid-to-be-processed supply path from the liquid-to-be-processed storage tank to the membrane separation device. Arrange in this order,
A concentration meter is provided in the liquid supply path from the liquid storage tank or the liquid storage tank to the membrane separation device, and an automatic pressure regulating valve is provided between the concentration meter and the pressure gauge in the liquid supply path. To provide a bypass path from the automatic pressure control valve to the liquid storage tank to be processed, so that it can be operated at the optimum operation pressure,
The third invention provides a method for controlling the operating pressure of the membrane separation process, which comprises changing the pressure of the automatic pressure regulating valve according to the instruction of the concentration meter. A pressure-feeding means and a pressure gauge are arranged in this order in the liquid-to-be-processed supply path leading to the separation device, and a concentration meter is provided in the liquid-to-be-processed supply path from the liquid-to-be-processed storage tank or the liquid-to-be-processed storage tank to the membrane separation device. An automatic pressure regulating valve is arranged in the concentrated liquid supply path from the membrane separation device to the liquid storage tank to be treated, and the pressure of the automatic pressure regulating valve is instructed by the concentration meter so that the valve can be operated at the optimum operating pressure. The method for controlling the operation pressure of the membrane separation process is characterized in that the pressure is changed to a pressure in the processing liquid supply path from the processing liquid storage tank to the membrane separation device. Means and pressure gauge in this order , A concentration meter is provided in the liquid supply path from the liquid storage tank or the liquid storage tank to the membrane separation device, and an automatic pressure regulating valve is provided between the concentration meter and the pressure gauge in the liquid supply path. , A bypass path is provided from the automatic pressure control valve to the liquid storage tank, and an automatic pressure control valve is provided in the concentrated liquid supply path from the membrane separator to the liquid storage tank. As a fifth invention, a method for controlling the operation pressure of the membrane separation process, characterized in that the pressure of the automatic pressure control valve is changed by the instruction of the concentration meter so that the operation can be performed with the operation pressure, In the third, fourth or fifth invention, an integrated flow meter is disposed in a permeate discharge path for discharging the permeate from the membrane separation device, and the calculated concentration calculated by the following equation is measured by a concentration meter. Characterized in that it is used in place of The method of controlling the operating pressure of the release process to the sixth aspect of the present invention. Calculated concentration = (amount of undiluted solution of liquid to be treated × initial concentration) / (amount of undiluted solution of liquid to be treated−integrated flow value) According to the present invention configured as described above, an optimal operation suitable for the concentration of the liquid to be treated In order to perform membrane separation by pressure, for example, a correlation diagram as shown in FIG. 2 is obtained in advance with respect to the relationship between the operation pressure of the liquid to be treated and the permeation flux, using the concentration as a parameter. Then, based on the figure, a correlation diagram of the concentration and the optimum operation pressure (the maximum value of the operation pressure in a linear proportional relationship with the permeation flux) as shown in FIG. 3 is obtained. Therefore,
According to the concentration measured by the concentration meter arranged in the treatment liquid supply path from the treatment liquid storage tank to the membrane separation device or the concentration calculated from the flow rate of the permeate integrated by the integrating flow meter,
The membrane separation can be performed efficiently by changing the pressure of the liquid to be treated fed to the membrane separation device so that the operation can be performed at the optimum operation pressure.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施例を図面を参
照しながら説明する。図1は、第二の発明を適用するに
好適である膜分離プロセスの全体配置図である。図1に
おいて、1は被処理液11を貯留する被処理液貯留タン
ク、2は濃度計、3はインバータ制御式の加圧送給ポン
プ、4は圧力計、5は透過性膜を備えた膜分離装置であ
り、被処理液貯留タンク1と膜分離装置5は被処理液送
給経路8で接続されている。なお、濃度計2は被処理液
貯留タンク1の中に配置することもできる。9は膜分離
装置5から透過液を排出する透過液排出経路である。膜
分離装置5から被処理液貯留タンク1には濃縮液送給経
路10が形成されている。濃度計2には上記最適操作圧
力が入力されており、圧力計4で測定された圧力は濃度
計2にフィードバックされ、インバータ制御式の加圧送
給ポンプ3は、濃度計2と電気的に接続されている。そ
して、圧力計4で測定された圧力が最適操作圧力よりも
高ければ降圧するように、あるいは、最適操作圧力より
も低ければ昇圧するように、濃度計2からインバータ制
御式の加圧送給ポンプ3に対して指示が出される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall layout diagram of a membrane separation process suitable for applying the second invention. In FIG. 1, 1 is a liquid storage tank for storing a liquid 11 to be processed, 2 is a concentration meter, 3 is a pressurized feed pump of an inverter control type, 4 is a pressure gauge, and 5 is a membrane separator having a permeable membrane. The treatment liquid storage tank 1 and the membrane separation device 5 are connected by a treatment liquid supply path 8. It should be noted that the concentration meter 2 can be disposed in the liquid storage tank 1 to be treated. 9 is a permeate discharge path for discharging the permeate from the membrane separation device 5. A concentrated liquid supply path 10 is formed from the membrane separation device 5 to the liquid storage tank 1 to be treated. The above-mentioned optimum operating pressure is input to the densitometer 2, and the pressure measured by the pressure gauge 4 is fed back to the densitometer 2, and the inverter-controlled pressurized feed pump 3 is electrically connected to the densitometer 2. Have been. The concentration meter 2 controls the pressure of the inverter-controlled pressurized feed pump 3 so as to decrease the pressure if the pressure measured by the pressure gauge 4 is higher than the optimum operating pressure, or to increase the pressure if the pressure measured is lower than the optimum operating pressure. Is instructed.

【0007】膜分離装置5としては、一般的に使用され
ているもの(例えば、中空系膜を用いたもの)を使用す
ることもできるが、本出願人により出願された、膜分離
装置内に配置した透過性膜を水平面内の円周方向に微小
振幅で往復運動を行わせつつ被処理液を透過液と非透過
液に分離する装置を利用すれば、透過流束が大きく、膜
表面に目詰まりを起こすことなく、被処理液を高濃度ま
で濃縮することができるので、好ましい(例えば、特願
平10−119153号参照)。
As the membrane separation device 5, a commonly used one (for example, one using a hollow membrane) can be used. However, in the membrane separation device filed by the present applicant, By using a device that separates the liquid to be treated into a permeate and a non-permeate while reciprocating the arranged permeable membrane in the horizontal plane at a small amplitude in the circumferential direction, the permeation flux is large, This is preferable because the liquid to be treated can be concentrated to a high concentration without causing clogging (for example, see Japanese Patent Application No. 10-119153).

【0008】以上のように構成される膜分離プロセスに
よれば、以下のようにして膜分離を行うことができる。
According to the membrane separation process configured as described above, membrane separation can be performed as follows.

【0009】まず、被処理液貯留タンク1に被処理液1
1を注入する。このとき、被処理液の容積を測定してお
く。そして、被処理液の初期濃度における操作圧力が最
適になるように、図3に基づく最適操作圧力で加圧送給
ポンプ3の運転を開始する。すると、被処理液は最適操
作圧力で経路8を経て膜分離装置5に送られる。その膜
分離装置5において膜分離された被処理液は、透過液と
濃縮液に分かれて、透過液は経路9より排出され、濃縮
液は経路10を経て被処理液貯留タンク1に送給され
る。この膜分離プロセスにおける被処理液の濃度は、濃
度計2により測定されている。上記したように、インバ
ータ制御式の加圧送給ポンプ3は、濃度計2と電気的に
接続されており、濃度計2の指示を受けて作動すること
が可能である。
First, the processing liquid 1 is stored in the processing liquid storage tank 1.
Inject 1. At this time, the volume of the liquid to be treated is measured. Then, the operation of the pressurized feed pump 3 is started at the optimum operation pressure based on FIG. 3 so that the operation pressure at the initial concentration of the liquid to be treated becomes optimum. Then, the liquid to be treated is sent to the membrane separation device 5 via the path 8 at the optimum operating pressure. The liquid to be treated which has been subjected to membrane separation in the membrane separation device 5 is separated into a permeate and a concentrate, and the permeate is discharged from the passage 9, and the concentrate is sent to the treatment liquid storage tank 1 via the passage 10. You. The concentration of the liquid to be treated in this membrane separation process is measured by the densitometer 2. As described above, the inverter-controlled pressurized feed pump 3 is electrically connected to the densitometer 2 and can operate in response to an instruction from the densitometer 2.

【0010】被処理液貯留タンク1に戻された濃縮液は
経路8を経て膜分離装置5に送られるが、濃度計2にフ
ィードバックされた圧力計4の圧力がそのときの被処理
液の濃度における最適操作圧力よりも高い場合は、その
圧力を低くするように濃度計2からインバータ制御式の
加圧送給ポンプ3に信号が送られる。すなわち、インバ
ータ制御式の加圧送給ポンプ3から送給される被処理液
の圧力が降下する。逆に、濃度計2にフィードバックさ
れた圧力計4の圧力がそのときの被処理液の濃度におけ
る最適操作圧力よりも低い場合は、その圧力を高くする
ように濃度計2からインバータ制御式の加圧送給ポンプ
3に信号が送られる。すなわち、インバータ制御式の加
圧送給ポンプ3から送給される被処理液の圧力は上昇す
る。
The concentrated liquid returned to the liquid storage tank 1 is sent to the membrane separation device 5 via the path 8, and the pressure of the pressure gauge 4 fed back to the concentration meter 2 indicates the concentration of the liquid to be treated at that time. If the pressure is higher than the optimum operation pressure in the above, a signal is sent from the concentration meter 2 to the inverter-controlled pressurized feed pump 3 so as to lower the pressure. That is, the pressure of the liquid to be treated, which is supplied from the inverter-controlled pressurized supply pump 3, drops. Conversely, if the pressure of the pressure gauge 4 fed back to the concentration meter 2 is lower than the optimal operating pressure at the concentration of the liquid to be treated at that time, the concentration meter 2 applies an inverter control type addition to increase the pressure. A signal is sent to the pressure feed pump 3. That is, the pressure of the liquid to be treated, which is supplied from the inverter-controlled pressurized supply pump 3, increases.

【0011】図4は、第三の発明を適用するに好適であ
る膜分離プロセスの全体配置図である。図1と異なる点
は、被処理液送給経路8の濃度計2と圧力計4との間に
自動圧力調整弁12が配置され、さらに、自動圧力調整
弁12から被処理液貯留タンク1に至るバイパス経路1
3を設けた点にある。自動圧力調整弁12は濃度計2と
電気的に接続されており、圧力計4で測定された圧力
が、最適操作圧力よりも高ければ降圧するように、ある
いは、最適操作圧力よりも低ければ昇圧するように、濃
度計2から自動圧力調整弁12に対して指示が出され
る。
FIG. 4 is an overall layout diagram of a membrane separation process suitable for applying the third invention. The difference from FIG. 1 is that an automatic pressure regulating valve 12 is arranged between the concentration meter 2 and the pressure gauge 4 in the liquid to be treated supply path 8, and furthermore, the automatic pressure regulating valve 12 is connected to the liquid to be treated storage tank 1. Bypass route 1
3 is provided. The automatic pressure regulating valve 12 is electrically connected to the concentration meter 2 so that the pressure measured by the pressure gauge 4 is decreased if the pressure is higher than the optimum operating pressure, or is increased if the pressure measured is lower than the optimum operating pressure. An instruction is issued from the densitometer 2 to the automatic pressure regulating valve 12 so as to perform the operation.

【0012】以上のように構成される膜分離プロセス
は、図1の場合と同じように膜分離を行うことができ
る。すなわち、被処理液貯留タンク1内の濃縮液が経路
8を経て膜分離装置に送られるときに、濃度計2にフィ
ードバックされた圧力計4の圧力がそのときの被処理液
の濃度における最適操作圧力よりも高い場合は、その圧
力を低くするように濃度計2から自動圧力調整弁12に
信号が送られる。その結果、自動圧力調整弁12からバ
イパス経路13を経て被処理液貯留タンク1に戻される
液量が増加されて経路8を流通する被処理液の圧力が降
下する。逆に、濃度計2にフィードバックされた圧力計
4の圧力がそのときの被処理液の濃度における最適操作
圧力よりも低い場合は、その圧力を高くするように濃度
計2から自動圧力調整弁12に信号が送られる。その結
果、自動圧力調整弁12からバイパス経路13を経て被
処理液貯留タンク1に戻される液量が減少されて経路8
を流通する被処理液の圧力が上昇する。なお、第三の発
明で用いられる加圧送給ポンプ3は第二の発明のように
インバータ制御式のものを必ずしも用いる必要はなく、
定圧式ポンプ等を用いてもよい。
In the membrane separation process configured as described above, membrane separation can be performed in the same manner as in FIG. That is, when the concentrated liquid in the liquid-to-be-treated storage tank 1 is sent to the membrane separation device via the path 8, the pressure of the pressure gauge 4 fed back to the concentration meter 2 indicates the optimal operation in the concentration of the liquid to be treated at that time. When the pressure is higher than the pressure, a signal is sent from the densitometer 2 to the automatic pressure control valve 12 so as to lower the pressure. As a result, the amount of liquid returned from the automatic pressure regulating valve 12 to the liquid storage tank 1 via the bypass path 13 is increased, and the pressure of the liquid to be processed flowing through the path 8 is reduced. Conversely, when the pressure of the pressure gauge 4 fed back to the concentration meter 2 is lower than the optimum operating pressure at the concentration of the liquid to be treated at that time, the automatic pressure control valve 12 from the concentration meter 2 increases the pressure. Is sent to As a result, the amount of liquid returned from the automatic pressure control valve 12 to the liquid storage tank 1 via the bypass path 13 is reduced, and the path 8
, The pressure of the liquid to be treated flowing increases. Note that the pressurized feed pump 3 used in the third invention is not necessarily required to be an inverter control type as in the second invention,
A constant pressure pump or the like may be used.

【0013】図5は、第四の発明を適用するに好適であ
る膜分離プロセスの全体配置図である。図1と異なる点
は、膜分離装置5から被処理液貯留タンク1に至る濃縮
液送給経路10に自動圧力調整弁7が配置された点にあ
る。自動圧力調整弁7は濃度計2と電気的に接続されて
おり、圧力計4で測定された圧力が最適操作圧力よりも
高ければ降圧するように、あるいは、最適操作圧力より
も低ければ昇圧するように、濃度計2から自動圧力調整
弁7に対して指示が出される。
FIG. 5 is an overall layout diagram of a membrane separation process suitable for applying the fourth invention. The difference from FIG. 1 lies in that an automatic pressure regulating valve 7 is arranged in a concentrated liquid supply path 10 from the membrane separation device 5 to the liquid storage tank 1 to be treated. The automatic pressure regulating valve 7 is electrically connected to the concentration meter 2, and if the pressure measured by the pressure gauge 4 is higher than the optimum operating pressure, the pressure is reduced, or if the pressure is lower than the optimum operating pressure, the pressure is increased. Thus, the concentration meter 2 issues an instruction to the automatic pressure regulating valve 7.

【0014】以上のように構成される膜分離プロセス
は、図1の場合と同じように膜分離を行うことができ
る。すなわち、被処理液貯留タンク1内の濃縮液が経路
8を経て膜分離装置に送られるときに、濃度計2にフィ
ードバックされた圧力計4の圧力がそのときの被処理液
の濃度における最適操作圧力よりも高い場合は、その圧
力を低くするように濃度計2から自動圧力調整弁7に信
号が送られる。その結果、自動圧力調整弁7から排出さ
れる濃縮液の圧力を低くするように弁7が調整される。
逆に、濃度計2にフィードバックされた圧力計4の圧力
がそのときの被処理液の濃度における最適操作圧力より
も低い場合は、その圧力を高くするように濃度計2から
自動圧力調整弁7に信号が送られる。その結果、自動圧
力調整弁7から排出される濃縮液の圧力を高くするよう
に弁7が調整される。なお、第四の発明で用いられる加
圧送給ポンプ3は第二の発明のようにインバータ制御式
のものを必ずしも用いる必要はなく、定圧式ポンプ等を
用いてもよい。
In the membrane separation process configured as described above, membrane separation can be performed in the same manner as in FIG. That is, when the concentrated liquid in the liquid-to-be-treated storage tank 1 is sent to the membrane separation device via the path 8, the pressure of the pressure gauge 4 fed back to the concentration meter 2 indicates the optimal operation in the concentration of the liquid to be treated at that time. If the pressure is higher than the pressure, a signal is sent from the densitometer 2 to the automatic pressure control valve 7 to lower the pressure. As a result, the valve 7 is adjusted so that the pressure of the concentrated liquid discharged from the automatic pressure adjusting valve 7 is reduced.
Conversely, when the pressure of the pressure gauge 4 fed back to the concentration meter 2 is lower than the optimum operating pressure at the concentration of the liquid to be treated at that time, the automatic pressure control valve 7 is controlled by the concentration meter 2 to increase the pressure. Is sent to As a result, the valve 7 is adjusted so as to increase the pressure of the concentrate discharged from the automatic pressure adjusting valve 7. Note that the pressurized feed pump 3 used in the fourth invention does not necessarily need to be of an inverter control type as in the second invention, but may be a constant pressure pump or the like.

【0015】図6は、第五の発明を適用するに好適であ
る膜分離プロセスの全体配置図である。図1と異なる点
は、被処理液送給経路8の濃度計2と圧力計4との間に
自動圧力調整弁12が配置され、自動圧力調整弁12か
ら被処理液貯留タンク1に至るバイパス経路13を設け
た点と、膜分離装置5から被処理液貯留タンク1に至る
濃縮液送給経路10に自動圧力調整弁7が配置された点
にある。自動圧力調整弁12と7は濃度計2と電気的に
接続されており、圧力計4で測定された圧力が最適操作
圧力よりも高ければ降圧するように、あるいは、最適操
作圧力よりも低ければ昇圧するように、濃度計2から自
動圧力調整弁12と7に対して指示が出され、上記した
プロセスに従って最適操作圧力で膜分離を行うことがで
きる。なお、第五の発明で用いられる加圧送給ポンプ3
は第二の発明のようにインバータ制御式のものを必ずし
も用いる必要はなく、定圧式ポンプ等を用いてもよい。
FIG. 6 is an overall layout view of a membrane separation process suitable for applying the fifth invention. The difference from FIG. 1 is that an automatic pressure regulating valve 12 is disposed between the concentration meter 2 and the pressure gauge 4 in the liquid supply passage 8, and a bypass from the automatic pressure regulating valve 12 to the liquid storage tank 1 is provided. The point is that the path 13 is provided, and that the automatic pressure regulating valve 7 is disposed in the concentrated liquid supply path 10 from the membrane separation device 5 to the liquid storage tank 1 to be treated. The automatic pressure regulating valves 12 and 7 are electrically connected to the concentration meter 2 so that the pressure is reduced if the pressure measured by the pressure gauge 4 is higher than the optimum operating pressure, or if the pressure measured is lower than the optimum operating pressure. An instruction is issued from the densitometer 2 to the automatic pressure regulating valves 12 and 7 so as to increase the pressure, and the membrane separation can be performed at the optimum operating pressure according to the above-described process. The pressurized feed pump 3 used in the fifth invention
It is not always necessary to use an inverter control type as in the second invention, but a constant pressure pump or the like may be used.

【0016】図7は、第六の発明を適用するに好適であ
る膜分離プロセスの全体配置図である。図1と異なる点
は、濃度計2がなく、被処理液送給経路8の加圧送給ポ
ンプ3と圧力計4との間に自動圧力調整弁12が配置さ
れ、自動圧力調整弁12から被処理液貯留タンク1に至
るバイパス経路13を設けた点と、膜分離装置5から被
処理液貯留タンク1に至る濃縮液送給経路10に自動圧
力調整弁7が配置された点と、透過液排出経路9に積算
流量計6を設けた点にある。積算流量計6には上記最適
操作圧力が入力されており、圧力計4で測定された圧力
は積算流量計6に入力され、積算流量計6はインバータ
制御式の加圧送給ポンプ3、自動圧力調整弁12または
7と電気的に接続されている。そして、積算流量計6に
より積算された透過液の流量に基づいて上記した式に従
って被処理液の濃度が連続的に算出され、圧力計4で測
定された圧力がその計算濃度における最適操作圧力より
も高ければ降圧するように、あるいは、最適操作圧力よ
りも低ければ昇圧するように、積算流量計6から、それ
ぞれの機器(インバータ制御式の加圧送給ポンプ3、自
動圧力調整弁12または7)に対して指示が出され、上
記したプロセスに従って最適操作圧力で膜分離を行うこ
とができる。すなわち、第六の発明は第二の発明から第
五の発明における濃度計2の代わりに積算流量計6によ
り被処理液の濃度を算出し、圧力操作をする方法であ
る。
FIG. 7 is an overall layout diagram of a membrane separation process suitable for applying the sixth invention. The difference from FIG. 1 is that the concentration meter 2 is not provided, and the automatic pressure regulating valve 12 is disposed between the pressure supply pump 3 and the pressure gauge 4 in the liquid supply path 8 to be treated. A point in which a bypass path 13 leading to the processing liquid storage tank 1 is provided, a point in which the automatic pressure regulating valve 7 is disposed in the concentrated liquid supply path 10 from the membrane separation device 5 to the processing liquid storage tank 1, The point is that the integrating flow meter 6 is provided in the discharge path 9. The above-mentioned optimal operating pressure is input to the integrating flow meter 6, the pressure measured by the pressure gauge 4 is input to the integrating flow meter 6, and the integrating flow meter 6 is an inverter-controlled pressurized feed pump 3, an automatic pressure It is electrically connected to the regulating valve 12 or 7. Then, the concentration of the liquid to be treated is continuously calculated according to the above equation based on the flow rate of the permeated liquid integrated by the integrating flow meter 6, and the pressure measured by the pressure gauge 4 is calculated from the optimum operating pressure at the calculated concentration. If the pressure is too high, the pressure is reduced, or if the pressure is lower than the optimal operation pressure, the pressure is increased. The respective devices (inverter-controlled pressurized feed pump 3, automatic pressure regulating valve 12 or 7) are output from integrating flow meter 6. The membrane separation can be performed at the optimum operating pressure according to the above-described process. That is, the sixth invention is a method of calculating the concentration of the liquid to be treated by using the integrating flow meter 6 instead of the concentration meter 2 in the second invention to the fifth invention, and performing the pressure operation.

【0017】かくして本発明によれば、常に最適操作圧
力で膜分離装置を運転することができるため、膜表面に
ゲル層が形成されることはなく、膜の流路が閉塞される
こともなく、極めて効率的に膜分離を行うことができる
とともに使用膜の長寿命化を図ることが可能である。ま
た、被処理液送給ポンプによる無駄な消費電力はないの
で、ランニングコストを低減することができる。例え
ば、無機質スラリー200リッターを懸濁物の濃度を1
%から20%に濃縮する場合に、図1に示すような構成
の限外濾過膜を用いた膜分離プロセスにおいて、定格容
量7.5kWのインバータ制御式の加圧送給ポンプ3と
膜面積が1m2 の膜分離装置5を用いて、最初から最後
まで操作圧力を10kg/cm2 に固定した場合と、操
作圧力を図3に示すように変化させた場合における消費
電力を比較すると、後者のように操作圧力を変化させる
ことによって約45%消費電力を節減することができ
た。なお、平均透過流束は、前者では55L/m2 /hr
であり、後者では54L/m2/hrであった。
Thus, according to the present invention, the membrane separation apparatus can always be operated at the optimum operating pressure, so that no gel layer is formed on the membrane surface and the flow path of the membrane is not blocked. In addition, the membrane separation can be performed extremely efficiently, and the life of the membrane to be used can be extended. In addition, there is no wasteful power consumption by the liquid supply pump, so that the running cost can be reduced. For example, 200 liters of an inorganic slurry is added to a suspension at a concentration of 1
When the concentration is reduced from 20% to 20%, in a membrane separation process using an ultrafiltration membrane configured as shown in FIG. 1, an inverter-controlled pressurized feed pump 3 having a rated capacity of 7.5 kW and a membrane area of 1 m The power consumption when the operating pressure was fixed at 10 kg / cm 2 from the beginning to the end using the membrane separation device 5 of Example 2 and the case where the operating pressure was changed as shown in FIG. 3 were compared. By changing the operating pressure, power consumption could be reduced by about 45%. The average permeation flux was 55 L / m 2 / hr for the former.
And in the latter case it was 54 L / m 2 / hr.

【0018】[0018]

【発明の効果】本発明は上記のとおり構成されているの
で、膜表面にゲル層が形成されることはなく、膜の流路
が閉塞されることもなく、極めて効率的に膜分離を行う
ことができるとともに使用膜の長寿命化を図ることが可
能である。また、インバータ制御式の加圧送給ポンプを
用いた場合は、被処理液送給ポンプによる無駄な消費電
力はないので、ランニングコストを低減することができ
る。
Since the present invention is constituted as described above, a gel layer is not formed on the membrane surface, the flow path of the membrane is not blocked, and the membrane is separated very efficiently. It is possible to extend the service life of the film to be used. In addition, when an inverter-controlled pressurized feed pump is used, there is no wasteful power consumption by the liquid-to-be-processed pump, so that the running cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を適用するに好適である膜分離プ
ロセスの一実施形態の全体配置図である。
FIG. 1 is a general layout of one embodiment of a membrane separation process suitable for applying the method of the present invention.

【図2】膜分離装置における操作圧力と透過流束の関係
を示す図である。
FIG. 2 is a diagram showing the relationship between operating pressure and permeation flux in a membrane separation device.

【図3】膜分離装置における濃度と最適操作圧力の関係
を示す図である。
FIG. 3 is a diagram showing a relationship between a concentration and an optimum operation pressure in the membrane separation device.

【図4】本発明の方法を適用するに好適である膜分離プ
ロセスの別の実施形態の全体配置図である。
FIG. 4 is a general layout of another embodiment of a membrane separation process suitable for applying the method of the present invention.

【図5】本発明の方法を適用するに好適である膜分離プ
ロセスのさらに別の実施形態の全体配置図である。
FIG. 5 is a general layout of yet another embodiment of a membrane separation process suitable for applying the method of the present invention.

【図6】本発明の方法を適用するに好適である膜分離プ
ロセスのさらに別の実施形態の全体配置図である。
FIG. 6 is a general layout of yet another embodiment of a membrane separation process suitable for applying the method of the present invention.

【図7】本発明の方法を適用するに好適である膜分離プ
ロセスのさらに別の実施形態の全体配置図である。
FIG. 7 is a general layout of yet another embodiment of a membrane separation process suitable for applying the method of the present invention.

【図8】従来の膜分離プロセスの一例の全体配置図であ
る。
FIG. 8 is an overall layout view of an example of a conventional membrane separation process.

【符号の説明】[Explanation of symbols]

1…被処理液貯留タンク 2…濃度計 3…加圧送給ポンプ 4…圧力計 5…膜分離装置 6…積算流量計 7…自動圧力調整弁 8…被処理液送給経路 9…透過液排出経路 10…濃縮液送給経路 11…被処理液 12…自動圧力調整弁 13…バイパス経路 DESCRIPTION OF SYMBOLS 1 ... Liquid storage tank to be processed 2 ... Concentration meter 3 ... Pressure feed pump 4 ... Pressure gauge 5 ... Membrane separation device 6 ... Integrated flow meter 7 ... Automatic pressure control valve 8 ... Processing liquid supply path 9 ... Permeate discharge Path 10: Concentrated liquid supply path 11: Liquid to be treated 12: Automatic pressure regulating valve 13: Bypass path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎本 正 兵庫県明石市大久保町高岡6丁目3−6 (72)発明者 島田 光重 兵庫県明石市魚住町住吉2−26−3−412 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tadashi Enomoto 6-3-6 Takaoka, Okubo-cho, Akashi-shi, Hyogo (72) Inventor Mitsushige 2-26-3-412 Uozumi-cho, Sumiyoshi, Akashi-shi, Hyogo

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被処理液貯留タンクに貯留した被処理液
を加圧して膜分離装置に供給し、この膜分離装置に配置
した透過性膜により被処理液を透過液と濃縮液に分離
し、透過液を系外に排出し、濃縮液を被処理液貯留タン
クに戻し、上記操作を繰り返して行うことにより濃縮液
の濃度を高める膜分離プロセスにおいて、被処理液の濃
度を測定し、その濃度における最適操作圧力で濾過操作
をしうるように、膜分離装置に供給される被処理液の圧
力を変化させることを特徴とする膜分離プロセスの操作
圧力の制御方法。
1. A liquid to be treated stored in a liquid to be treated storage tank is pressurized and supplied to a membrane separation device. The liquid to be treated is separated into a permeate and a concentrated solution by a permeable membrane arranged in the membrane separation device. Then, the permeate is discharged out of the system, the concentrated liquid is returned to the liquid storage tank, and the concentration of the liquid to be treated is measured in the membrane separation process in which the concentration of the concentrated liquid is increased by repeating the above operation. A method for controlling an operation pressure of a membrane separation process, wherein the pressure of a liquid to be treated supplied to a membrane separation device is changed so that a filtration operation can be performed at an optimum operation pressure at a concentration.
【請求項2】 被処理液貯留タンクから膜分離装置に至
る被処理液送給経路に圧送手段と圧力計をこの順で配
し、被処理液貯留タンクまたは被処理液貯留タンクから
膜分離装置に至る被処理液送給経路に濃度計を配し、最
適操作圧力で操作しうるように、上記濃度計の指示によ
り圧送手段の圧力を変化させることを特徴とする請求項
1記載の膜分離プロセスの操作圧力の制御方法。
2. A pressure supply means and a pressure gauge are arranged in this order on a liquid supply path from a liquid storage tank to a membrane separation apparatus to a liquid separation tank. 2. A membrane separation device according to claim 1, wherein a concentration meter is disposed in a liquid supply path leading to the processing liquid, and the pressure of the pressure-feeding means is changed by an instruction of the concentration meter so that the pressure can be operated at an optimum operation pressure. How to control the operating pressure of the process.
【請求項3】 被処理液貯留タンクから膜分離装置に至
る被処理液送給経路に圧送手段と圧力計をこの順で配
し、被処理液貯留タンクまたは被処理液貯留タンクから
膜分離装置に至る被処理液送給経路に濃度計を配し、被
処理液送給経路の濃度計と圧力計の間に自動圧力調整弁
を配し、該自動圧力調整弁から被処理液貯留タンクに至
るバイパス経路を設け、最適操作圧力で操作しうるよう
に、上記濃度計の指示により自動圧力調整弁の圧力を変
化させることを特徴とする請求項1記載の膜分離プロセ
スの操作圧力の制御方法。
3. A pressure supply means and a pressure gauge are arranged in this order on a liquid supply path from the liquid storage tank to the membrane separation device to the liquid separation tank, so that the liquid separation tank or the liquid separation tank is separated from the liquid separation tank. A concentration meter is arranged in the liquid supply path to be processed, and an automatic pressure regulating valve is arranged between the concentration meter and the pressure gauge in the liquid supply path to be treated, and from the automatic pressure regulating valve to the liquid storage tank to be treated. 2. The method according to claim 1, wherein a pressure of the automatic pressure regulating valve is changed by an instruction of the concentration meter so that a bypass path is provided so as to operate at an optimum operating pressure. .
【請求項4】 被処理液貯留タンクから膜分離装置に至
る被処理液送給経路に圧送手段と圧力計をこの順で配
し、被処理液貯留タンクまたは被処理液貯留タンクから
膜分離装置に至る被処理液送給経路に濃度計を配し、膜
分離装置から被処理液貯留タンクに至る濃縮液送給経路
に自動圧力調整弁を配し、最適操作圧力で操作しうるよ
うに、上記濃度計の指示により自動圧力調整弁の圧力を
変化させることを特徴とする請求項1記載の膜分離プロ
セスの操作圧力の制御方法。
4. A pressure-feeding means and a pressure gauge are arranged in this order in a liquid-to-be-processed supply path from the liquid-to-be-processed storage tank to the membrane separation device, and the liquid-to-be-processed storage tank or the liquid-to-be-processed storage tank is separated from the membrane separation device. A concentration meter is arranged in the liquid supply path to be processed up to, and an automatic pressure regulating valve is arranged in the concentrated liquid supply path from the membrane separation device to the liquid storage tank, so that it can be operated at the optimum operating pressure. 2. The method according to claim 1, wherein the pressure of the automatic pressure control valve is changed according to an instruction from the concentration meter.
【請求項5】 被処理液貯留タンクから膜分離装置に至
る被処理液送給経路に圧送手段と圧力計をこの順で配
し、被処理液貯留タンクまたは被処理液貯留タンクから
膜分離装置に至る被処理液送給経路に濃度計を配し、被
処理液送給経路の濃度計と圧力計の間に自動圧力調整弁
を配し、該自動圧力調整弁から被処理液貯留タンクに至
るバイパス経路を設け、さらに、膜分離装置から被処理
液貯留タンクに至る濃縮液送給経路に自動圧力調整弁を
配し、最適操作圧力で操作しうるように、上記濃度計の
指示により自動圧力調整弁の圧力を変化させることを特
徴とする請求項1記載の膜分離プロセスの操作圧力の制
御方法。
5. A processing liquid supply path from a liquid storage tank to be processed to a membrane separation device, a pressure feeding means and a pressure gauge are arranged in this order, and the processing liquid storage tank or the processing liquid storage tank is connected to the membrane separation device. A concentration meter is arranged in the liquid supply path to be processed, and an automatic pressure regulating valve is arranged between the concentration meter and the pressure gauge in the liquid supply path to be treated, and from the automatic pressure regulating valve to the liquid storage tank to be treated. An automatic pressure regulating valve is provided in the concentrated liquid supply path from the membrane separation device to the liquid storage tank to be treated, and the automatic concentration control valve is automatically operated according to the instruction of the concentration meter so that the operation can be performed at the optimum operation pressure. 2. The method according to claim 1, wherein the pressure of the pressure regulating valve is changed.
【請求項6】 膜分離装置から透過液を排出する透過液
排出経路に積算流量計を配し、以下の式により算出され
る計算濃度を濃度計により測定された計測濃度に代えて
用いることを特徴とする請求項2、3、4または5記載
の膜分離プロセスの操作圧力の制御方法。 計算濃度=(被処理液の原液量×初期濃度)/(被処理
液の原液量−積算流量値)
6. An integrated flow meter is provided in a permeate discharge path for discharging a permeate from a membrane separation device, and the calculated concentration calculated by the following equation is used in place of the measured concentration measured by the densitometer. The method for controlling an operating pressure of a membrane separation process according to claim 2, 3, 4, or 5. Calculated concentration = (Amount of stock solution of liquid to be treated x Initial concentration) / (Amount of stock solution of liquid to be treated-integrated flow value)
JP14716498A 1998-05-28 1998-05-28 Method for controlling the operating pressure of a membrane separation process Expired - Fee Related JP4137231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14716498A JP4137231B2 (en) 1998-05-28 1998-05-28 Method for controlling the operating pressure of a membrane separation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14716498A JP4137231B2 (en) 1998-05-28 1998-05-28 Method for controlling the operating pressure of a membrane separation process

Publications (2)

Publication Number Publication Date
JPH11333258A true JPH11333258A (en) 1999-12-07
JP4137231B2 JP4137231B2 (en) 2008-08-20

Family

ID=15424043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14716498A Expired - Fee Related JP4137231B2 (en) 1998-05-28 1998-05-28 Method for controlling the operating pressure of a membrane separation process

Country Status (1)

Country Link
JP (1) JP4137231B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093053A1 (en) * 2004-03-29 2005-10-06 Fuji Photo Film Co., Ltd. Method and apparatus of automatically isolating and purifying nucleic acid
WO2010061666A1 (en) * 2008-11-27 2010-06-03 三菱重工業株式会社 Multi-stage seawater desalination equipment and operation control method for multi-stage seawater desalination equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093053A1 (en) * 2004-03-29 2005-10-06 Fuji Photo Film Co., Ltd. Method and apparatus of automatically isolating and purifying nucleic acid
US7811758B2 (en) 2004-03-29 2010-10-12 Fujifilm Corporation Method and apparatus of automatically isolating and purifying nucleic acid
WO2010061666A1 (en) * 2008-11-27 2010-06-03 三菱重工業株式会社 Multi-stage seawater desalination equipment and operation control method for multi-stage seawater desalination equipment
US8685249B2 (en) 2008-11-27 2014-04-01 Mitsubishi Heavy Industries, Ltd. Multi-stage seawater desalination apparatus and operation control method of multi-stage seawater desalination apparatus

Also Published As

Publication number Publication date
JP4137231B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
RU2718079C1 (en) Device and method of water treatment by means of reverse osmosis or nanofiltration
KR101091467B1 (en) Apparatus for continuous closed circuit desalination under variable pressure with a single container
US5647973A (en) Reverse osmosis filtration system with concentrate recycling controlled by upstream conductivity
US20120125846A1 (en) Filtering method, and membrane-filtering apparatus
WO2017217008A1 (en) Reverse osmosis membrane separation apparatus
JP5563765B2 (en) Waste water treatment system and waste water treatment method
JPH10503127A (en) Cross-flow-filtration method for separating a liquid from a fluid medium and a plant for implementing this method
AU2016286651A1 (en) Method for controlling a desalination plant fed by a source of renewable energy and associated plant
JPH09299944A (en) Fresh water producing device having reverse-osmosis membrane
JPH11333258A (en) Control of operating pressure in membrane separation process
JPH09239244A (en) Membrane type liquid concentration apparatus
JP7107011B2 (en) Membrane separator
JP3375070B2 (en) Membrane processing device and fresh water method
JP7109505B2 (en) Ultrapure water production equipment
JP7074169B2 (en) Membrane filtration system and its control method
JPH07328393A (en) Membrane separator and operation method thereof
JP7243337B2 (en) Membrane separator
RU2047330C1 (en) Method for producing potable water
JPS62250988A (en) Apparatus for making ultrapure water
US20220347628A1 (en) A method for filtering a dairy product
JP2001104761A (en) Operation method for membrane separation apparatus
JP2022060589A5 (en)
JPH1033957A (en) Filtration treatment method and filtration apparatus
JPS61220707A (en) Liquid permeating method
JP3670804B2 (en) Raw water treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees