JP2001104761A - Operation method for membrane separation apparatus - Google Patents

Operation method for membrane separation apparatus

Info

Publication number
JP2001104761A
JP2001104761A JP28403299A JP28403299A JP2001104761A JP 2001104761 A JP2001104761 A JP 2001104761A JP 28403299 A JP28403299 A JP 28403299A JP 28403299 A JP28403299 A JP 28403299A JP 2001104761 A JP2001104761 A JP 2001104761A
Authority
JP
Japan
Prior art keywords
liquid
permeate
membrane
flow path
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28403299A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Tanida
克義 谷田
Kazutaka Takada
一貴 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP28403299A priority Critical patent/JP2001104761A/en
Publication of JP2001104761A publication Critical patent/JP2001104761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation method for a membrane separation apparatus easy to set the flow rate of a non-permeable liquid at which the flow passages in the membrane module are not clogged. SOLUTION: The average flow velocity of a non-permeable liquid in the passages in a membrane module is increased more as the viscosity of the non- permeable liquid is increased more. The flow rate of the non-permeable liquid at which the passages in the membrane module are prevented from clogging is calculated by multiplying the average flow rate of the non-permeable liquid with the cross-section surface area of the passages.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラテックス濃縮、
コロイドシリカ濃縮、有価物回収、廃液処理、金属分
級、水道水濾過、活性汚泥処理、上水汚泥処理、食品廃
液処理、スラリーの洗浄等に有用な膜分離装置の運転方
法の改善に関する。
The present invention relates to a latex concentrate,
The present invention relates to an improvement in an operation method of a membrane separation device useful for colloidal silica concentration, valuable resource recovery, waste liquid treatment, metal classification, tap water filtration, activated sludge treatment, tap water sludge treatment, food waste liquid treatment, slurry washing, and the like.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、被処理液を濃縮する方法としては、微小孔を有する
透過性膜を備えたクロスフロー型膜分離装置により濃縮
する方法が知られている。クロスフロー型膜分離装置は
透過性膜により被処理液を透過成分と非透過成分とに分
離し、この非透過成分を再び装置入側に供給して同じく
透過性膜により透過成分と非透過成分に分離し、以降同
様の操作を繰り返し行うことによって非透過液の濃度を
高めていく方法である。この場合、非透過液中の懸濁物
による膜の目詰まりを避けて透過効率を低下させないよ
うにするためには、被処理液の流速を上げて膜表面にお
けるせん断力を増すことにより膜表面から異物を除去す
る方法がある。すなわち、膜分離において最も重要なこ
とは膜表面に一様な処理液の流れが形成されるように膜
表面が異物で汚されないようにすることである。
2. Description of the Related Art Heretofore, as a method for concentrating a liquid to be treated, there has been known a method for concentrating a liquid to be treated by a cross-flow type membrane separation apparatus having a permeable membrane having micropores. . The cross-flow type membrane separation device separates the liquid to be treated into a permeate component and a non-permeate component by a permeable membrane, and supplies the non-permeate component again to the apparatus inlet side, and the permeate component and the non-permeate component are also transmitted by the permeable membrane Then, the same operation is repeated to increase the concentration of the non-permeated liquid. In this case, in order to avoid clogging of the membrane due to the suspended matter in the non-permeate and prevent the permeation efficiency from decreasing, the flow rate of the liquid to be treated is increased to increase the shear force on the membrane surface. There is a method of removing foreign matter from the material. That is, the most important thing in membrane separation is to prevent the membrane surface from being contaminated with foreign matters so that a uniform flow of the processing solution is formed on the membrane surface.

【0003】ところが、非透過液の濃度の上昇とともに
流動性が低下するため、膜モジュール内の流路が非透過
液中の懸濁物で閉塞される前に非透過液の流量、すなわ
ち非透過液の流速を適正な値にする必要がある。しか
し、被処理液の種類によって濃度と流動性の関係は異な
るため、膜モジュール内の流路が閉塞されないような非
透過液の流速を求めるためには被処理液ごとにテストを
行い、その流速に基づいて非透過液の流量を設定しなけ
ればならないという煩わしさがある。
However, since the fluidity decreases with an increase in the concentration of the non-permeate, the flow rate of the non-permeate, that is, the non-permeate before the flow path in the membrane module is closed by the suspended matter in the non-permeate. It is necessary to set the flow rate of the liquid to an appropriate value. However, since the relationship between concentration and fluidity differs depending on the type of liquid to be treated, a test is performed for each liquid to be treated to determine the flow rate of the non-permeate liquid so that the flow path in the membrane module is not blocked. Has to be set on the basis of the flow rate of the non-permeate liquid.

【0004】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、膜モ
ジュール内の流路が閉塞しないような非透過液の流量を
簡単に設定することができる膜分離装置の運転方法を提
供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to easily set a flow rate of a non-permeate liquid so as not to block a flow path in a membrane module. It is an object of the present invention to provide a method of operating a membrane separation device that can perform the operation.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、非透過液の流動性を粘度で一般化する方法
を採用した。すなわち、本発明者は膜モジュール内流路
が閉塞しない非透過液の流速は非透過液の粘度に応じて
変化するという関係を見い出したので、非透過液の粘度
を測定することにより膜モジュール内流路が閉塞しない
非透過液の流速を知ることができ、この非透過液の流速
に膜モジュール内の非透過液流路の断面積を乗ずること
により、膜モジュール内流路が閉塞しない非透過液の流
量を求めることができる。
In order to achieve the above object, the present invention employs a method of generalizing the fluidity of a non-permeate by viscosity. That is, the present inventor has found that the flow rate of the non-permeate liquid in which the flow path in the membrane module does not block changes according to the viscosity of the non-permeate liquid. The flow rate of the non-permeate liquid that does not block the flow path can be known. By multiplying the flow rate of the non-permeate liquid by the cross-sectional area of the non-permeate liquid flow path in the membrane module, the non-permeate liquid that does not block the flow path in the membrane module is obtained. The flow rate of the liquid can be determined.

【0006】[0006]

【発明の実施の形態】すなわち、本発明の要旨は、透過
性膜を配置した膜分離装置の一方側に被処理液を供給
し、透過成分を他方側に透過させて他方側から透過液を
取り出し、一方側からは透過性膜を透過しない非透過液
を取り出すことにより被処理液を濃縮する際、非透過液
の粘度が増加するとともに膜モジュール内流路の非透過
液の平均流速を増加させることによって膜モジュール内
流路の閉塞を防止することを特徴とする膜分離装置の運
転方法にある。
That is, the gist of the present invention is that a liquid to be treated is supplied to one side of a membrane separation apparatus having a permeable membrane, a permeated component is transmitted to the other side, and the permeated liquid is supplied from the other side. When the liquid to be treated is concentrated by removing the non-permeate liquid that does not pass through the permeable membrane from one side, the viscosity of the non-permeate liquid increases and the average flow rate of the non-permeate liquid in the flow path in the membrane module increases. The operation method of the membrane separation device is characterized in that the flow path in the membrane module is prevented from being blocked by the operation.

【0007】以上のように構成される本発明によれば、
非透過液の粘度の増加に応じて膜モジュール内流路の非
透過液の平均流速を増加させるという操作を行うことに
より、膜モジュール内流路が閉塞しないように、被処理
液を透過液と非透過液に分離することができる。
According to the present invention configured as described above,
By performing an operation of increasing the average flow rate of the non-permeate liquid in the flow path in the membrane module according to the increase in the viscosity of the non-permeate liquid, the liquid to be treated is mixed with the permeate liquid so that the flow path in the membrane module is not blocked. It can be separated into non-permeate liquids.

【0008】すなわち、膜モジュール内流路を閉塞する
非透過液の平均流速V0(m/sec)は非透過液の粘度η
(Pa・s)によって変化するηの関数であって、膜モ
ジュール内流路の非透過液の平均流速をV(m/sec)
とすれば、V>V0を満たすように非透過液の平均流速
Vを設定するのが好ましい。
That is, the average flow velocity V 0 (m / sec) of the non-permeate which blocks the flow path in the membrane module is determined by the viscosity η of the non-permeate.
(Pa · s), which is a function of η, wherein the average flow rate of the non-permeate in the flow path in the membrane module is V (m / sec)
Then, it is preferable to set the average flow velocity V of the non-permeate liquid so as to satisfy V> V 0 .

【0009】そして、膜分離装置の非透過液排出管路に
流量調節バルブを配し、非透過液の流量をQ(m3/h
r)とし、膜モジュール内の非透過液流路の断面積をA
(m2)とし、V>V0 を満たす非透過液の平均流速V
を用いて、Q=V×Aを満たすように上記流量調節バル
ブの開度を調節すれば、膜モジュール内流路が閉塞する
ことなく、被処理液をスムーズに透過液と非透過液に分
離することができる。
Then, a flow control valve is provided in the non-permeate discharge line of the membrane separation apparatus, and the flow rate of the non-permeate is adjusted to Q (m 3 / h).
r) and the cross-sectional area of the non-permeate liquid flow path in the membrane module is A
(M 2 ), and the average flow rate V of the non-permeate liquid satisfying V> V 0
By adjusting the opening of the flow rate control valve so as to satisfy Q = V × A using the liquid, the liquid to be treated can be smoothly separated into a permeated liquid and a non-permeated liquid without blocking the flow path in the membrane module. can do.

【0010】透過性膜が振動可能であって、透過性膜を
振動させつつ膜分離を行えば、透過性膜の振動によって
発生するせん断力により、膜表面近傍の高濃度成分は膜
表面に接することなく非透過側出口より排出され、透過
成分は透過性膜を高い透過流束で透過する。また、膜表
面には振動に伴って高せん断場が形成されるため、膜表
面はクリーンな状態に保たれ、膜モジュール内流路の閉
塞が防止される。さらに粘性が大きい被処理液が流れて
も、膜表面には振動に伴うせん断場が形成されているた
め、粒子間に捕捉されている水分が自由水となって流動
性が改善される結果、みかけの粘性係数が低下するの
で、高濃度被処理液の処理が可能になり、非透過液の平
均流速も小さくすることができる。
If the permeable membrane can vibrate and the membrane is separated while vibrating the permeable membrane, the high concentration component near the membrane surface comes into contact with the membrane surface due to the shear force generated by the vibration of the permeable membrane. Without being discharged from the non-permeate side outlet, the permeated component permeates the permeable membrane with a high permeation flux. In addition, since a high shear field is formed on the membrane surface due to the vibration, the membrane surface is kept in a clean state, and the blockage of the flow path in the membrane module is prevented. Even if the liquid to be treated with a higher viscosity flows, a shear field is generated on the membrane surface due to vibration, so that the water trapped between the particles becomes free water and the fluidity is improved. Since the apparent viscosity coefficient is reduced, it is possible to process a high-concentration liquid to be processed, and it is possible to reduce the average flow rate of the non-permeate liquid.

【0011】そして、膜表面を動かすエネルギーの大半
が膜表面近傍の流体にせん断力として変換され、高効率
で被処理液を濃縮することができる。
[0011] Most of the energy for moving the membrane surface is converted into a fluid near the membrane surface as a shear force, and the liquid to be treated can be concentrated with high efficiency.

【0012】かくして、透過性膜の一方側に供給された
被処理液は、他方側から透過液として取り出され、一方
側から非透過液として取り出され、非透過液の粘度増加
に応じて上記したような方法で非透過液の流量を変化さ
せつつ透過性膜を振動させて透過処理を行うことによっ
て、膜モジュール内流路が閉塞することなく、所定濃度
までスムーズに被処理液を濃縮することができる。
Thus, the liquid to be treated supplied to one side of the permeable membrane is taken out as a permeated liquid from the other side, taken out as a non-permeated liquid from one side, and described above according to an increase in the viscosity of the non-permeated liquid. By performing the permeation treatment by vibrating the permeable membrane while changing the flow rate of the non-permeate liquid in such a manner, the liquid to be treated can be smoothly concentrated to a predetermined concentration without blocking the flow path in the membrane module. Can be.

【0013】[0013]

【実施例】以下に本発明の実施例を図面を参照しながら
説明する。図1は、本発明の運転方法を適用するに好適
である振動型膜分離装置の概略構成を示す図である。図
1を説明すると、1は被処理液の供給タンク、2は被処
理液を圧送するポンプ、3は多数の平膜型の透過性膜を
積層した膜モジュール、4はこの膜モジュール3内の透
過性膜に、水平面内の円周方向に振幅1〜2.5cmで振
動周波数40〜60Hzの微小振幅の往復運動を与える
トーションバー、5は非透過液(濃縮液)の貯槽、6は
透過液の貯槽である。7は膜モジュール3から管路8を
経て排出される非透過液の排出量を調節する流量調節バ
ルブである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a vibration type membrane separation apparatus suitable for applying the operation method of the present invention. Referring to FIG. 1, 1 is a supply tank of a liquid to be treated, 2 is a pump for pumping the liquid to be treated, 3 is a membrane module in which many flat membrane type permeable membranes are laminated, and 4 is a membrane module in the membrane module 3. A torsion bar that gives the permeable membrane a reciprocating motion with a small amplitude of 1 to 2.5 cm in amplitude and a vibration frequency of 40 to 60 Hz in the circumferential direction in the horizontal plane, 5 is a storage tank for non-permeated liquid (concentrated liquid), and 6 is permeable. It is a liquid storage tank. Reference numeral 7 denotes a flow control valve for controlling the discharge amount of the non-permeate discharged from the membrane module 3 via the pipe line 8.

【0014】膜モジュール3の内部には、図2に示すよ
うに、上下の透過性膜9、9′の間に2〜15枚の不織
布のドレインクロス10、10′を介して金属板11が
積層されたものが水平方向に配置され、かつ鉛直方向に
所定間隙を設けて多段に設置されている。図中、上位の
透過性膜9の上側が一方側(供給側)であり、ドレイン
クロス10側が他方側(透過側)である。この供給側に
被処理液を供給すると、供給側の内圧は透過側より高圧
(約2〜40kgf/cm2)に設定されているため、被処理
液中の透過成分、すなわち、図3に示すように、透過性
膜9の微小孔より小さな粒子(透過成分)が膜孔12を
透過し、他方側へ達する。透過成分が透過した後の非透
過液は、図2の次の段の透過性膜9の供給側に供給さ
れ、透過成分が膜孔を透過する。
As shown in FIG. 2, a metal plate 11 is provided inside the membrane module 3 between two upper and lower permeable membranes 9 and 9 'via two to fifteen nonwoven fabric drain cloths 10 and 10'. The stacked components are arranged in a horizontal direction, and are arranged in multiple stages with a predetermined gap provided in a vertical direction. In the figure, the upper side of the upper permeable film 9 is one side (supply side), and the drain cross 10 side is the other side (transmission side). When the liquid to be treated is supplied to the supply side, the internal pressure on the supply side is set to a higher pressure (about 2 to 40 kgf / cm 2 ) than that on the permeation side, so that the permeated component in the liquid to be treated, ie, as shown in FIG. Thus, particles (permeation components) smaller than the micropores of the permeable membrane 9 pass through the membrane pores 12 and reach the other side. The non-permeate liquid after the permeation component has passed is supplied to the supply side of the permeable membrane 9 in the next stage in FIG. 2, and the permeation component permeates through the membrane pores.

【0015】この透過処理の間、図1に示す膜モジュー
ル3内の透過性膜はトーションバー4の作用により、水
平面内の円周方向に微小振幅の往復運動を続けるため、
膜表面近傍の被処理液は振動によるせん断効果により濃
度分極(膜表面に濃度が異常に高い部分が生じること)
が抑制され、膜の目詰まりが防止される。また、膜モジ
ュール内流路が閉塞しにくくなる。かくして、ポンプ2
により適正な圧力を被処理液に与えることにより、高い
透過流束のもとで、被処理液を透過液と非透過液とに効
率的に分離することができる。このようにして順次透過
処理が行われ、得られた透過液は管路13を経て貯槽6
に送られ、管路8内にある非透過液は貯槽5に送られ
る。かくして、タンク1内の被処理液を管路14を経て
膜モジュール3に供給し、上記した振動型膜分離装置に
よって効率的に透過液と非透過液に分離することができ
る。
During the permeation process, the permeable membrane in the membrane module 3 shown in FIG. 1 continues to reciprocate with a small amplitude in the circumferential direction in the horizontal plane due to the action of the torsion bar 4.
Concentration polarization of the liquid to be treated near the film surface due to the shearing effect due to vibration (part where the concentration is abnormally high on the film surface)
And clogging of the film is prevented. Further, the flow path in the membrane module is less likely to be blocked. Thus, pump 2
By applying a more appropriate pressure to the liquid to be treated, the liquid to be treated can be efficiently separated into a permeated liquid and a non-permeated liquid under a high permeation flux. The permeation process is sequentially performed in this manner, and the obtained permeate is passed through the pipe 13 to the storage tank 6.
And the non-permeated liquid in the pipe 8 is sent to the storage tank 5. Thus, the liquid to be treated in the tank 1 can be supplied to the membrane module 3 via the conduit 14, and can be efficiently separated into a permeated liquid and a non-permeated liquid by the above-mentioned vibration type membrane separation device.

【0016】振動型膜分離装置の透過性膜としては、逆
浸透膜、精密濾過膜、ナノフィルター、限外濾過膜等を
好適に用いることができる。
As the permeable membrane of the vibration type membrane separation device, a reverse osmosis membrane, a microfiltration membrane, a nanofilter, an ultrafiltration membrane or the like can be suitably used.

【0017】図4(a)は膜モジュール内の被処理液の
流れを示す図であり、被処理液は経路15から膜モジュ
ール内に流入し、透過性膜を透過した透過液は経路16
から排出され、非透過液は経路17から排出される。1
8は非透過液の流路である(直上の透過性膜9′と直下
の透過性膜9との間隙が非透過液の流路である。図2の
拡大図参照)。図4(b)は透過性膜の拡大平面図で、
19は透過液の流路、20は被処理液の流路である。
FIG. 4A is a view showing the flow of the liquid to be treated in the membrane module. The liquid to be treated flows into the membrane module from the path 15, and the permeated liquid that has passed through the permeable membrane passes through the path 16.
And the non-permeated liquid is discharged from the passage 17. 1
Reference numeral 8 denotes a non-permeate liquid flow path (a gap between the permeable film 9 'immediately above and the permeable film 9 immediately below is a non-permeate liquid flow path; see an enlarged view of FIG. 2). FIG. 4B is an enlarged plan view of the permeable membrane.
Reference numeral 19 denotes a flow path for the permeated liquid, and reference numeral 20 denotes a flow path for the liquid to be treated.

【0018】振動型膜分離装置は膜が目詰まりしにくい
濃縮装置であるが、非透過液の濃度が上昇すると流動性
が低下するので、非透過液の流速を上げて非透過液を押
し出す力が増すように非透過液の流速を適正な範囲に調
節しないと、やがて、膜モジュールの非透過液の流路
(図4(a)の番号18参照)が非透過液中の懸濁物で
閉塞することがある。そこで、膜モジュール内の非透過
液の流路が閉塞しない条件を求めるために、以下のよう
な実験を行った。
The vibrating membrane separation apparatus is a concentrating apparatus in which the membrane is not easily clogged. However, when the concentration of the non-permeate increases, the fluidity decreases. Therefore, the force for pushing out the non-permeate by increasing the flow rate of the non-permeate is used. If the flow rate of the non-permeate liquid is not adjusted to an appropriate range so that the flow rate increases, the flow path of the non-permeate liquid of the membrane module (see No. 18 in FIG. 4 (a)) eventually becomes a suspension in the non-permeate liquid. May block. Therefore, the following experiment was conducted in order to find a condition in which the flow path of the non-permeated liquid in the membrane module was not blocked.

【0019】すなわち、透過性膜(限外濾過膜)として
直径30cmと60cmの2種類の円形の平膜を配置した図
1に示す構成の振動型膜分離装置を用いて、濃度2〜1
0重量%の範囲の被処理液(濃度と粘度の関係が異なる
数種類の上水スラッジ)に対して、透過性膜を振幅2.
2cm、振動周波数を50Hz、操作圧力(供給側の圧
力)を5.0kgf/cm2 の条件で振動させつつ、ポンプ
2による被処理液の圧送量を変化させて膜分離試験(濃
縮試験)を行い、様々な濃度の非透過液を得た。
That is, using a vibration type membrane separation apparatus having a configuration shown in FIG. 1 in which two kinds of circular flat membranes having a diameter of 30 cm and 60 cm are arranged as a permeable membrane (ultrafiltration membrane), a concentration of 2 to 1 is used.
For a liquid to be treated in the range of 0% by weight (several types of water sludge having different concentrations and viscosities), the permeable membrane has an amplitude of 2.
The membrane separation test (concentration test) was performed by changing the pumping amount of the liquid to be treated by the pump 2 while vibrating under conditions of 2 cm, a vibration frequency of 50 Hz, and an operating pressure (pressure on the supply side) of 5.0 kgf / cm 2. Performed to obtain non-permeated liquids of various concentrations.

【0020】膜モジュール内流路の閉塞を避けるために
は、被処理液の流速を上げて非透過液を押し出す力を増
すことが重要であり、本発明者は非透過液の粘度と膜モ
ジュール内流路の非透過液の平均流速との間には、膜モ
ジュール内流路の閉塞を起こさない条件が存在するはず
であると考え、以下の作業を行った。
In order to avoid blockage of the flow path in the membrane module, it is important to increase the flow rate of the liquid to be treated and increase the force for pushing out the non-permeate liquid. The following operation was carried out on the assumption that there should be a condition that would not block the flow path in the membrane module between the average flow rate of the non-permeated liquid in the internal flow path.

【0021】すなわち、濃縮試験により得られた各非透
過液の粘度(Pa・s)を粘度計で測定し、非透過液が
膜モジュール出口から管路8へ流れ出る流量(m3/h
r) を膜モジュールの非透過液出口流路(図4(a)の
番号18参照)の鉛直方向断面積(m2) で除すること
により、非透過液の膜モジュール出口流路での平均流速
(m/sec) を求めた。
That is, the viscosity (Pa · s) of each non-permeate obtained by the concentration test is measured with a viscometer, and the flow rate (m 3 / h) of the non-permeate flowing out from the membrane module outlet to the pipe 8 is measured.
r) is divided by the vertical cross-sectional area (m 2 ) of the non-permeate liquid outlet flow path of the membrane module (see No. 18 in FIG. 4 (a)) to obtain the average of the non-permeate liquid at the membrane module outlet flow path. The flow rate (m / sec) was determined.

【0022】また、ポンプ2による被処理液の圧送量を
変えることにより、この非透過液の平均流速を現在の流
速より低下させ、その結果として、膜モジュール出口か
ら管路8へ流れ出る非透過液の流量を変化させ、非透過
液の流量低下が10%以下の場合を「膜モジュール内流
路の閉塞無し」とし、非透過液の流量低下が10%超の
場合を「膜モジュール内流路の閉塞有り」とし、非透過
液の各粘度η(Pa・s)と膜モジュールの非透過液出
口流路での非透過液の平均流速に対して膜モジュール内
流路が閉塞する限界を示す線をプロットすると、図5の
線Lのとおりである。図5の線Lより上方は膜モジュー
ル内流路が閉塞しなかった範囲を示し、線Lより下方は
膜モジュール内流路が閉塞した範囲を示す。Lをηの関
数で示すと、L=f(η)=0.047η0.5121であ
る。なお、f(η)の実際の関数形は膜モジュール構造
や膜分離方式によって変化する。また、粘度の測定は、
B型粘度計のローターNo.3を用いて、12rpm の回
転数で回転させることにより行った。
Further, by changing the pressure of the liquid to be treated by the pump 2, the average flow velocity of the non-permeate liquid is made lower than the current flow velocity. The flow rate of the non-permeate liquid is changed to 10% or less, "no blockage of the flow path in the membrane module", and the flow rate of the non-permeate liquid is reduced to more than 10%, "the flow path in the membrane module". Indicates that the flow path in the membrane module is blocked with respect to each viscosity η (Pa · s) of the non-permeate liquid and the average flow rate of the non-permeate liquid in the non-permeate liquid outlet flow path of the membrane module. When the line is plotted, it is as shown by the line L in FIG. The upper part of the line L in FIG. 5 indicates a range in which the flow path in the membrane module is not blocked, and the lower part of the line L indicates a range in which the flow path in the membrane module is blocked. When L is represented by a function of η, L = f (η) = 0.047η 0.5121 . Note that the actual function form of f (η) changes depending on the membrane module structure and the membrane separation method. The measurement of viscosity is
Rotor No. of B-type viscometer 3 and rotating at a rotation speed of 12 rpm.

【0023】図5に明らかなように、非透過液の粘度を
求めることにより、膜モジュール内流路が閉塞しない膜
モジュール内流路の非透過液の平均流速を知ることがで
きるので、この平均流速に流路断面積を乗ずることによ
り、膜モジュール内流路が閉塞しない非透過液の流量を
得ることができる。具体的な操作方法としては、図1の
流量調節バルブ7の開度を調節することにより、膜モジ
ュール内流路が閉塞しないように非透過液の流量を設定
することができる。粘度計としては、B型粘度計を使用
したが、これに限定されるものではなく、レオメータ
ー、振動式粘度計等を用いることができる。ただし、使
用する粘度計や測定条件により粘度の値が異なるので、
それぞれの粘度計により得られる粘度と流速の関係を用
いる必要がある。また、上記実施例では、振動型膜分離
装置を使用したが、従来のクロスフロー型膜分離装置で
も同様の方法で非透過液の粘度と膜モジュール内流路が
閉塞しない流速の関係を求めることが可能である。
As apparent from FIG. 5, the average flow rate of the non-permeate in the flow path in the membrane module in which the flow path in the membrane module is not blocked can be obtained by calculating the viscosity of the non-permeate liquid. By multiplying the flow velocity by the cross-sectional area of the flow path, it is possible to obtain a flow rate of the non-permeate liquid that does not block the flow path in the membrane module. As a specific operation method, the flow rate of the non-permeated liquid can be set by adjusting the opening of the flow control valve 7 in FIG. 1 so that the flow path in the membrane module is not blocked. As the viscometer, a B-type viscometer was used, but the viscometer is not limited to this, and a rheometer, a vibrating viscometer, or the like can be used. However, since the value of viscosity differs depending on the viscometer and measurement conditions used,
It is necessary to use the relationship between the viscosity obtained by each viscometer and the flow rate. Further, in the above embodiment, the vibration type membrane separation device was used, but the relationship between the viscosity of the non-permeate and the flow rate at which the flow path in the membrane module is not blocked is determined in the same manner in the conventional cross flow type membrane separation device. Is possible.

【0024】さらに、塩化ビニル樹脂のコロイド状分散
物等のいわゆるラテックスには分散剤が配合されている
ので、粘度が低く、より高濃度での膜分離操作が可能で
あり、本発明の方法を適用して、膜モジュール内流路が
閉塞しないように非透過液流速を設定して濃縮すること
は可能である。
Further, since a so-called latex such as a colloidal dispersion of a vinyl chloride resin contains a dispersant, the viscosity is low and the membrane separation operation at a higher concentration is possible. In addition, it is possible to set the non-permeate flow rate so as not to block the flow path in the membrane module and to perform the concentration.

【0025】[0025]

【発明の効果】本発明は上記のとおり構成されているの
で、次の効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0026】請求項1記載の発明によれば、非透過液の
粘度の増加に応じて膜モジュール内流路の非透過液の平
均流速を増加させるという操作を行うことにより、膜モ
ジュール内流路が閉塞しないように、被処理液を透過液
と非透過液に分離することができる。
According to the first aspect of the present invention, the operation of increasing the average flow rate of the non-permeate liquid in the flow path in the membrane module in accordance with the increase in the viscosity of the non-permeate liquid is performed, whereby the flow path in the membrane module is increased. The liquid to be treated can be separated into a permeated liquid and a non-permeated liquid so that the liquid does not block.

【0027】すなわち、請求項2記載のように、膜モジ
ュール内流路の非透過液の平均流速V(m/sec) が、
非透過液の粘度η(Pa・s)によって変化する、膜モ
ジュール内流路を閉塞する非透過液の平均流速V0(m
/sec)を上回るように、すなわち、V>V0を満たすよ
うに非透過液の平均流速Vを設定することにより、膜モ
ジュール内流路が閉塞しないように、被処理液を透過液
と非透過液に分離することができる。
That is, as described in claim 2, the average flow velocity V (m / sec) of the non-permeate in the flow path in the membrane module is as follows:
The average flow velocity V 0 (m) of the non-permeate that blocks the flow path in the membrane module, which varies depending on the viscosity η (Pa · s) of the non-permeate
/ Sec), that is, by setting the average flow velocity V of the non-permeate liquid so as to satisfy V> V 0 , so that the liquid to be treated is not mixed with the permeate liquid so that the flow path in the membrane module is not blocked. It can be separated into permeate.

【0028】具体的には、請求項3記載のように、V>
0 を満たす非透過液の平均流速Vに当該膜分離装置の
膜モジュール内の非透過液流路の断面積Aを乗ずること
により、膜モジュール内流路が閉塞しない非透過液の流
量を簡単に求めることができ、その流量を満たすように
膜分離装置の非透過液排出管路に配した流量調節バルブ
の開度を調節することにより、膜モジュール内流路が閉
塞することなく、被処理液を安定して、透過液と非透過
液に分離することができる。
Specifically, as described in claim 3, V>
By multiplying the average flow velocity V of the non-permeate liquid satisfying V 0 by the cross-sectional area A of the non-permeate liquid flow path in the membrane module of the membrane separation device, the flow rate of the non-permeate liquid that does not block the flow path in the membrane module can be simplified. By adjusting the opening of the flow control valve arranged in the non-permeate discharge line of the membrane separation device to satisfy the flow rate, the flow in the membrane module can be The liquid can be stably separated into a permeated liquid and a non-permeated liquid.

【0029】請求項4記載の方法によれば、透過性膜を
振動させることにより、振動によるせん断効果で膜表面
に生じる高いせん断力により、膜モジュール内流路の閉
塞防止効果はより大きくなる。
According to the fourth aspect of the present invention, by vibrating the permeable membrane, the high shearing force generated on the membrane surface by the shearing effect of the vibration increases the effect of preventing the blockage of the flow path in the membrane module.

【0030】以上のように、本発明によれば、被処理液
ごとに膜モジュール内流路が閉塞しない非透過液の流量
を実験で求める必要がなく、非透過液の粘度を測定する
ことにより膜モジュール内流路が閉塞しない膜モジュー
ル内流路の非透過液の平均流速を知り、この平均流速に
基づいて適正な非透過液流量を簡単に設定できるため、
濃縮操作が極めてスムーズである。
As described above, according to the present invention, it is not necessary to experimentally determine the flow rate of the non-permeate liquid that does not block the flow path in the membrane module for each liquid to be treated, and by measuring the viscosity of the non-permeate liquid. Knowing the average flow rate of the non-permeate in the flow path in the membrane module in which the flow path in the membrane module is not blocked, and setting the appropriate non-permeate flow rate easily based on this average flow rate,
The concentration operation is extremely smooth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の運転方法を適用するに好適である振動
型膜分離装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a vibrating membrane separation apparatus suitable for applying the operation method of the present invention.

【図2】図1の振動型膜分離装置に使用する膜モジュー
ルの一部を示す断面図である。
FIG. 2 is a sectional view showing a part of a membrane module used in the vibration type membrane separation device of FIG.

【図3】振動型膜分離装置による透過処理の概念を示す
図である。
FIG. 3 is a diagram showing a concept of a permeation process by a vibration type membrane separation device.

【図4】図4(a)は振動型膜分離装置による膜モジュ
ール内の被処理液の流れを示す図であり、図4(b)は
透過性膜の拡大平面図である。
FIG. 4 (a) is a diagram showing a flow of a liquid to be treated in a membrane module by a vibrating membrane separation device, and FIG. 4 (b) is an enlarged plan view of a permeable membrane.

【図5】振動型膜分離装置での非透過液の粘度と膜モジ
ュール内流路の非透過液の平均流速に対する膜モジュー
ル内流路の閉塞限界を示す図である。
FIG. 5 is a diagram showing the blockage limit of the flow path in the membrane module with respect to the viscosity of the non-permeate liquid and the average flow rate of the non-permeate liquid in the flow path in the membrane module in the vibration type membrane separation device.

【符号の説明】[Explanation of symbols]

1…供給タンク 3…膜モジュール 5…非透過液の貯槽 6…透過液の貯槽 7…流量調節バルブ 9、9′…透過性膜 18…非透過液の流路 19…透過液の流路 20…被処理液の流路 DESCRIPTION OF SYMBOLS 1 ... Supply tank 3 ... Membrane module 5 ... Non-permeate liquid storage tank 6 ... Permeate liquid storage tank 7 ... Flow control valve 9, 9 '... Permeable membrane 18 ... Non-permeate liquid flow path 19 ... Permeate liquid flow path 20 ... Flow path of liquid to be treated

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA03 GA06 GA07 HA45 JA03C JA07C JA33A JA53Z JA59A JA64Z JA67Z KA12 KA16 KA31 KA41 KB30 KC27 KE02Q KE04Q KE14P KE22R MA03 MB02 PB04 PB05 PB06 PB08 PB15 PB20 PB23 PB27 PC11 PC62  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA03 GA06 GA07 HA45 JA03C JA07C JA33A JA53Z JA59A JA64Z JA67Z KA12 KA16 KA31 KA41 KB30 KC27 KE02Q KE04Q KE14P KE22R MA03 MB02 PB04 PB05 PB20 PB20 PB15 PB15 PB15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透過性膜を配置した膜分離装置の一方側
に被処理液を供給し、透過成分を他方側に透過させて他
方側から透過液を取り出し、一方側からは透過性膜を透
過しない非透過液を取り出すことにより被処理液を濃縮
する際、非透過液の粘度が増加するとともに膜モジュー
ル内流路の非透過液の平均流速を増加させることによっ
て膜モジュール内流路の閉塞を防止することを特徴とす
る膜分離装置の運転方法。
1. A liquid to be treated is supplied to one side of a membrane separation apparatus provided with a permeable membrane, a permeated component is permeated to the other side, and a permeated liquid is taken out from the other side. When the liquid to be treated is concentrated by removing the non-permeate liquid that does not permeate, the viscosity of the non-permeate liquid increases and the average flow velocity of the non-permeate liquid in the flow path in the membrane module increases, thereby blocking the flow path in the membrane module. A method for operating a membrane separation device, characterized in that the separation is prevented.
【請求項2】 透過性膜を配置した膜分離装置の一方側
に被処理液を供給し、透過成分を他方側に透過させて他
方側から透過液を取り出し、一方側からは透過性膜を透
過しない非透過液を取り出すことにより被処理液を濃縮
する際、膜モジュール内流路を閉塞する非透過液の平均
流速V0(m/sec)は非透過液の粘度η(Pa・s)に
よって変化するηの関数であって、膜モジュール内流路
の非透過液の平均流速をV(m/sec)とすれば、V>
0を満たすように非透過液の平均流速Vを設定するこ
とによって膜モジュール内流路の閉塞を防止することを
特徴とする膜分離装置の運転方法。
2. A liquid to be treated is supplied to one side of a membrane separation device provided with a permeable membrane, a permeated component is transmitted to the other side, a permeated liquid is taken out from the other side, and a permeable membrane is supplied from one side. When the liquid to be treated is concentrated by taking out the non-permeate which does not permeate, the average flow velocity V 0 (m / sec) of the non-permeate closing the flow path in the membrane module is the viscosity η (Pa · s) of the non-permeate. And the average flow rate of the non-permeate in the flow path in the membrane module is V (m / sec), V>
A method for operating a membrane separation apparatus, comprising: setting an average flow velocity V of a non-permeate liquid so as to satisfy V 0 to prevent blockage of a flow path in a membrane module.
【請求項3】 膜分離装置の非透過液排出管路に流量調
節バルブを配し、非透過液の流量をQ(m3/hr) と
し、膜モジュール内の非透過液流路の断面積をA
(m2)とし、 V>V0 を満たす非透過液の平均流速V
を用いて、Q=V×Aを満たすように上記流量調節バル
ブの開度を調節することによって膜モジュール内流路の
閉塞を防止することを特徴とする請求項2記載の膜分離
装置の運転方法。
3. A cross-sectional area of a non-permeate flow path in a membrane module, wherein a flow control valve is disposed in a non-permeate discharge line of the membrane separation device, and a flow rate of the non-permeate is Q (m 3 / hr). A
(M 2 ), and the average flow velocity V of the non-permeate liquid satisfying V> V 0
3. The operation of the membrane separation apparatus according to claim 2, wherein the opening of the flow rate control valve is adjusted so as to satisfy Q = V × A to prevent the flow path in the membrane module from being blocked. Method.
【請求項4】 透過性膜が振動可能であって、透過性膜
を振動させつつ膜分離を行うことによって膜モジュール
内流路の閉塞を防止することを特徴とする請求項1、2
または3記載の膜分離装置の運転方法。
4. The membrane as set forth in claim 1, wherein the permeable membrane is capable of vibrating, and the membrane is separated while vibrating the permeable membrane to prevent the passage in the membrane module from being blocked.
Or the operation method of the membrane separation device according to 3.
JP28403299A 1999-10-05 1999-10-05 Operation method for membrane separation apparatus Pending JP2001104761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28403299A JP2001104761A (en) 1999-10-05 1999-10-05 Operation method for membrane separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28403299A JP2001104761A (en) 1999-10-05 1999-10-05 Operation method for membrane separation apparatus

Publications (1)

Publication Number Publication Date
JP2001104761A true JP2001104761A (en) 2001-04-17

Family

ID=17673431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28403299A Pending JP2001104761A (en) 1999-10-05 1999-10-05 Operation method for membrane separation apparatus

Country Status (1)

Country Link
JP (1) JP2001104761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242995A (en) * 2003-02-17 2004-09-02 Toray Medical Co Ltd Holder of dialyzer for dialysis therapy
JP2016013501A (en) * 2014-07-01 2016-01-28 聡 竹下 PD membrane separation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242995A (en) * 2003-02-17 2004-09-02 Toray Medical Co Ltd Holder of dialyzer for dialysis therapy
JP2016013501A (en) * 2014-07-01 2016-01-28 聡 竹下 PD membrane separation device

Similar Documents

Publication Publication Date Title
US5958243A (en) Apparatus and method for membrane filtration with enhanced net flux
JPH07112185A (en) Waste water treating device and washing method therefor
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
Al-Bastaki et al. Use of fluid instabilities to enhance membrane performance: a review
JP3446399B2 (en) Immersion type membrane separation device and membrane separation method using the same
JP2001232158A (en) Diafiltration method
Kertész et al. Dairy wastewater purification by vibratory shear enhanced processing
Williams et al. Membrane fouling and alternative techniques for its alleviation
JPH10503127A (en) Cross-flow-filtration method for separating a liquid from a fluid medium and a plant for implementing this method
JP2010104902A (en) Operation method of water purification system, and water purification system
Agi et al. Comparative study of continuous and intermittent ultrasonic ultrafiltration membrane for treatment of synthetic produced water containing emulsion
JPH0669530B2 (en) Method and apparatus for improving the flux rate of a cross flow filtration system
US20070158256A1 (en) Apparatus and method for micro or ultrafiltration
JP3473309B2 (en) Operation control device for membrane separation device
JP2003080246A (en) Apparatus and method for treating water
JP2001104761A (en) Operation method for membrane separation apparatus
JPS63104610A (en) Method and device for treating membrane
JP3276334B2 (en) Latex concentration method
JPH07328393A (en) Membrane separator and operation method thereof
JPH0871304A (en) Method and device for deaerating liquid
JPH11137980A (en) Cleaning method of slurry
JP2001259374A (en) Method for operating membrane separator
JPH0824594A (en) Operation of filter
JP4731661B2 (en) Water treatment apparatus and operation method thereof
JPH0478426A (en) Membrane separating method and device for liquid