JPH0824594A - Operation of filter - Google Patents

Operation of filter

Info

Publication number
JPH0824594A
JPH0824594A JP6170982A JP17098294A JPH0824594A JP H0824594 A JPH0824594 A JP H0824594A JP 6170982 A JP6170982 A JP 6170982A JP 17098294 A JP17098294 A JP 17098294A JP H0824594 A JPH0824594 A JP H0824594A
Authority
JP
Japan
Prior art keywords
operating
filtration device
hollow fiber
fiber membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6170982A
Other languages
Japanese (ja)
Inventor
Yasutoshi Shimizu
康利 清水
Yoshinori Takezaki
義則 竹崎
Katsuji Uryu
勝嗣 瓜生
Yuichi Okuno
祐一 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP6170982A priority Critical patent/JPH0824594A/en
Publication of JPH0824594A publication Critical patent/JPH0824594A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restore the effective membrane area by disaggregating the hollow- fiber membranes and to secure a fixed permeation flux by specifying the suction pressure acting on the hollow-fiber membrane dipped in the waste water in a septic tank. CONSTITUTION:A hollow-fiber membrane is dipped in the waste water in a septic tank to filter the waste water. In this case, the suction pressure acting on the membrane is controlled to <=0.8kgf/cm<2>, and the membranes are disaggregated to restore the effective membrane area during filtration operation. The aggregation of the membranes depends on the suction pressure, filtration condition and physical properties of the liq. For example, when the air is diffused from below the membrane to fluidize the waste water on the membrane surface in filtration, the membranes are aggregated at about 0.4kgf/cm<2> suction pressure when the amt. of the air diffused is small, however aggregation is not caused even at a higher pressure when more air is diffused, and aggregation tends to be caused at >=0.8kgf/cm<2> even if the liq. properties and filtration conditions are adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は菌体などのコロイド分散
粒子、酵素等の高分子或いは有機物等の粒子成分を含む
原液を限外濾過法や精密濾過法等によって濾過する方法
とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for filtering an undiluted solution containing colloidal dispersed particles such as bacterial cells, particles such as polymers such as enzymes and particles such as organic substances by ultrafiltration or microfiltration. .

【0002】[0002]

【従来の技術】食品工業における溶液の分離或いは濃
縮、工場排水の分離、便所、洗面所、風呂及び厨房など
からの廃水を生物的に浄化する際の菌体濃度の維持等に
従来から分離膜が用いられている。例えば便所、洗面
所、風呂及び厨房などの家庭からの廃水や工場廃水等を
生物的に処理する浄化槽として特願平4−131182
号公報に開示されるものがある。この先行技術は、浄化
槽内に分離膜を浸漬し、生物処理が済んだ廃水を活性汚
泥を含まない透過液と活性汚泥を含む保持液(濃縮液)
とに分離(濾過)し、透過液については放流するように
している。そして、分離膜として中空糸膜を用い、更に
曝気による乱流によって中空糸膜表面に堆積したケーキ
層を除去するとともに、薬液を用いた逆圧洗浄について
も記載されている。
2. Description of the Related Art Separation membranes have been conventionally used for separation or concentration of solutions in the food industry, separation of factory wastewater, maintenance of bacterial cell concentration when biologically purifying wastewater from toilets, washrooms, baths and kitchens. Is used. For example, as a septic tank for biologically treating wastewater from households such as toilets, washrooms, baths and kitchens, industrial wastewater, etc., Japanese Patent Application No. 4-131182.
Some are disclosed in Japanese Patent Publication. In this prior art, the separation membrane is immersed in a septic tank, and the wastewater that has undergone biological treatment has a permeate that does not contain activated sludge and a retentate that contains activated sludge (concentrated liquid).
It is separated (filtered) into and and the permeated liquid is discharged. Then, a hollow fiber membrane is used as a separation membrane, and a cake layer deposited on the surface of the hollow fiber membrane by turbulent flow due to aeration is removed, and back pressure cleaning using a chemical solution is also described.

【0003】[0003]

【発明が解決しようとする課題】中空糸膜で膜モジュー
ルを構成した場合には、単位体積における濾過運転にあ
ずかる膜面積が、他の管状膜や平膜に比べて大きく有利
であるが、以下に述べるような中空糸膜独特の課題があ
る。
When a membrane module is composed of hollow fiber membranes, the membrane area required for filtration operation in a unit volume is greatly advantageous as compared with other tubular membranes or flat membranes. There is a problem peculiar to the hollow fiber membrane as described in.

【0004】図1は中空糸膜を用いた濾過運転の経過時
間と透過流束との関係を示すグラフ、図2は分離膜に作
用する吸引圧(膜間差圧)と透過流束の定常値との関係
を示すグラフである。図1のグラフから分るように、濾
過運転開始から約2時間経過すると、膜面に堆積するケ
ーキ層と膜面から剥離するケーキ層の均衡がとれ、透過
流束が定常値(Jss)となる。この傾向は中空糸膜に
限らず管状膜や平膜にあっても同様である。
FIG. 1 is a graph showing the relationship between the elapsed time of filtration operation using a hollow fiber membrane and the permeation flux, and FIG. 2 is the steady state of the suction pressure (transmembrane pressure difference) acting on the separation membrane and the permeation flux. It is a graph which shows the relationship with a value. As can be seen from the graph of FIG. 1, after about 2 hours from the start of the filtration operation, the cake layer deposited on the membrane surface and the cake layer separated from the membrane surface were balanced, and the permeation flux became a steady value (Jss). Become. This tendency is not limited to hollow fiber membranes and is the same for tubular membranes and flat membranes.

【0005】しかしながら、図2のグラフから分るよう
に、中空糸膜は吸引圧力の大きさによって他の膜と異な
った特性を示す。即ち、吸引圧力が小さな第1の領域に
あっては膜の形状に拘らず吸引圧力(△P)と透過流束
の定常値(Jss)との関係は直線的な比例関係にあ
り、吸引圧力がある程度大きな第2の領域になると膜の
形状に拘らず透過流束の定常値(Jss)は一定とな
り、更に吸引圧力が大きな第3の領域になると中空糸膜
のみ定常値(Jss)が低下する。
However, as can be seen from the graph of FIG. 2, the hollow fiber membrane exhibits different characteristics from other membranes depending on the magnitude of suction pressure. That is, in the first region where the suction pressure is small, the relationship between the suction pressure (ΔP) and the steady value of the permeation flux (Jss) is linear and proportional regardless of the shape of the membrane. The steady-state value (Jss) of the permeation flux becomes constant regardless of the shape of the membrane in the second region where the suction pressure is large to some extent, and the steady-state value (Jss) decreases only in the hollow fiber membrane in the third region where the suction pressure is large. To do.

【0006】このように、第3の領域において中空糸膜
のみ定常値(Jss)が低下するのは、同グラフ内に参
考として示した模式図で分るように、第1及び第2の領
域では膜モジュールを構成する複数の中空糸膜同士が離
れているが、吸引圧力が強くなると、複数の中空糸膜が
凝集して濾過に関与する有効な膜面積が減少するからと
考えられる。
As described above, the steady-state value (Jss) of only the hollow fiber membranes in the third region decreases as shown in the schematic diagram for reference in the same graph. However, the plurality of hollow fiber membranes constituting the membrane module are separated from each other, but it is considered that when the suction pressure becomes strong, the plurality of hollow fiber membranes aggregate to reduce the effective membrane area involved in filtration.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すべく本
発明は、浄化槽内の廃水中に中空糸膜を浸漬し、この中
空糸膜の2次側を吸引し、廃水を透過液と保持液(濃縮
液)とに濾過するようにした浄化槽の運転方法におい
て、前記吸引圧力を0.8kgf/cm2以下とし、更に濾過
運転の間に中空糸膜同士の凝集を解く有効膜面積回復操
作を行うようにした。
In order to solve the above-mentioned problems, the present invention immerses a hollow fiber membrane in waste water in a septic tank, sucks the secondary side of this hollow fiber membrane, and retains the waste water as a permeate. In a method for operating a septic tank adapted to be filtered with a liquid (concentrated liquid), the suction pressure is set to 0.8 kgf / cm 2 or less, and an effective membrane area recovery operation for releasing aggregation of hollow fiber membranes during the filtration operation To do.

【0008】ここで、中空糸膜の凝集は、吸引圧力(Δ
P)、膜面での廃水の流動状態といった濾過操作条件や
MLSS濃度のような液物性によって変化する。例え
ば、濾過操作時の膜面での廃水の流動を図2のように膜
下部からの散気を利用した場合、散気量が図2のように
少ないと0.4kgf/cm2程度で凝集が起きるが、散気量
を大きくすると更に高い吸引圧力でも凝集は起きなくな
る。しかしながら吸引圧力が0.8kgf/cm2より大きく
なると、例えばMLSSを小さくしたり、散気量を大き
くする等、液物性や濾過操作条件を調整しても凝集は起
こりやすくなる。したがって、吸引圧力を0.8kgf/cm
2以下とする。
Here, the agglomeration of the hollow fiber membrane is caused by the suction pressure (Δ
P), it varies depending on the filtration operation conditions such as the flow state of waste water on the membrane surface and the liquid physical properties such as the MLSS concentration. For example, when the air flow from the lower part of the membrane is used as shown in Fig. 2 for the flow of wastewater on the membrane surface during the filtration operation, if the amount of air diffusion is small as shown in Fig. 2, it aggregates at about 0.4 kgf / cm 2. However, when the amount of air diffused is increased, aggregation does not occur even at a higher suction pressure. However, when the suction pressure is higher than 0.8 kgf / cm 2, agglomeration is likely to occur even if the liquid physical properties or the filtration operation conditions are adjusted, for example, the MLSS is decreased or the aeration amount is increased. Therefore, the suction pressure should be 0.8kgf / cm.
2 or less.

【0009】また、中空糸を用いて濾過運転を行う場合
には散気装置等を利用し、中空糸膜表面に沿って気液二
相流または気液固三相流を流すことで中空糸膜表面に堆
積するケーキ層を掻き落とすようにすることが好まし
い。
When performing filtration operation using a hollow fiber, a diffusing device or the like is used, and a gas-liquid two-phase flow or a gas-liquid solid three-phase flow is made to flow along the surface of the hollow fiber membrane to thereby produce a hollow fiber. It is preferable to scrape off the cake layer deposited on the film surface.

【0010】前記気液二相流または気液固三相流を形成
する場合には、汚泥濃度(MLSS)が高くなりすぎる
と、透過流束が低下するので、汚泥濃度(MLSS)
は、110℃での乾燥重量濃度として30kg/m3以下、
更には洗浄回復性を考慮すると20kg/m3以下とするの
が好ましい。
When the gas-liquid two-phase flow or gas-liquid solid three-phase flow is formed, if the sludge concentration (MLSS) becomes too high, the permeation flux decreases, so the sludge concentration (MLSS).
Is 30 kg / m 3 or less as the dry weight concentration at 110 ° C,
Further, it is preferably 20 kg / m 3 or less in consideration of the wash recoverability.

【0011】また、気液二相流を形成するために供給す
る気体量(m3)は、原液を満たした槽の底面に対する中
空糸膜の投影面積当り且つ単位時間当り1.0〜380
m3/(m2・h)とする。これは1.0m3/(m2・h)未満だと中空
糸膜の凝集が徐々に進行し、380m3/(m2・h)を越えた
後は掻き取り効果が殆ど増加しないのでコスト的に不利
になるからである。尚、上記の観点から好ましい範囲は
5.0〜250m3/(m2・h)である。
The amount of gas (m 3 ) supplied to form the gas-liquid two-phase flow is 1.0 to 380 per unit time and the projected area of the hollow fiber membrane on the bottom surface of the tank filled with the stock solution.
m 3 / (m 2 · h) If this is less than 1.0 m 3 / (m 2 · h), the coagulation of the hollow fiber membrane gradually progresses, and after exceeding 380 m 3 / (m 2 · h), the scraping effect hardly increases, so the cost is low. It will be disadvantageous. From the above viewpoint, the preferable range is 5.0 to 250 m 3 / (m 2 · h).

【0012】また、気液固三相流を形成するために添加
する粒子の平均径は0.01〜50mmとし、供給する
気体量(m3)は、原液を満たした槽の底面に対する中空
糸膜の投影面積当り且つ単位時間当り2.0〜400m3
/(m2・h)とする。ここでいう粒子の平均径とは粒子の堆
積を球体に換算した時の直径である。そして、粒子の平
均径を0.01〜50mmとするのは0.01mmより
小さいと、添加粒子自体がケーキ層に取り込まれ、却っ
て透過抵抗が高くなり透過流束が低下し、50mmより
大きくなると粒子同士の衝突が過剰となり、流動性が低
下し、掻き取り効果が低下することによる。この粒子の
好ましい平均径は0.1〜10mmである。
The average diameter of the particles added to form the gas-liquid solid three-phase flow is 0.01 to 50 mm, and the amount of gas supplied (m 3 ) is the hollow fiber with respect to the bottom of the tank filled with the stock solution. 2.0 to 400 m 3 per projected area of the film and per unit time
/ (m 2 · h) The average diameter of the particles mentioned here is the diameter when the accumulation of particles is converted into spheres. And when the average diameter of the particles is set to 0.01 to 50 mm, when the particle diameter is smaller than 0.01 mm, the added particles themselves are taken into the cake layer, rather the permeation resistance increases and the permeation flux decreases, and when the particle diameter exceeds 50 mm. This is because the particles collide excessively with each other, the fluidity decreases, and the scraping effect decreases. The preferable average diameter of the particles is 0.1 to 10 mm.

【0013】一方、前記有効膜面積回復操作としては、
中空糸膜の下方に配置した散気装置からの散気による方
法、中空糸膜の側方に配置した散気手段から中空糸膜表
面に向けて気体を直接当てる方法、機械的手段によって
中空糸膜に振動を与える方法がある。
On the other hand, as the effective membrane area recovery operation,
A method of diffusing air from an air diffusing device arranged below the hollow fiber membrane, a method of directly applying gas from a diffusing means arranged on the side of the hollow fiber membrane toward the surface of the hollow fiber membrane, and a hollow fiber by mechanical means. There is a method of applying vibration to the membrane.

【0014】そして、散気による場合の散気量(m3
は、原液を満たした槽の底面に対する中空糸膜の投影面
積当り且つ単位時間当り20〜800m3/(m2・h)とす
る。これは20m3未満では効果がなく800m3を越えた
場合には凝集を解くのには十分であるがエネルギーが無
駄になる。尚、好ましい範囲としては50〜500m3/
(m2・h)である。また、中空糸膜表面に向けて気体を直接
当てる場合の気体量は、中空糸膜の単位面積当り且つ単
位時間当り0.05〜90m3/(m2・h)とする。これも前
記と同様の理由であり、好ましい範囲としては0.1〜
30m3/(m2・h)である。更に、機械的手段によって与え
られる振動の範囲は0.1〜180Hzとする。これは
0.1Hz未満では効果がなく、180Hzを越えると膜
の強度が低下することによる。
And the amount of air diffused by air diffusion (m 3 )
Is 20 to 800 m 3 / (m 2 · h) per projected area of the hollow fiber membrane on the bottom surface of the tank filled with the stock solution and per unit time. If it is less than 20 m 3, it has no effect, and if it exceeds 800 m 3 , it is sufficient to break the agglomeration, but energy is wasted. A preferable range is 50 to 500 m 3 /
(m 2 · h). The amount of gas when the gas is directly applied to the surface of the hollow fiber membrane is 0.05 to 90 m 3 / (m 2 · h) per unit area of the hollow fiber membrane and per unit time. This is also for the same reason as above, and the preferable range is 0.1 to 10.
It is 30 m 3 / (m 2 · h). Further, the range of vibration given by mechanical means is 0.1 to 180 Hz. This is because there is no effect when the frequency is less than 0.1 Hz, and the strength of the film decreases when the frequency exceeds 180 Hz.

【0015】また、濾過運転と有効膜面積回復操作との
切換えは、タイマーによる方法、膜間差圧を検出する方
法、中空糸膜の透過流束の低下を検出する方法がある。
Further, the switching between the filtration operation and the effective membrane area recovery operation includes a method by a timer, a method by which the transmembrane pressure difference is detected, and a method by which a decrease in the permeation flux of the hollow fiber membrane is detected.

【0016】タイマーによって切換える方法にあって
は、濾過運転時間と有効膜面積回復操作時間との比(濾
過運転時間/有効膜面積回復操作時間)を1〜660、
好ましくは2.5〜150とする。これは、上記の比が
小さすぎると濾過効率が低下し、大きすぎると凝集が強
固になり凝集を解きにくくなるからである。また、膜間
差圧を検出する方法にあっては、0.3〜0.8kgf/cm
2の範囲内において検出を行う。これは、0.3kgf/cm2
未満では濾過効率が悪く、また0.8kgf/cm2を越える
と凝集が起こりやすくなるからである。更に透過流束の
低下を検出する方法にあっては、透過流束が定常値より
も10%低下した時点から有効膜面積回復操作を開始す
ることが好ましい。これは透過流束が定常値よりも10
%以上低下すると、凝集を解くのに大きなエネルギーが
必要になることによる。
In the method of switching by a timer, the ratio of the filtration operation time to the effective membrane area recovery operation time (filtration operation time / effective membrane area recovery operation time) is 1 to 660,
It is preferably 2.5 to 150. This is because if the above ratio is too small, the filtration efficiency decreases, and if it is too large, the agglomeration becomes strong and the agglomeration becomes difficult to release. In addition, in the method of detecting transmembrane pressure difference, 0.3 to 0.8 kgf / cm
Detection is performed within the range of 2 . This is 0.3 kgf / cm 2
If it is less than 0.8 kg, the filtration efficiency is poor, and if it exceeds 0.8 kgf / cm 2 , aggregation is likely to occur. Further, in the method of detecting a decrease in permeation flux, it is preferable to start the effective membrane area recovery operation at the time when the permeation flux decreases by 10% from the steady value. This means that the permeation flux is 10
When it is decreased by more than%, a large amount of energy is required to release the agglomeration.

【0017】[0017]

【作用】濾過運転の間に中空糸膜同士の凝集を解く有効
膜面積回復操作を行うことによって、透過流束を維持し
た連続濾過運転が可能になる。
By performing the effective membrane area recovery operation for releasing the aggregation of the hollow fiber membranes during the filtration operation, the continuous filtration operation maintaining the permeation flux becomes possible.

【0018】[0018]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図3は本発明に係る濾過装置の運転
方法が適用される浄化槽の一例を示す断面図、図4
(a)〜(c)は中空糸膜モジュールの別実施例を示す
図、図5は同浄化槽の別実施例を示す断面図、図6は同
浄化槽の別実施例を示す断面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 3 is a cross-sectional view showing an example of a septic tank to which the operating method of the filtration device according to the present invention is applied, and FIG.
(A)-(c) is a figure showing other examples of a hollow fiber membrane module, Drawing 5 is a sectional view showing other examples of the same septic tank, and Drawing 6 is a sectional view showing other examples of the same septic tank.

【0019】浄化槽1内には導入管2を介して廃水3が
供給され、また浄化槽1内には隔壁4を配置し、この隔
壁4内に膜モジュール5を配置し、この膜モジュール5
の下方に散気管6を設けている。尚、浄化槽としては生
物反応室だけでなく流量調整部を付設したもの、或いは
生物反応室を好気性処理室と嫌気性処理室に分けたもの
等であってもよい。
Waste water 3 is supplied into the septic tank 1 through an introduction pipe 2, a partition wall 4 is arranged in the septic tank 1, a membrane module 5 is arranged in the partition wall 4, and the membrane module 5 is arranged.
An air diffuser 6 is provided below the. As the septic tank, not only the biological reaction chamber but also one provided with a flow rate adjusting unit, or the biological reaction chamber divided into an aerobic treatment chamber and an anaerobic treatment chamber may be used.

【0020】前記膜モジュール5は分離膜である中空糸
膜7と、これら中空糸膜7の上端部が結合する集水部8
とからなり、この集水部8に吸引管9を接続し、吸引ポ
ンプ10を駆動することで中空糸膜7の2次側に負圧を
作用させ、生物処理された廃水3を活性汚泥を含まない
透過液と活性汚泥濃度が高くなった保持液(濃縮液)と
に濾過(分離)し、透過液を集水部8、吸引管9を介し
て外部に排出する。
The membrane module 5 has a hollow fiber membrane 7 which is a separation membrane, and a water collecting portion 8 to which the upper ends of the hollow fiber membranes 7 are connected.
The suction pipe 9 is connected to the water collecting part 8 and the suction pump 10 is driven to exert a negative pressure on the secondary side of the hollow fiber membrane 7 to convert the biologically treated wastewater 3 into activated sludge. It is filtered (separated) into a permeated liquid not containing it and a retentate (concentrated liquid) having a high activated sludge concentration, and the permeated liquid is discharged to the outside through the water collecting section 8 and the suction pipe 9.

【0021】ここで、透過流束の定常値は、(Jss)
=Kφu*1.0(MLSS)-0.5で表わすことができる。
尚、Kは濾過定数で2.6X10-5kg0.6m-1.5と算出され、φ
は形状係数で(中空糸膜のJss)/(理想状態のJs
s)で表わされ、u*は見かけの膜面流速であり、散気
による上昇流をu*に変換する。そして前記膜モジュー
ル5のφは0.8である。
Here, the steady-state value of the permeation flux is (Jss)
= Kφu * 1.0 (MLSS) −0.5 .
K is a filtration constant calculated as 2.6 x 10 -5 kg 0.6 m -1.5, and φ
Is the shape factor (Jss of hollow fiber membrane) / (Js of ideal state)
s), where u * is the apparent membrane surface velocity, which converts the upward flow due to aeration to u * . The diameter of the membrane module 5 is 0.8.

【0022】また、廃水中の汚泥濃度(MLSS)は、
110℃での乾燥重量濃度として30kg/m3以下、好ま
しくは20kg/m3以下とし、気液二相流を形成するため
に供給する気体量は、浄化槽底面に対する中空糸膜の投
影面積当り且つ単位時間当り1.0〜380m3/(m2
h)、好ましくは5.0〜250m3/(m2・h)とし、気液固
三相流を形成するために添加する粒子の平均径は0.0
1〜50mm、好ましくは0.1〜10mmとし、供給
する気体量は、浄化槽底面に対する中空糸膜の投影面積
当り且つ単位時間当り2.0〜400m3/(m2・h)とす
る。
The sludge concentration (MLSS) in the wastewater is
The dry weight concentration at 110 ° C. is 30 kg / m 3 or less, preferably 20 kg / m 3 or less, and the amount of gas supplied to form the gas-liquid two-phase flow is per unit projected area of the hollow fiber membrane on the bottom of the septic tank and 1.0 to 380 m 3 / (m 2 · per unit time
h), preferably 5.0 to 250 m 3 / (m 2 · h), and the average diameter of particles added to form a gas-liquid three-phase flow is 0.0
It is 1 to 50 mm, preferably 0.1 to 10 mm, and the amount of gas supplied is 2.0 to 400 m 3 / (m 2 · h) per projected area of the hollow fiber membrane on the bottom of the septic tank and per unit time.

【0023】この実施例にあっては、散気管6からの散
気によって中空糸膜7表面に沿って気液二相流または気
液固三相流を形成して濾過運転を行うだけでなく、濾過
運転の停止中には散気管6からの散気によって中空糸膜
同士の凝集を解く有効膜面積回復操作を行う。この時の
散気量は、浄化槽底面に対する中空糸膜の投影面積当り
且つ単位時間当り20〜800m3/(m2・h)、好ましくは
50〜500m3/(m2・h)とする。
In this embodiment, not only the filtration operation is performed by forming a gas-liquid two-phase flow or a gas-liquid solid three-phase flow along the surface of the hollow fiber membrane 7 by air diffusion from the air diffusing pipe 6. During the stoppage of the filtration operation, an effective membrane area recovery operation is performed in which the agglomeration of the hollow fiber membranes is released by the air diffused from the air diffuser 6. Aeration amount at this time and per unit time 20~800m 3 / per projected area of the hollow fiber membrane (m 2 · h) for the septic tank bottom, preferably 50~500m 3 / (m 2 · h ).

【0024】以下の(表1)はMLSS濃度を10kg/m
3、気液二相流を形成するための散気量を15m3/(m2
h)、吸引圧力を0.5kgf/cm2とし、有効膜面積回復操
作のための散気量を変化させた場合の回復率の実験結果
を示すものである。尚、有効膜面積回復操作は濾過を1
0回繰り返した後に30分間行い、回復率は初期膜透過
流束と回復操作直後の膜透過流束との比として評価し
た。この(表1)から散気量は前記の範囲とすべきこと
が分る。
The following (Table 1) shows the MLSS concentration of 10 kg / m.
3 , the amount of air diffused to form gas-liquid two-phase flow is 15m 3 / (m 2 ·
h) shows the experimental results of the recovery rate when the suction pressure was 0.5 kgf / cm 2 and the amount of air diffused for the effective membrane area recovery operation was changed. The effective membrane area recovery operation is filtration 1
After repeating 0 times, it was performed for 30 minutes, and the recovery rate was evaluated as the ratio of the initial membrane permeation flux to the membrane permeation flux immediately after the recovery operation. From this (Table 1), it is understood that the aeration amount should be in the above range.

【0025】[0025]

【表1】 [Table 1]

【0026】膜モジュール5のタイプとしては、図4
(a)〜(c)に示すようなものでもよい。図4(a)
に示す膜モジュール5は集水部8から垂下する複数本の
中空糸膜7がスカート状に広がっており、この膜モジュ
ール5のφは0.9である。図4(b)に示す膜モジュ
ール5は集水部8から垂下する複数本の中空糸膜7が広
がりが図4(a)に示すものより大きく、この膜モジュ
ール5のφは1.0である。図4(c)に示す膜モジュ
ール5は管状の集水部8から複数本の中空糸膜7がカー
テン状に垂下しており、この膜モジュール5のφは1.
0である。
The type of the membrane module 5 is shown in FIG.
What is shown in (a)-(c) may be sufficient. Figure 4 (a)
In the membrane module 5 shown in (1), a plurality of hollow fiber membranes 7 hanging from the water collecting portion 8 are spread in a skirt shape, and φ of this membrane module 5 is 0.9. In the membrane module 5 shown in FIG. 4 (b), the plurality of hollow fiber membranes 7 hanging from the water collecting portion 8 has a larger spread than that shown in FIG. 4 (a), and φ of this membrane module 5 is 1.0. is there. The membrane module 5 shown in FIG. 4 (c) has a plurality of hollow fiber membranes 7 hanging from a tubular water collecting portion 8 in a curtain shape, and φ of this membrane module 5 is 1.
0.

【0027】図5及び図6は同浄化槽の別実施例を示す
断面図であり、図5に示す別実施例にあっては散気管6
とは別に中空糸膜7の側方に散気管11を配置し、この
散気管11から中空糸膜7の表面に向けて気体を直接当
てることで中空糸膜7の有効膜面積回復操作を行うよう
にしている。上記の中空糸膜表面に向けて気体を直接当
てる場合の気体量は、中空糸膜の単位面積当り且つ単位
時間当り0.05〜90m3/(m2・h)、好ましくは0.1
〜30m3/(m2・h)とする。
5 and 6 are sectional views showing another embodiment of the same septic tank. In the other embodiment shown in FIG. 5, the air diffuser 6 is shown.
Separately from the hollow fiber membrane 7, an air diffuser 11 is arranged, and the gas is directly applied from the air diffuser 11 toward the surface of the hollow fiber 7 to recover the effective membrane area of the hollow fiber 7. I am trying. The amount of gas when the gas is directly applied to the surface of the hollow fiber membrane is 0.05 to 90 m 3 / (m 2 · h) per unit area of the hollow fiber membrane and preferably 0.1.
-30 m 3 / (m 2 · h)

【0028】図6に示す別実施例にあっては、膜モジュ
ール5を縦方向に配置した2本の集水部8と、これら集
水部8間に横方向に架設される複数の中空糸膜7にて構
成し、また浄化槽1の上方にモータ12にてクランク動
するバー13を配置し、このバー13に昇降部材14を
連結し、バー13のクランク動と連動して昇降部材14
が上下動し、中空糸膜7を揺すって有効膜面積回復操作
を行うようにしている。上記のクランク動によって中空
糸膜7に与えられる振動の範囲は0.1〜180Hzと
する。
In another embodiment shown in FIG. 6, two water collecting portions 8 in which the membrane module 5 is arranged in the longitudinal direction and a plurality of hollow fibers horizontally laid between the water collecting portions 8 are provided. A bar 13 which is composed of the membrane 7 and which is cranked by a motor 12 is arranged above the septic tank 1. An elevating member 14 is connected to the bar 13 and the elevating member 14 is interlocked with the crank movement of the bar 13.
Moves up and down to shake the hollow fiber membrane 7 to perform an effective membrane area recovery operation. The range of vibration given to the hollow fiber membrane 7 by the above crank movement is 0.1 to 180 Hz.

【0029】以下に図7に基づいて本発明に係る浄化槽
の運転方法を説明する。先ず吸引ポンプ10を駆動して
濾過運転を行う。この濾過運転は間欠的に行い、濾過運
転を停止した後短時間逆圧洗浄を行って透過流束を回復
させる。これら濾過運転と逆圧洗浄を交互に連続して行
うと、徐々に中空糸膜の凝集が起こり、逆洗を行っても
透過流束の回復ができなくなる。そこで、濾過運転をあ
る程度長く休止し、この間に中空糸膜同士の凝集を解く
有効膜面積回復操作を行う。
The operation method of the septic tank according to the present invention will be described below with reference to FIG. First, the suction pump 10 is driven to perform a filtration operation. This filtration operation is performed intermittently, and after the filtration operation is stopped, back pressure washing is performed for a short time to recover the permeation flux. When the filtration operation and the back pressure washing are alternately and continuously performed, the hollow fiber membranes are gradually aggregated and the permeation flux cannot be recovered even if the back washing is performed. Therefore, the filtration operation is suspended for a certain length of time, and during this period, an effective membrane area recovery operation for releasing the aggregation of the hollow fiber membranes is performed.

【0030】濾過運転と有効膜面積回復操作との切換え
は、タイマーによる方法、膜間差圧を検出する方法、中
空糸膜の透過流束の低下を検出する方法がある。タイマ
ーによって切換える方法にあっては、濾過運転時間と有
効膜面積回復操作時間との比(濾過運転時間/有効膜面
積回復操作時間)を1〜660、好ましくは2.5〜1
50とする。また、膜間差圧を検出する方法にあって
は、0.3〜0.8kgf/cm2の範囲内において検出を行
う。更に透過流束の低下を検出する方法にあっては、透
過流束が定常値よりも10%低下した時点から有効膜面
積回復操作を開始する。
Switching between the filtration operation and the effective membrane area recovery operation includes a method by a timer, a method by which the transmembrane pressure difference is detected, and a method by which a decrease in the permeation flux of the hollow fiber membrane is detected. In the method of switching by a timer, the ratio of the filtration operation time to the effective membrane area recovery operation time (filtration operation time / effective membrane area recovery operation time) is 1 to 660, preferably 2.5 to 1
Set to 50. Further, in the method of detecting the transmembrane pressure difference, the detection is performed within the range of 0.3 to 0.8 kgf / cm 2 . Further, in the method of detecting the decrease in permeation flux, the effective membrane area recovery operation is started at the time when the permeation flux decreases by 10% from the steady value.

【0031】以下の(表2)は有効膜面積回復操作のた
めの散気量を100m3/(m2・h)とし、他の条件は前記
(表1)の結果を得た場合と同一として行った場合の有
効膜面積回復操作を開始する時の膜透過流束の定常値か
らの低下率と回復率との関係の実験結果を示す。尚、膜
透過流束の定常値は(Jss)=Kφu*1.0(MLS
S)-0.5から算出した。
In the following (Table 2), the amount of air diffused for the effective membrane area recovery operation is 100 m 3 / (m 2 · h), and other conditions are the same as those obtained in the above (Table 1). The experimental result of the relationship between the reduction rate from the steady value of the membrane permeation flux and the recovery rate at the time of starting the effective membrane area recovery operation in the case of performing as above is shown. The steady value of the membrane permeation flux is (Jss) = Kφu * 1.0 (MLS
S) Calculated from -0.5 .

【0032】[0032]

【表2】 [Table 2]

【0033】この(表2)から分るように透過流束が定
常値よりも10%以上低下した後に有効膜面積回復操作
を開始すると回復率が悪くなり、これを回復させるには
本実験での回復操作以上のエネルギーが必要となる。し
たがって、前記したように透過流束が定常値よりも10
%以上低下する前に有効膜面積回復操作を開始すること
が好ましい。
As can be seen from this (Table 2), when the effective membrane area recovery operation is started after the permeation flux is reduced by 10% or more from the steady value, the recovery rate becomes poor. It requires more energy than the recovery operation. Therefore, as described above, the permeation flux is 10
It is preferable to start the effective membrane area recovery operation before it decreases by more than 0.1%.

【0034】[0034]

【発明の効果】以上に説明した如く本発明によれば、浄
化槽内の廃水中に浸漬し中空糸膜に作用する吸引圧を
0.8kgf/cm2以下としたので、中空糸膜同士の凝集を
抑制することができる。また濾過運転の間に中空糸膜同
士の凝集を解く有効膜面積回復操作を行うようにしたの
で、一定の透過流束を確保することができる。また、中
空糸膜表面に沿って気液二相流または気液固三相流を流
すことで中空糸膜表面に堆積するケーキ層を掻き落とす
ことができる。
As described above, according to the present invention, the suction pressure acting on the hollow fiber membrane by immersing it in the waste water in the septic tank is set to 0.8 kgf / cm 2 or less, so that the hollow fiber membranes are aggregated. Can be suppressed. Further, since the effective membrane area recovery operation for releasing the agglomeration of the hollow fiber membranes is performed during the filtration operation, a constant permeation flux can be secured. Further, by flowing a gas-liquid two-phase flow or a gas-liquid solid three-phase flow along the hollow fiber membrane surface, the cake layer deposited on the hollow fiber membrane surface can be scraped off.

【図面の簡単な説明】[Brief description of drawings]

【図1】濾過運転の経過時間と透過流束との関係を示す
グラフ
FIG. 1 is a graph showing the relationship between the elapsed time of filtration operation and the permeation flux.

【図2】図2は分離膜に作用する吸引圧(膜間差圧)と
透過流束の定常値との関係を示すグラフ
FIG. 2 is a graph showing a relationship between a suction pressure (transmembrane pressure difference) acting on a separation membrane and a steady value of a permeation flux.

【図3】本発明に係る濾過装置の運転方法が適用される
浄化槽の一例を示す断面図
FIG. 3 is a cross-sectional view showing an example of a septic tank to which the method for operating a filtration device according to the present invention is applied.

【図4】(a)〜(c)は中空糸膜モジュールの別実施
例を示す図
4A to 4C are views showing another embodiment of the hollow fiber membrane module.

【図5】同浄化槽の別実施例を示す断面図FIG. 5 is a cross-sectional view showing another embodiment of the septic tank.

【図6】同浄化槽の別実施例を示す断面図FIG. 6 is a cross-sectional view showing another embodiment of the septic tank.

【図7】本発明に係る浄化槽の運転方法のパターンを示
すグラフ
FIG. 7 is a graph showing a pattern of a method for operating a septic tank according to the present invention.

【符号の説明】[Explanation of symbols]

1…浄化槽(濾過装置)、2…導入管、3…廃水(原
液)、5…膜モジュール、6…散気管、7…中空糸膜、
8…集水部、9…吸引管、10…吸引ポンプ、11…散
気管、12…モータ、13…バー、14…昇降部材。
DESCRIPTION OF SYMBOLS 1 ... Septic tank (filtering device), 2 ... Introducing pipe, 3 ... Waste water (stock solution), 5 ... Membrane module, 6 ... Air diffuser, 7 ... Hollow fiber membrane,
8 ... Water collecting part, 9 ... Suction pipe, 10 ... Suction pump, 11 ... Air diffuser, 12 ... Motor, 13 ... Bar, 14 ... Elevating member.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瓜生 勝嗣 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 奥野 祐一 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Urushi Katsushi 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture Totoki Kikai Co., Ltd. (72) Yuichi Okuno Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka 2-1, 1-1 Totoki Equipment Co., Ltd.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 濾過装置内の原液中に中空糸膜を浸漬
し、この中空糸膜の2次側を吸引し、原液を透過液と保
持液(濃縮液)とに濾過するようにした濾過装置の運転
方法において、前記吸引圧力は0.8kgf/cm2以下と
し、更に濾過運転の間に中空糸膜同士の凝集を解く有効
膜面積回復操作を行うようにしたことを特徴とする濾過
装置の運転方法。
1. A filtration in which a hollow fiber membrane is immersed in a stock solution in a filtration device, the secondary side of the hollow fiber membrane is sucked, and the stock solution is filtered into a permeate and a retentate (concentrate). In the method for operating the device, the suction pressure is 0.8 kgf / cm 2 or less, and further, an effective membrane area recovery operation for releasing aggregation of the hollow fiber membranes during the filtration operation is performed. Driving method.
【請求項2】 請求項1に記載の濾過装置の運転方法に
おいて、前記中空糸膜表面に沿って気液二相流または気
液固三相流を流すことで中空糸膜表面に堆積するケーキ
層を掻き落とすようにしたことを特徴とする濾過装置の
運転方法。
2. The method of operating a filtration device according to claim 1, wherein a cake deposited on the surface of the hollow fiber membrane by flowing a gas-liquid two-phase flow or a gas-liquid solid three-phase flow along the surface of the hollow fiber membrane. A method for operating a filtration device, wherein the layer is scraped off.
【請求項3】 請求項1または請求項2に記載の濾過装
置の運転方法において、前記有効膜面積回復操作は中空
糸膜の下方に配置した散気装置からの散気によって行う
ようにしたことを特徴とする濾過装置の運転方法。
3. The method for operating a filtration device according to claim 1, wherein the effective membrane area recovery operation is performed by air diffusion from an air diffusion device disposed below the hollow fiber membrane. And a method for operating a filtration device.
【請求項4】 請求項3に記載の濾過装置の運転方法に
おいて、前記散気量(m3)は原液を満たした槽の底面に
対する中空糸膜の投影面積当り且つ単位時間当り20〜
800m3/(m2・h)としたことを特徴とする濾過装置の運
転方法。
4. The method of operating the filtration device according to claim 3, wherein the air diffusion amount (m 3 ) is 20 to 20 per unit time per projected area of the hollow fiber membrane on the bottom surface of the tank filled with the stock solution.
A method of operating a filtration device, which is 800 m 3 / (m 2 · h).
【請求項5】 請求項1または請求項2に記載の濾過装
置の運転方法において、前記有効膜面積回復操作は、中
空糸膜の側方に配置した散気手段から中空糸膜表面に向
けて気体を直接当てるようにしたことを特徴とする濾過
装置の運転方法。
5. The method for operating a filtration device according to claim 1 or 2, wherein the effective membrane area recovery operation is performed from an air diffuser disposed laterally of the hollow fiber membrane toward the surface of the hollow fiber membrane. A method for operating a filtration device, which is characterized in that a gas is directly applied.
【請求項6】 請求項5に記載の濾過装置の運転方法に
おいて、前記散気手段から供給される気体量(m3)は中
空糸膜の単位面積当り且つ単位時間当り0.05〜90
m3/(m2・h)としたことを特徴とする濾過装置の運転方
法。
6. The method for operating a filtration device according to claim 5, wherein the gas amount (m 3 ) supplied from the air diffusing means is 0.05 to 90 per unit area of the hollow fiber membrane and per unit time.
A method of operating a filtration device, characterized in that m 3 / (m 2 · h).
【請求項7】 請求項1または請求項2に記載の濾過装
置の運転方法において、前記有効膜面積回復操作は機械
的手段によって中空糸膜に振動を与えるようにしたこと
を特徴とする濾過装置の運転方法。
7. The method for operating a filtration device according to claim 1 or 2, wherein the effective membrane area recovery operation is performed by vibrating the hollow fiber membrane by mechanical means. Driving method.
【請求項8】 請求項7に記載の濾過装置の運転方法に
おいて、前記中空糸膜に与える振動は0.1〜180H
zとしたことを特徴とする濾過装置の運転方法。
8. The method for operating the filtration device according to claim 7, wherein the vibration applied to the hollow fiber membrane is 0.1 to 180 H.
A method of operating a filtration device characterized in that it is z.
【請求項9】 請求項1または請求項2に記載の濾過装
置の運転方法において、前記濾過運転と有効膜面積回復
操作との切換えは、タイマーによって行うようにしたこ
とを特徴とする濾過装置の運転方法。
9. The method for operating a filtration device according to claim 1, wherein the switching between the filtration operation and the effective membrane area recovery operation is performed by a timer. how to drive.
【請求項10】 請求項9に記載の濾過装置の運転方法
において、前記濾過運転時間と有効膜面積回復操作時間
との比(濾過運転時間/有効膜面積回復操作時間)は1
〜660としたことを特徴とする濾過装置の運転方法。
10. The method for operating a filtration device according to claim 9, wherein the ratio of the filtration operation time to the effective membrane area recovery operation time (filtration operation time / effective membrane area recovery operation time) is 1.
The method for operating a filtration device is characterized in that
【請求項11】 請求項1または請求項2に記載の濾過
装置の運転方法において、前記有効膜面積回復操作は膜
間差圧を検出することによって行うようにしたことを特
徴とする濾過装置の運転方法。
11. The method for operating a filtration device according to claim 1 or 2, wherein the effective membrane area recovery operation is performed by detecting a transmembrane pressure difference. how to drive.
【請求項12】 請求項11に記載の濾過装置の運転方
法において、前記検出される膜間差圧は0.3〜0.8
kgf/cm2の範囲内の値としたことを特徴とする濾過装置
の運転方法。
12. The method of operating a filtration device according to claim 11, wherein the detected transmembrane pressure difference is 0.3 to 0.8.
A method for operating a filtration device, wherein the value is within a range of kgf / cm 2 .
【請求項13】 請求項1または請求項2に記載の濾過
装置の運転方法において、前記有効膜面積回復操作は中
空糸膜の透過流束の低下を検出することで行うことを特
徴とする濾過装置の運転方法。
13. The method for operating a filtration device according to claim 1, wherein the effective membrane area recovery operation is performed by detecting a decrease in permeation flux of the hollow fiber membrane. How to operate the device.
【請求項14】 請求項13に記載の濾過装置の運転方
法において、前記有効膜面積回復操作は透過流束が定常
値よりも10%低下した時点から開始することを特徴と
する濾過装置の運転方法。
14. The method of operating a filtration device according to claim 13, wherein the effective membrane area recovery operation is started when the permeation flux is reduced by 10% from a steady value. Method.
【請求項15】 請求項2に記載の濾過装置の運転方法
において、前記原液中の汚泥濃度(MLSS)を110
℃での乾燥重量濃度として30kg/m3以下としたことを
特徴とする濾過装置の運転方法。
15. The method of operating a filtration device according to claim 2, wherein the sludge concentration (MLSS) in the stock solution is 110.
A method for operating a filtration device, wherein the dry weight concentration at 30 ° C. is 30 kg / m 3 or less.
【請求項16】 請求項2に記載の濾過装置の運転方法
において、前記気液二相流を形成するために供給する気
体量(m3)は、原液を満たした槽の底面に対する中空糸
膜の投影面積当り且つ単位時間当り1.0〜380m3/
(m2・h)としたことを特徴とする濾過装置の運転方法。
16. The method of operating a filtration device according to claim 2, wherein the gas amount (m 3 ) supplied to form the gas-liquid two-phase flow is a hollow fiber membrane with respect to the bottom surface of the tank filled with the stock solution. Per projected area and per unit time 1.0 to 380 m 3 /
(m 2 · h) The method for operating the filtration device.
【請求項17】 請求項2に記載の濾過装置の運転方法
において、前記気液固三相流を形成するために添加する
粒子の平均径は0.01〜50mmとし、供給する気体
量(m3)は、原液を満たした槽の底面に対する中空糸膜
の投影面積当り且つ単位時間当り2.0〜400m3/(m2
・h)としたことを特徴とする濾過装置の運転方法。
17. The method for operating a filtration device according to claim 2, wherein the particles added to form the gas-liquid solid three-phase flow have an average diameter of 0.01 to 50 mm, and the amount of gas supplied (m 3 ) is 2.0 to 400 m 3 / (m 2 per unit time per projected area of the hollow fiber membrane on the bottom of the tank filled with the stock solution.
・ A method of operating a filtration device characterized in that
JP6170982A 1994-07-22 1994-07-22 Operation of filter Pending JPH0824594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6170982A JPH0824594A (en) 1994-07-22 1994-07-22 Operation of filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6170982A JPH0824594A (en) 1994-07-22 1994-07-22 Operation of filter

Publications (1)

Publication Number Publication Date
JPH0824594A true JPH0824594A (en) 1996-01-30

Family

ID=15914944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6170982A Pending JPH0824594A (en) 1994-07-22 1994-07-22 Operation of filter

Country Status (1)

Country Link
JP (1) JPH0824594A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100233308B1 (en) * 1997-07-04 1999-12-01 신형인 Purification method by hollow fiber membrane
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
JP2017056371A (en) * 2015-09-14 2017-03-23 国立大学法人北海道大学 Operation method of filtration apparatus
KR102022025B1 (en) * 2019-02-19 2019-09-18 주식회사 서진에너지 Integral type immersed hollow fiber membrane module equipment for air scouring

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539259A (en) * 1978-09-12 1980-03-19 Nitsushiyoo:Kk Backwashing method of ultrafilter
JPS60137404A (en) * 1983-12-26 1985-07-22 Sankyo Seiki Mfg Co Ltd Backwashing process for suspended filter
JPS62155906A (en) * 1985-12-28 1987-07-10 Mitsubishi Rayon Eng Co Ltd Method for washing hollow yarn filter module
JPS631403A (en) * 1986-06-19 1988-01-06 Fine Fuiirudo Kk Purifier for dirty water
JPH01245894A (en) * 1988-03-25 1989-10-02 Kubota Ltd Filter apparatus for treatment of water
JPH0236000A (en) * 1988-07-22 1990-02-06 Ebara Infilco Co Ltd Apparatus for treating organic sewage
JPH0295497A (en) * 1988-10-03 1990-04-06 Kubota Ltd Membrane separation process
JPH02227122A (en) * 1989-02-27 1990-09-10 Akua Runesansu Gijutsu Kenkyu Kumiai Treatment by membrane
JPH05220358A (en) * 1992-02-14 1993-08-31 Sanki Eng Co Ltd Membrane filtration method
JPH0631141A (en) * 1992-07-22 1994-02-08 Kubota Corp Solid-liquid separation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539259A (en) * 1978-09-12 1980-03-19 Nitsushiyoo:Kk Backwashing method of ultrafilter
JPS60137404A (en) * 1983-12-26 1985-07-22 Sankyo Seiki Mfg Co Ltd Backwashing process for suspended filter
JPS62155906A (en) * 1985-12-28 1987-07-10 Mitsubishi Rayon Eng Co Ltd Method for washing hollow yarn filter module
JPS631403A (en) * 1986-06-19 1988-01-06 Fine Fuiirudo Kk Purifier for dirty water
JPH01245894A (en) * 1988-03-25 1989-10-02 Kubota Ltd Filter apparatus for treatment of water
JPH0236000A (en) * 1988-07-22 1990-02-06 Ebara Infilco Co Ltd Apparatus for treating organic sewage
JPH0295497A (en) * 1988-10-03 1990-04-06 Kubota Ltd Membrane separation process
JPH02227122A (en) * 1989-02-27 1990-09-10 Akua Runesansu Gijutsu Kenkyu Kumiai Treatment by membrane
JPH05220358A (en) * 1992-02-14 1993-08-31 Sanki Eng Co Ltd Membrane filtration method
JPH0631141A (en) * 1992-07-22 1994-02-08 Kubota Corp Solid-liquid separation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100233308B1 (en) * 1997-07-04 1999-12-01 신형인 Purification method by hollow fiber membrane
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
US7022236B2 (en) 2002-12-05 2006-04-04 Zenon Environmental Inc. Membrane bioreactor, process and aerator
JP2017056371A (en) * 2015-09-14 2017-03-23 国立大学法人北海道大学 Operation method of filtration apparatus
KR102022025B1 (en) * 2019-02-19 2019-09-18 주식회사 서진에너지 Integral type immersed hollow fiber membrane module equipment for air scouring

Similar Documents

Publication Publication Date Title
JP2001205055A (en) Method for operating membrane separation apparatus and apparatus therefor
JP2001190937A (en) Water purification equipment and method of cleaning membrane element
JPH07251043A (en) Filtering method and filter device
RU2394778C2 (en) Method of treating waste water
JPH0824594A (en) Operation of filter
JP4781325B2 (en) Wastewater treatment method
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
JPH10244262A (en) Filtration method for wastewater
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JP3162339B2 (en) Sludge treatment method and treatment system
JP2699108B2 (en) Sewage treatment method by hollow fiber membrane
JP4124957B2 (en) Filter body washing method and apparatus
JP7067678B1 (en) Filtration membrane cleaning equipment, water treatment equipment and filtration membrane cleaning method
JP2753853B2 (en) Sewage treatment method and apparatus using hollow fiber membrane
JPH0985242A (en) Immersion type film separation device
JP2008229613A (en) Wastewater treatment method
JP3726404B2 (en) Membrane separation device and operation method thereof, activated sludge treatment device and water treatment facility
JP3870433B2 (en) Immersion membrane separator
JP2004089782A (en) Washing method for fibrous filter material
JP2938442B1 (en) Sludge treatment method and treatment system
JP3775640B2 (en) Method and apparatus for dynamic filtration of sewage
JP2002035783A (en) Filtration and separation method and apparatus for biologically treated wastewater
JPH1076263A (en) Sewage treatment apparatus using immersion type membrane separator
JP2002018467A (en) Method and apparatus for bio-treatment of organic wastewater
JP2001104761A (en) Operation method for membrane separation apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040331