JPH1133301A - Organic solvent recovery device and method for operating the device - Google Patents

Organic solvent recovery device and method for operating the device

Info

Publication number
JPH1133301A
JPH1133301A JP19375797A JP19375797A JPH1133301A JP H1133301 A JPH1133301 A JP H1133301A JP 19375797 A JP19375797 A JP 19375797A JP 19375797 A JP19375797 A JP 19375797A JP H1133301 A JPH1133301 A JP H1133301A
Authority
JP
Japan
Prior art keywords
organic solvent
recovery
secondary condenser
solvent
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19375797A
Other languages
Japanese (ja)
Inventor
Hiroaki Sakamoto
博明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAMOTO RIKA KK
Rasco Co Ltd
Original Assignee
YAMAMOTO RIKA KK
Rasco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAMOTO RIKA KK, Rasco Co Ltd filed Critical YAMAMOTO RIKA KK
Priority to JP19375797A priority Critical patent/JPH1133301A/en
Publication of JPH1133301A publication Critical patent/JPH1133301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the high recovery rate of a solvent in a short recovery time by forming a closed recovery circulatory channel with the downstream side, of a vacuum pump and a secondary condenser connected in series, which is connected with the downstream side of an evaporator. SOLUTION: First, a first valve 11 is closed and a second valve 13 is opened to form an exhaust flow passage and further, a vacuum pump 10 is activated to create a negative pressure in the exhaust flow passage. Further, the first valve 11 is opened and the second valve 13 is closed resulting in the formation of a closed recovery flow path. Next, after immersing a nasflask 22 in a water bath 21, a solvent recovery operation is initiated. An organic solvent is cooled by a primary condenser 23 and is recovered by a flask 24. In addition, a solvent gas which is not yet recovered is cooled by a secondary condenser 30 to be liquefied and the liquefied solvent gas is recovered by a flask 31. After that, part of the solvent gas which is not captured by the secondary condenser 30 is again captured by the secondary condenser 30, whilst the remaining solvent gas circulates through the closed recovery flow path to be again captured by the secondary condenser 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機溶媒回収装置、
特に、研究室等における真空ポンプを利用した閉鎖系回
収流路を有する有機溶媒回収装置に関する。
The present invention relates to an organic solvent recovery apparatus,
In particular, the present invention relates to an organic solvent recovery device having a closed recovery channel using a vacuum pump in a laboratory or the like.

【0002】[0002]

【従来の技術】近年、水道水を利用したアスピレータに
よれば、水道水に溶媒が溶け込み、河川が汚染されるお
それがあった。このため、真空ポンプを利用した有機溶
媒回収装置が提案されている。従来、真空ポンプを利用
した有機溶媒回収装置としては、例えば、図7に示すよ
うに、真空ポンプ1の上流側にロータリーエバポレータ
ー2を配置する一方、その下流側に第2次凝縮器3が配
置されたものがある。
2. Description of the Related Art In recent years, according to an aspirator using tap water, there is a possibility that a solvent may be dissolved in tap water and a river may be polluted. Therefore, an organic solvent recovery device using a vacuum pump has been proposed. Conventionally, as an organic solvent recovery apparatus using a vacuum pump, for example, as shown in FIG. 7, a rotary evaporator 2 is arranged upstream of a vacuum pump 1 and a secondary condenser 3 is arranged downstream thereof. Something was done.

【0003】すなわち、前記ロータリーエバポレーター
2のナスフラスコ4に入れられた有機溶媒は、比較的蒸
気圧の高い状態で、かつ、溶媒沸点以下のウォーターバ
ス5で保温されている。そして、前記ナスフラスコ4を
取り付けた第1次凝縮器6内の冷却管6aは循環式クー
ラー7に接続され、冷却水あるいは冷媒で冷却されてい
る。このため、前記真空ポンプ1で第1次凝縮器6内が
負圧になると、溶媒の蒸発が促進され、第1次凝縮器6
で冷却されて液化し、フラスコ8内に捕集回収される。
そして、第1次凝縮器6で捕捉できなかった溶媒ガスは
真空ポンプ1の下流側に位置する第2次凝縮器3で再度
捕捉され、フラスコ9内に回収される。
That is, the organic solvent placed in the eggplant flask 4 of the rotary evaporator 2 is kept in a water bath 5 having a relatively high vapor pressure and a boiling point of the solvent or lower. The cooling pipe 6a in the primary condenser 6 to which the eggplant flask 4 is attached is connected to a circulating cooler 7, and is cooled by cooling water or a refrigerant. For this reason, when the inside of the primary condenser 6 becomes negative pressure by the vacuum pump 1, the evaporation of the solvent is promoted, and the primary condenser 6
And liquefied, and collected and collected in the flask 8.
Then, the solvent gas that could not be captured by the primary condenser 6 is captured again by the secondary condenser 3 located on the downstream side of the vacuum pump 1 and collected in the flask 9.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
有機溶媒回収装置によれば、第2次凝縮器3の排気口3
aが大気に開放されており、捕捉できなかった溶媒ガス
が排出され、室内汚染の原因となっていた。このため、
溶媒の回収率を上げようとすると、冷却温度を低くする
とともに、溶媒ガスの凝縮器通過速度を小さくしなけれ
ばならず、回収時間が長くなる。この結果、回収時間を
短くしようとすると、回収率が低下し、回収率を上げよ
うとすると、回収時間が長くなるという二律背反の関係
から逃れることができない。
However, according to the organic solvent recovery apparatus described above, the exhaust port 3 of the secondary condenser 3
Since a was open to the atmosphere, solvent gas that could not be captured was discharged, causing indoor pollution. For this reason,
In order to increase the recovery rate of the solvent, the cooling temperature must be lowered, and the speed of passing the solvent gas through the condenser must be reduced, which increases the recovery time. As a result, if the recovery time is to be shortened, the recovery rate will be reduced, and if the recovery rate is to be increased, the recovery time will be prolonged.

【0005】特に、凝縮器の温度に等しい飽和蒸気圧分
の溶媒は捕捉することが不可能であり、回収作業中に大
気に拡散し、室内を汚染することは避けられない。例え
ば、沸点の低い有機溶媒であるジクロロメタン(塩化メ
チレン)の場合、仮に温度0℃に完全に冷却できたとし
ても、約170mbarの飽和蒸気圧が残存し、この蒸気圧
に相当する溶媒が常時回収中に室内に拡散し、室内を汚
染するという問題点がある。
[0005] In particular, it is impossible to trap a solvent having a saturated vapor pressure equal to the temperature of the condenser, and it is inevitable that the solvent diffuses into the air during the recovery operation and pollutes the room. For example, in the case of dichloromethane (methylene chloride), which is an organic solvent having a low boiling point, even if the temperature can be completely cooled to 0 ° C., a saturated vapor pressure of about 170 mbar remains, and the solvent corresponding to this vapor pressure is constantly recovered. There is a problem that it diffuses into the room and pollutes the room.

【0006】例えば、幅5m、奥行き8m、高さ3m、
室温20℃の実験室内においてジクロロメタン500g
のうち、その3%が室内に漏れたすると、漏洩重量は1
5gとなる。ジクロロメタンは分子量84.9であるこ
とから、室内には4247ccのジクロロメタンが拡散
する。このため、研究室内におけるジクロロメタンの濃
度は35.4ppmとなる。一般に、実験室内には複数
台のエバポレーターが設置されている場合が多い。この
結果、労働安全衛生法の管理濃度を越える可能性があ
る。
For example, a width of 5 m, a depth of 8 m, a height of 3 m,
500 g of dichloromethane in a laboratory at room temperature of 20 ° C.
If 3% of them leaked indoors, the weight of the leak would be 1
It becomes 5 g. Since dichloromethane has a molecular weight of 84.9, 4247 cc of dichloromethane diffuses into the room. For this reason, the concentration of dichloromethane in the laboratory becomes 35.4 ppm. Generally, many evaporators are installed in a laboratory. As a result, there is a possibility that the concentration may exceed the management concentration of the Industrial Safety and Health Law.

【0007】本発明は、前記問題点に鑑み、短い回収時
間で極めて高い回収率を実現できる有機溶媒回収装置お
よびその操作方法を安価に提供することを目的とする。
[0007] In view of the above problems, an object of the present invention is to provide an organic solvent recovery apparatus capable of realizing an extremely high recovery rate in a short recovery time and an operation method thereof at a low cost.

【0008】[0008]

【課題を解決するための手段】本発明にかかる有機溶媒
回収装置は、前記目的を達成するため、少なくとも1台
のエバポレーターの下流側に、直列に接続した真空ポン
プおよび第2次凝縮器を接続した有機溶媒回収装置にお
いて、直列に接続した真空ポンプおよび第2次凝縮器の
下流側を前記エバポレーターの下流側に接続して閉鎖系
回収流路を形成した構成としてある。
In order to achieve the above object, an organic solvent recovery apparatus according to the present invention comprises a vacuum pump and a secondary condenser connected in series downstream of at least one evaporator. In the organic solvent recovery device described above, a downstream side of the vacuum pump and the secondary condenser connected in series is connected to a downstream side of the evaporator to form a closed recovery channel.

【0009】また、直列に接続した真空ポンプおよび第
2次凝縮器の下流側と、前記エバポレーターの下流側と
の間に絞り弁を配置しておいてもよい。さらに、前記絞
り弁と前記エバポレーターとの間に真空計を接続してお
いてもよい。
Further, a throttle valve may be arranged between the downstream side of the vacuum pump and the secondary condenser connected in series and the downstream side of the evaporator. Further, a vacuum gauge may be connected between the throttle valve and the evaporator.

【0010】前記有機溶媒回収装置は、少なくとも1台
のエバポレーターの第1次凝縮器で有機溶媒をガス化し
て回収し、ついで、未回収溶媒ガスを真空ポンプを利用
して第2次凝縮器で回収した後、さらに、残存する未回
収溶媒ガスを閉鎖系回収流路を利用して循環させ、前記
第2次凝縮器で再度回収するように操作できる。
[0010] The organic solvent recovery device gasifies and recovers the organic solvent in a primary condenser of at least one evaporator, and then uses a vacuum pump to remove the unrecovered solvent gas in a secondary condenser. After the recovery, the remaining unrecovered solvent gas can be circulated using the closed recovery channel, and the operation can be performed so as to be recovered again by the secondary condenser.

【0011】[0011]

【発明の実施の形態】次に、本発明にかかる有機溶媒回
収装置の実施形態を図1ないし図6の添付図面に従って
説明する。なお、説明の便宜上、冷媒の流路は省略して
ある。第1実施形態は、図1に示すように、真空ポンプ
10の上流側にロータリーエバポレーター20が接続さ
れている一方、その下流側に第2次凝縮器30が接続さ
れ、さらに、この第2次凝縮器30の下流側はロータリ
ーエバポレーター20の下流側に接続され、閉鎖系回収
流路を形成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of an organic solvent recovery apparatus according to the present invention will be described with reference to the accompanying drawings of FIGS. Note that, for convenience of explanation, the flow path of the refrigerant is omitted. In the first embodiment, as shown in FIG. 1, a rotary evaporator 20 is connected to an upstream side of a vacuum pump 10, while a secondary condenser 30 is connected to a downstream side thereof. The downstream side of the condenser 30 is connected to the downstream side of the rotary evaporator 20 to form a closed recovery passage.

【0012】前記ロータリーエバポレーター20は、従
来例と同様であり、ウォータバス21で加温されるナス
フラスコ22が第1次凝縮器23に取り付けられてい
る。この第1次凝縮器23には、液化した溶媒を回収す
るフラスコ24が取り付けられている。
The rotary evaporator 20 is the same as the conventional example, and an eggplant flask 22 heated by a water bath 21 is attached to a primary condenser 23. The primary condenser 23 is provided with a flask 24 for collecting a liquefied solvent.

【0013】前記真空ポンプ10と第2次凝縮器30と
の間には第1バルブ11が配置されている。そして、こ
の第1バルブ11と真空ポンプ10との間には、排気ト
ラップ12に接続された第2バルブ13が接続されてい
る。また、第2次凝縮器30の下流側はリリーフバルブ
14を介して前記排気トラップ12にも接続されてい
る。さらに、前記第2次凝縮器30の排気側からロータ
リーエバポレーター20の下流側までの流路には真空−
圧力練成計15,絞り弁16,真空計17が順次取り付
けられている。
A first valve 11 is disposed between the vacuum pump 10 and the secondary condenser 30. A second valve 13 connected to the exhaust trap 12 is connected between the first valve 11 and the vacuum pump 10. The downstream side of the secondary condenser 30 is also connected to the exhaust trap 12 via a relief valve 14. Further, a vacuum path is provided between the exhaust side of the secondary condenser 30 and the downstream side of the rotary evaporator 20.
A pressure kneader 15, a throttle valve 16, and a vacuum gauge 17 are sequentially mounted.

【0014】次に、前述の有機溶媒回収装置の操作方法
について説明する。まず、ロータリーエバポレーター2
0のナスフラスコ22がウォータバス21に浸からない
状態とする。そして、閉鎖系回収流路内の空気および室
温における溶媒の飽和蒸気圧ガスを除去するため、第1
バルブ11を閉じ、第2バルブ13を開いて排気流路を
形成し、真空ポンプ10を作動して流路内を負圧にす
る。この場合の真空値は溶媒の沸点等の諸条件を考慮し
て決定する。
Next, an operation method of the above-mentioned organic solvent recovery apparatus will be described. First, rotary evaporator 2
The eggplant flask 22 of 0 is not immersed in the water bath 21. In order to remove the air in the closed recovery passage and the saturated vapor pressure gas of the solvent at room temperature, the first
The valve 11 is closed, the second valve 13 is opened to form an exhaust passage, and the vacuum pump 10 is operated to make the inside of the passage negative pressure. The vacuum value in this case is determined in consideration of various conditions such as the boiling point of the solvent.

【0015】そして、第1バルブ11を開き、第2バル
ブ13を閉じることにより、閉鎖系回収流路を形成す
る。ついで、ウォータバス21にナスフラスコ22を浸
けた後、絞り弁16でエバポレーター20の出口を適正
な真空値に設定し、溶媒回収作業を開始する。ウォータ
ーバス21で適度に温められた有機溶媒は、真空ポンプ
10によりガス化が促進され、第1次凝縮器23で冷却
されて液化し、フラスコ24に回収される。
Then, the first valve 11 is opened and the second valve 13 is closed to form a closed system recovery flow path. Next, after immersing the eggplant flask 22 in the water bath 21, the outlet of the evaporator 20 is set to an appropriate vacuum value by the throttle valve 16, and the solvent recovery operation is started. The organic solvent warmed appropriately in the water bath 21 is gasified by the vacuum pump 10, cooled and liquefied in the primary condenser 23, and collected in the flask 24.

【0016】さらに、第1次凝縮器23で回収されなか
った溶媒ガスは真空ポンプ10で第2次凝縮器30に送
りこまれ、冷却されて液化し、フラスコ31に回収され
る。ついで、第2次凝縮器に捕捉されなかったガスは時
間の経過につれて蒸気圧力が上がり、その一部が第2次
凝縮器30で再度捕捉される一方、残るガスは絞り弁1
6,真空ポンプ10の閉鎖系回収流路を循環し、第2次
凝縮器30で再度捕捉される。
Further, the solvent gas not recovered in the primary condenser 23 is sent to the secondary condenser 30 by the vacuum pump 10, cooled and liquefied, and recovered in the flask 31. Then, the vapor pressure of the gas not captured by the secondary condenser increases with time, and a part of the gas is captured again by the secondary condenser 30, while the remaining gas is collected by the throttle valve 1.
6, circulates through the closed recovery passage of the vacuum pump 10 and is captured again by the secondary condenser 30.

【0017】そして、ナスフラスコ22内の有機溶媒の
有無を目視で確認するか、あるいは、真空計17の真空
値の上昇を確認することにより、回収作業の完了を確認
する。
The completion of the recovery operation is confirmed by visually checking the presence or absence of the organic solvent in the eggplant flask 22 or by checking the increase in the vacuum value of the vacuum gauge 17.

【0018】回収作業の完了後に、第1バルブ11を閉
じ、第2バルブ13を開いて排気流路を形成する。そし
て、流路内に残存する溶媒ガスを排気トラップ12で除
去した後、ロータリーエバポレーター20の図示しない
リーク弁を開いて流路内を大気圧とし、真空ポンプ10
を停止する。
After the completion of the recovery operation, the first valve 11 is closed and the second valve 13 is opened to form an exhaust passage. After the solvent gas remaining in the flow path is removed by the exhaust trap 12, a leak valve (not shown) of the rotary evaporator 20 is opened to bring the pressure in the flow path to atmospheric pressure, and the vacuum pump 10
To stop.

【0019】第2実施形態は、図2に示すように、第
1,第2バルブ11,13を第2次凝縮器30の下流側
に配置した点を除き、他は前述の第1実施形態と同様で
ある。本実施形態によれば、操作初期時に第2次凝縮器
を介して真空引きした場合に、排気トラップ12に流出
する溶媒ガスが少なくなり、有機溶媒の回収率が改善さ
れるという利点がある。
As shown in FIG. 2, the second embodiment differs from the first embodiment in that the first and second valves 11, 13 are arranged downstream of the secondary condenser 30. Is the same as According to the present embodiment, there is an advantage that when evacuation is performed via the secondary condenser at the initial stage of the operation, the amount of the solvent gas flowing out to the exhaust trap 12 is reduced, and the recovery rate of the organic solvent is improved.

【0020】第3実施形態は、図3に示すように、2台
のロータリーエバポレーター20,20を真空ポンプ1
0の上流側に接続した点を除き、他は前述の第2実施形
態と同様である。本実施形態によれば、異種溶媒を回収
する場合に、溶媒の沸点に応じたバス温度を設定でき
る。このため、異種溶媒の回収における時間的バランス
の調整が容易になるという利点がある。
In the third embodiment, as shown in FIG. 3, two rotary evaporators 20 are connected to a vacuum pump 1.
Except for the point that it is connected to the upstream side of 0, the rest is the same as the above-described second embodiment. According to the present embodiment, when recovering a heterogeneous solvent, the bath temperature can be set according to the boiling point of the solvent. For this reason, there is an advantage that adjustment of the time balance in the recovery of the heterogeneous solvent is facilitated.

【0021】第4実施形態は、図4に示すように、真空
ポンプ10の上流側に第2次凝縮器30を配置した点を
除き、他は前述の第2実施形態と同様である。本実施形
態によれば、例えば、エバポレーター20に漏れが生
じ、空気が回収流路内に侵入しても、絞り弁16を適宜
調整して真空ポンプ10の下流側の圧力を大気圧とほぼ
同等にすることにより、リリーフ弁14を介してガス抜
きできる。このため、エバポレーター20の出口におけ
る真空度を一定に保持でき、安定した回収を維持できる
という利点がある。
The fourth embodiment is the same as the above-described second embodiment except that a secondary condenser 30 is disposed upstream of the vacuum pump 10 as shown in FIG. According to the present embodiment, for example, even if the evaporator 20 leaks and air enters the recovery flow path, the throttle valve 16 is appropriately adjusted to make the pressure downstream of the vacuum pump 10 substantially equal to the atmospheric pressure. By doing so, gas can be vented through the relief valve 14. Therefore, there is an advantage that the degree of vacuum at the outlet of the evaporator 20 can be kept constant, and stable recovery can be maintained.

【0022】[0022]

【実施例】【Example】

(実施例1)第1実施形態で示した閉鎖系有機溶媒回収
装置により、クロロホルムおよびジクロロメタン回収の
性能試験を行った。試験結果を図5に示す。図5から明
らかなように、本実施例によれば、ほぼ完全に有機溶媒
を回収できることが判った。
(Example 1) A performance test of chloroform and dichloromethane recovery was performed by the closed organic solvent recovery apparatus shown in the first embodiment. The test results are shown in FIG. As is clear from FIG. 5, according to the present example, it was found that the organic solvent could be almost completely recovered.

【0023】(実施例2)第2実施形態で示した閉鎖系
有機溶媒回収装置により、ジクロロメタン409gを真
空値426mbar、バス温度35℃、冷媒温度+1℃で回
収して性能試験を行った。試験結果を図6(a)に示
す。
(Example 2) A performance test was conducted by collecting 409 g of dichloromethane at a vacuum value of 426 mbar, a bath temperature of 35 ° C, and a refrigerant temperature of + 1 ° C using the closed organic solvent recovery apparatus described in the second embodiment. The test results are shown in FIG.

【0024】(比較例1)従来例で示した開放系有機溶
媒回収装置により、ジクロロメタン409gを真空値3
40mbar、バス温度35℃、冷媒温度+1℃で回収して
性能試験を行った。試験結果を図6(b)に示す。
(Comparative Example 1) 409 g of dichloromethane was evacuated to a vacuum value of 3 by the open system organic solvent recovery apparatus shown in the conventional example.
A performance test was carried out by recovering at 40 mbar, a bath temperature of 35 ° C. and a refrigerant temperature of + 1 ° C. The test results are shown in FIG.

【0025】図6(a),(b)で示した実施例2およ
び比較例1の試験結果から明らかなように、実施例2に
よれば、ほぼ完全に有機溶媒を回収できることが明らか
となった。
As is clear from the test results of Example 2 and Comparative Example 1 shown in FIGS. 6A and 6B, according to Example 2, it is clear that the organic solvent can be almost completely recovered. Was.

【0026】(実施例3)第2実施形態で示した閉鎖系
有機溶媒回収装置により、クロロホルム404gを真空
値280mbar、バス温度55℃、冷媒温度0℃で回収し
て性能試験を行った。試験結果を図6(c)に示す。
(Example 3) A performance test was conducted by recovering 404 g of chloroform at a vacuum value of 280 mbar, a bath temperature of 55 ° C, and a refrigerant temperature of 0 ° C using the closed organic solvent recovery apparatus described in the second embodiment. The test results are shown in FIG.

【0027】(比較例2)従来例で示した開放系有機溶
媒回収装置により、クロロホルム408gを真空値19
0mbar、バス温度50℃(1回目)、45℃(2回
目)、冷媒温度−1℃で回収して性能試験を行った。試
験結果を図6(d)に示す。
(Comparative Example 2) 408 g of chloroform was applied with a vacuum value of 19 using the open system organic solvent recovery apparatus shown in the conventional example.
A performance test was conducted by collecting at 0 mbar, a bath temperature of 50 ° C (first time), 45 ° C (second time), and a refrigerant temperature of -1 ° C. The test results are shown in FIG.

【0028】図6(c),(d)で示した実施例3およ
び比較例2の試験結果から明らかなように、実施例3に
よれば、ほぼ完全に有機溶媒を回収できることが判明し
た。
As is apparent from the test results of Example 3 and Comparative Example 2 shown in FIGS. 6C and 6D, it was found that the organic solvent could be almost completely recovered according to Example 3.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
にかかる有機溶媒回収装置によれば、溶媒ガスの流路が
閉鎖系回収流路となっている。このため、ほぼ完全な回
収が可能になり、溶媒ガスにおける室内の汚染を完全に
防止できる。また、有機溶媒ガスの凝縮器通過速度に関
係なく回収率が一定になる。このため、溶媒の突沸を生
じさせない範囲での高い真空度で回収が可能になり、回
収時間を大幅に短縮できる。
As is apparent from the above description, according to the organic solvent recovery apparatus of the present invention, the flow path of the solvent gas is a closed recovery flow path. For this reason, almost complete recovery becomes possible, and the indoor contamination of the solvent gas can be completely prevented. Further, the recovery rate becomes constant regardless of the speed at which the organic solvent gas passes through the condenser. For this reason, the solvent can be recovered at a high degree of vacuum within a range that does not cause bumping of the solvent, and the recovery time can be significantly reduced.

【0030】請求項2によれば、絞り弁でエバポレータ
ーの出口における真空度を調整し、回収時における溶媒
の排出量を抑制できる。このため、この真空度の調整に
よって回収時間を調整でき、便利である。請求項3によ
れば、回収が完了すると、真空計のメーターが高真空側
に変位するので、回収完了の確認を簡単、かつ、確実に
行うことができる。
According to the second aspect, the degree of vacuum at the outlet of the evaporator is adjusted by the throttle valve, so that the amount of solvent discharged during recovery can be suppressed. Therefore, the recovery time can be adjusted by adjusting the degree of vacuum, which is convenient. According to the third aspect, when the collection is completed, the meter of the vacuum gauge is displaced to the high vacuum side, so that the completion of the collection can be easily and reliably confirmed.

【0031】請求項4によれば、真空ポンプで閉鎖系回
収流路内を負圧にして有機溶媒を循環させて回収する。
このため、有機溶媒の回収率が向上するだけでなく、回
収中に漏れが生じても、回収流路内が負圧であるので、
大気中に溶媒ガスが漏れることがなく、室内を汚染しな
いという効果がある。
According to the fourth aspect, the organic solvent is circulated and collected by reducing the pressure in the closed recovery channel with a vacuum pump to a negative pressure.
Therefore, not only is the recovery rate of the organic solvent improved, but even if a leak occurs during the recovery, the pressure in the recovery channel is negative,
There is an effect that the solvent gas does not leak into the atmosphere and the room is not polluted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願発明にかかる有機溶媒回収装置の第1実
施形態を示す概略図である。
FIG. 1 is a schematic diagram showing a first embodiment of an organic solvent recovery device according to the present invention.

【図2】 本願発明にかかる有機溶媒回収装置の第2実
施形態を示す概略図である。
FIG. 2 is a schematic view showing a second embodiment of the organic solvent recovery device according to the present invention.

【図3】 本願発明にかかる有機溶媒回収装置の第3実
施形態を示す概略図である。
FIG. 3 is a schematic view showing a third embodiment of the organic solvent recovery device according to the present invention.

【図4】 本願発明にかかる有機溶媒回収装置の第4実
施形態を示す概略図である。
FIG. 4 is a schematic view showing a fourth embodiment of the organic solvent recovery device according to the present invention.

【図5】 本願発明にかかる有機溶媒回収装置の性能試
験結果を示す図表である。
FIG. 5 is a table showing performance test results of the organic solvent recovery device according to the present invention.

【図6】 本願発明にかかる有機溶媒回収装置の性能試
験結果を示す図表である。
FIG. 6 is a table showing performance test results of the organic solvent recovery device according to the present invention.

【図7】 従来例にかかる有機溶媒回収装置を示す概略
図である。
FIG. 7 is a schematic diagram showing an organic solvent recovery device according to a conventional example.

【符号の説明】[Explanation of symbols]

10…真空ポンプ、16…絞り弁、17…真空計、20
…ロータリーエバポレーター、21…ウォータバス、2
2…ナスフラスコ、23…第1次凝縮器、24…フラス
コ、30…第2次凝縮器、31…フラスコ。
10 vacuum pump, 16 throttle valve, 17 vacuum gauge, 20
... Rotary evaporator, 21 ... Water bath, 2
2: eggplant flask, 23: primary condenser, 24: flask, 30: secondary condenser, 31: flask.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1台のエバポレーターの下流
側に、直列に接続した真空ポンプおよび第2次凝縮器を
接続した有機溶媒回収装置において、 直列に接続した真空ポンプおよび第2次凝縮器の下流側
を前記エバポレーターの下流側に接続して閉鎖系回収流
路を形成したことを特徴とする有機溶媒回収装置。
1. An organic solvent recovery device having a vacuum pump and a secondary condenser connected in series on a downstream side of at least one evaporator, wherein the vacuum pump and the secondary condenser are connected in series. An organic solvent recovery device, wherein a closed system recovery flow path is formed by connecting a side of the organic solvent recovery device to a downstream side of the evaporator.
【請求項2】 直列に接続した真空ポンプおよび第2次
凝縮器の下流側と、前記エバポレーターの下流側との間
に絞り弁を配置したことを特徴とする請求項1に記載の
有機溶媒回収装置。
2. The organic solvent recovery according to claim 1, wherein a throttle valve is arranged between a downstream side of the vacuum pump and the secondary condenser connected in series and a downstream side of the evaporator. apparatus.
【請求項3】 前記絞り弁と前記エバポレーターとの間
に真空計を接続したことを特徴とする請求項1または2
に記載の有機溶媒回収装置。
3. A vacuum gauge is connected between the throttle valve and the evaporator.
Organic solvent recovery device according to 1.
【請求項4】 少なくとも1台のエバポレーターの第1
次凝縮器で有機溶媒をガス化して回収し、ついで、未回
収溶媒ガスを真空ポンプを利用して第2次凝縮器で回収
した後、さらに、残存する未回収溶媒ガスを閉鎖系回収
流路を利用して循環させ、前記第2次凝縮器で再度回収
することを特徴とする有機溶媒回収装置の操作方法。
4. The first of at least one evaporator
The organic solvent is gasified and recovered in the secondary condenser, and the unrecovered solvent gas is recovered in the secondary condenser using a vacuum pump. The method for operating an organic solvent recovery apparatus, wherein the organic solvent is recovered using the secondary condenser and circulated again using the secondary condenser.
JP19375797A 1997-07-18 1997-07-18 Organic solvent recovery device and method for operating the device Pending JPH1133301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19375797A JPH1133301A (en) 1997-07-18 1997-07-18 Organic solvent recovery device and method for operating the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19375797A JPH1133301A (en) 1997-07-18 1997-07-18 Organic solvent recovery device and method for operating the device

Publications (1)

Publication Number Publication Date
JPH1133301A true JPH1133301A (en) 1999-02-09

Family

ID=16313314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19375797A Pending JPH1133301A (en) 1997-07-18 1997-07-18 Organic solvent recovery device and method for operating the device

Country Status (1)

Country Link
JP (1) JPH1133301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552470A (en) * 2016-02-20 2016-05-04 周虎 Method and device for recovering waste battery electrolyte organic solvent
JP2020146636A (en) * 2019-03-14 2020-09-17 オルガノ株式会社 Distillation refining apparatus of organic solvent and distillation refining method
JP2021107051A (en) * 2019-12-27 2021-07-29 ヤマト科学株式会社 Concentrator and control method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552470A (en) * 2016-02-20 2016-05-04 周虎 Method and device for recovering waste battery electrolyte organic solvent
JP2020146636A (en) * 2019-03-14 2020-09-17 オルガノ株式会社 Distillation refining apparatus of organic solvent and distillation refining method
JP2021107051A (en) * 2019-12-27 2021-07-29 ヤマト科学株式会社 Concentrator and control method of the same

Similar Documents

Publication Publication Date Title
JPH0796985B2 (en) Purge recovery system
JPH1133301A (en) Organic solvent recovery device and method for operating the device
JP4139565B2 (en) PFC gas recovery method and apparatus
US6063242A (en) Evaporation system
JP3043805B2 (en) Equipment for continuously purifying waste gas from vacuum equipment
JP2781931B2 (en) Deoxidizer
JP3615586B2 (en) Ammonia gas recovery liquefaction equipment
KR100455782B1 (en) Semiconductor device manufacturing apparatus in which cold trap part is improved
JPH10507800A (en) Equipment in autoclaving systems
US3457655A (en) Process of and apparatus for the desorption of extraneous molecules
JP4852958B2 (en) Organic solvent recovery system
EP1130309A1 (en) Dewatering method for gas supply systems
JPH04174268A (en) Vacuum freezing drier
CN115541336B (en) Device and method for off-line purification of carbon dioxide
JP2000002782A (en) Control unit for atmosphere inside reactor container
JPH10296031A (en) Atmosphere sampling device
US11519648B2 (en) Purge system for closed-cycle absorption heat pumps
JPH07231Y2 (en) 2-stage deoxidizer
JPH0494714A (en) Treatment of waste gas
JPH0631104A (en) Method for purifying gas to high purity
JPS59159097A (en) Coolant degassing device in light water reactor
JPH05118594A (en) Air-conditioning system
JP2004121994A (en) Vacuum evaporation type distillation equipment
JP2004113949A (en) Vacuum evaporation type distillation apparatus
JPH07197884A (en) Oil steam reverse flow preventing device for evacuation line

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A02 Decision of refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A02