JPH11330219A - Electrostatic chucking device - Google Patents

Electrostatic chucking device

Info

Publication number
JPH11330219A
JPH11330219A JP12899498A JP12899498A JPH11330219A JP H11330219 A JPH11330219 A JP H11330219A JP 12899498 A JP12899498 A JP 12899498A JP 12899498 A JP12899498 A JP 12899498A JP H11330219 A JPH11330219 A JP H11330219A
Authority
JP
Japan
Prior art keywords
wafer
electrostatic
gas
film
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12899498A
Other languages
Japanese (ja)
Inventor
Masakazu Hoshino
正和 星野
Takeshi Miya
豪 宮
Hidetsugu Setoyama
英嗣 瀬戸山
Koji Ishiguro
浩二 石黒
Hajime Murakami
村上  元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12899498A priority Critical patent/JPH11330219A/en
Publication of JPH11330219A publication Critical patent/JPH11330219A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chucking device for a semiconductor manufacturing apparatus which can efficiently and uniformly control the temperature of a wafer by reducing the amount of foreign matters adhering to the rear surface of the wafer. SOLUTION: An electrostatic chucking device is constituted, in such a way that the depth (h) of a groove section 14 which turns into the flow passage of an He gas supplied from an He gas supplying hole 12 at the central part of the device is made shallower closer towards the outer periphery of the device from the central part of the device, in order to improve the overall heat transfer coefficient between a wafer 10 and the device. Since the resistance of the flow passage becomes smaller and the pressure of the He gas becomes uniform at the central part, the overall heat transfer coefficient also becomes uniform. Therefore, the yield, etc., of a semiconductor film forming device can be expected to improve, because the temperature of the wafer can be controlled uniformly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は静電吸着装置に係
り、特に、半導体ウエハに成膜やエッチングなどの各種
の処理を施す半導体デバイスの製造装置に用いられ、温
度制御が必要なウエハを保持するために好適な静電吸着
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck, and more particularly to a semiconductor device manufacturing apparatus which performs various processes such as film formation and etching on a semiconductor wafer, and holds a wafer requiring temperature control. The present invention relates to an electrostatic suction device suitable for performing the above.

【0002】[0002]

【従来の技術】真空下で成膜処理を行うプラズマCVD
装置などでは、成膜を行うと、ウエハへのイオン入射や
反応熱によりウエハが加熱されるため、ウエハが所望の
温度になるように冷却制御しなければならない。ウエハ
を冷却するためには、内部に冷却水等を流して温度制御
した電極(静電吸着装置含む)の表面にウエハを密着さ
せなければならない。これに、静電気力でウエハを吸着
し固定する静電吸着装置を用い、さらに、ウエハ裏面と
静電吸着装置の吸着部表面との隙間にHeガス等を導入
することにより、ウエハと電極との熱伝導を良くして、
ウエハに入射する熱エネルギを静電吸着装置側に逃げ易
くしてウエハを冷却している。
2. Description of the Related Art Plasma CVD for forming a film under vacuum
In an apparatus or the like, when a film is formed, the wafer is heated by ion incidence or reaction heat on the wafer, so that the wafer must be cooled and controlled to a desired temperature. In order to cool the wafer, the wafer must be brought into close contact with the surface of an electrode (including an electrostatic chuck) whose temperature is controlled by flowing cooling water or the like inside. In addition, an electrostatic attraction device that attracts and fixes the wafer by electrostatic force is used, and He gas or the like is introduced into the gap between the back surface of the wafer and the surface of the attraction portion of the electrostatic attraction device, so that the wafer and the electrode are separated. Improve heat conduction,
The thermal energy incident on the wafer is easily released to the electrostatic attraction device side to cool the wafer.

【0003】静電吸着装置の構造としては、例えば特開
平6−182645号公報に示されるようなものがあ
る。この公知例では、サセプタの上面に静電チャックシ
ートを貼り付けて静電吸着装置を構成している。Heガ
ス等はサセプタの上面に溝を形成し、静電チャックシー
トに、そのシートを垂直方向に貫通する複数の孔を設
け、それらの孔の開口位置を上記溝に沿って、かつその
直上に配置するように接着する。このような構造にし
て、Heガスを溝から静電チャックシートに設けられた
複数の孔を通して、ウエハ裏面と静電吸着装置の吸着部
表面との空隙部に供給している。サセプタに設けられた
溝は、溝内の圧力が一定になるように溝の幅や深さ寸法
を設定することにより、ウエハ裏面と静電吸着装置の吸
着部表面との空隙部に供給されるHeガスの圧力を均一
化している。
As a structure of an electrostatic attraction device, for example, there is one as disclosed in Japanese Patent Application Laid-Open No. 6-182645. In this known example, an electrostatic chuck sheet is attached to the upper surface of a susceptor to constitute an electrostatic chucking device. He gas or the like forms a groove on the upper surface of the susceptor, and a plurality of holes are formed in the electrostatic chuck sheet so as to penetrate the sheet in the vertical direction. The opening positions of these holes are set along the groove and directly above the groove. Adhere to place. With such a structure, He gas is supplied from the groove through a plurality of holes provided in the electrostatic chuck sheet to the gap between the back surface of the wafer and the suction surface of the electrostatic suction device. The groove provided in the susceptor is supplied to the gap between the back surface of the wafer and the surface of the suction unit of the electrostatic suction device by setting the width and depth of the groove so that the pressure in the groove is constant. He gas pressure is made uniform.

【0004】このような静電吸着装置では、静電チャッ
クシートに多数の孔を設ける必要があり製作工数がかか
る。このような構造は、基材表面に直接溶射や焼結で誘
電体膜(静電チャックシートに相当)を作成する構造の
静電チャックでは製作が困難である。さらに、静電チャ
ックシート全面がウエハ裏面と接触するため異物が付着
しやすいなどの問題点がある。
In such an electrostatic chuck, it is necessary to provide a large number of holes in the electrostatic chuck sheet, which requires a large number of manufacturing steps. Such a structure is difficult to manufacture with an electrostatic chuck having a structure in which a dielectric film (corresponding to an electrostatic chuck sheet) is formed by directly spraying or sintering the substrate surface. Further, there is a problem that foreign matters are easily attached because the entire surface of the electrostatic chuck sheet is in contact with the back surface of the wafer.

【0005】静電静電吸着装置の別の構造としては特許
第2680338号がある。この特許では、静電吸着装
置の表面に同心円上の複数本の溝を形成し、それぞれの
溝に別個にHeガスを供給することにより、Heガス圧
力を局所的に変化させ、被処理ウエハの表面温度分布の
均一化を図っている。この公知例では、非常に複雑なガ
ス供給系が必要であること。溝間でガス圧力を変化させ
ても、溝間の圧力差によるガス漏洩が起こり、必ずしも
設定どおりの圧力分布が得られない。また、溝寸法は溝
内の周方向の圧力分布がなくなるように設定されるた
め、溝が深くなり、この溝と対向するウエハ領域の熱伝
導率が低下し、冷却効果が下がりウエハ温度が不均一に
なる等の問題点がある。
Another structure of the electrostatic attraction device is disclosed in Japanese Patent No. 2680338. In this patent, a plurality of concentric grooves are formed on the surface of an electrostatic attraction device, and He gas is separately supplied to each of the grooves to locally change the He gas pressure so that a wafer to be processed can be processed. The surface temperature distribution is made uniform. In this known example, a very complicated gas supply system is required. Even if the gas pressure is changed between the grooves, gas leakage occurs due to the pressure difference between the grooves, and the pressure distribution as set cannot always be obtained. Further, since the groove dimensions are set so that the pressure distribution in the circumferential direction in the groove is eliminated, the groove becomes deeper, the thermal conductivity of the wafer region facing the groove is reduced, the cooling effect is reduced, and the wafer temperature is reduced. There are problems such as uniformity.

【0006】[0006]

【発明が解決しようとする課題】このように、上記従来
技術では、静電チャックシートに多数の孔を設ける必要
があり製作工数がかかる。基材表面に直接溶射や焼結で
誘電体膜(静電チャックシートに相当)を作成する構造
の静電吸着装置では製作が困難である。さらに、静電チ
ャックシート全面がウエハ裏面と接触するため異物が付
着しやすい。また、非常に複雑なガス供給系が必要であ
ること。溝間でガス圧力を変化させても、溝間の圧力差
によるガス漏洩が起こり、必ずしも設定どおりの圧力分
布が得られない。また、溝寸法は溝内の周方向の圧力分
布がなくなるように設定されるため、溝が深くなり、こ
の溝と対向するウエハ領域の熱伝導率が低下して冷却効
果が下がり、ウエハ温度が不均一になる等の問題点があ
る。
As described above, according to the above-mentioned prior art, it is necessary to provide a large number of holes in the electrostatic chuck sheet, which requires a large number of manufacturing steps. It is difficult to manufacture an electrostatic chuck having a structure in which a dielectric film (corresponding to an electrostatic chuck sheet) is directly formed on a substrate surface by thermal spraying or sintering. Further, since the entire surface of the electrostatic chuck sheet is in contact with the back surface of the wafer, foreign matter is easily attached. In addition, a very complicated gas supply system is required. Even if the gas pressure is changed between the grooves, gas leakage occurs due to the pressure difference between the grooves, and the pressure distribution as set cannot always be obtained. Further, since the groove dimension is set so as to eliminate the pressure distribution in the circumferential direction in the groove, the groove becomes deeper, the thermal conductivity of the wafer region facing the groove decreases, the cooling effect decreases, and the wafer temperature decreases. There are problems such as unevenness.

【0007】本発明の目的は、これらの問題点を回避す
べくなされたもので、比較的簡単な構造を採用して、ウ
エハの冷却効率を低下させることなく、ウエハ裏面の付
着異物を低減し、ウエハに入射する熱量分布に見合った
ウエハ冷却を可能にし、ウエハ温度を均一化できる静電
吸着装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to avoid these problems. A relatively simple structure is employed to reduce foreign matter adhering to the back surface of the wafer without lowering the cooling efficiency of the wafer. It is another object of the present invention to provide an electrostatic chuck capable of cooling a wafer in accordance with the distribution of the amount of heat incident on the wafer and making the temperature of the wafer uniform.

【0008】[0008]

【課題を解決するための手段】ウエハ裏面異物の低減に
は、ウエハと静電吸着装置との接触面積の低減が有効で
ある。これを満たした上で冷却効率を低下させないため
には、ウエハと静電吸着装置の非接触部との距離を近接
させることが有効である。このようにすると、Heガス
流路の流路抵抗が大きくなり、ガス流れ方向に大きな圧
力勾配がつき、熱伝達率に大きな分布が発生する。ガス
による熱伝達率はウエハと静電吸着装置の吸着部表面と
の距離が、ガスの平均自由行程よりも小さければ、ほぼ
そのガス圧力に比例する。したがって、この領域ではガ
ス圧力を制御することにより、ウエハ温度を制御するこ
とが可能である。
In order to reduce foreign matter on the back surface of the wafer, it is effective to reduce the contact area between the wafer and the electrostatic chuck. In order to prevent the cooling efficiency from lowering while satisfying the above conditions, it is effective to reduce the distance between the wafer and the non-contact portion of the electrostatic chuck. In this case, the flow resistance of the He gas flow path increases, a large pressure gradient is applied in the gas flow direction, and a large distribution of the heat transfer coefficient occurs. The heat transfer coefficient by gas is almost proportional to the gas pressure if the distance between the wafer and the surface of the suction unit of the electrostatic suction device is smaller than the mean free path of the gas. Therefore, in this region, the wafer temperature can be controlled by controlling the gas pressure.

【0009】通常、静電吸着装置の冷却ガスは、構造上
の制約から静電吸着装置の中央部から導入する場合が多
い。半導体製造装置に用いられる静電吸着装置の形状
は、ウエハが円形であるために円形である。この場合
に、静電吸着装置の中央部からHeガスを導入して外周
部からHeガスを漏洩させると、溝深さが一定の場合、
中央部の流路抵抗が大きくなり、中央部で急激な圧力勾
配が発生する。これは、ガスが狭い隙間h、幅bの流路
を流れる場合、(b≫h)の流体抵抗は、概ねb(=2
πr)×h2に比例するからである。したがって、隙間
hが一定の場合、中心部に比べて外周部の方が、rが増
加する分だけ流体抵抗が小くなるためである。
Usually, the cooling gas of the electrostatic chuck is often introduced from the center of the electrostatic chuck due to structural restrictions. The shape of the electrostatic chuck used in the semiconductor manufacturing apparatus is circular because the wafer is circular. In this case, when He gas is introduced from the center of the electrostatic adsorption device and He gas is leaked from the outer periphery, when the groove depth is constant,
The flow resistance at the center increases, and a sharp pressure gradient occurs at the center. This is because when the gas flows through the flow path having the narrow gap h and the width b, the fluid resistance of (b≫h) is approximately b (= 2
πr) × h 2 . Therefore, when the gap h is constant, the fluid resistance is smaller in the outer peripheral portion than in the central portion by an amount corresponding to the increase in r.

【0010】本発明者らは、以上のような知見に基づ
き、上記目的を達成するために、本発明では、静電吸着
装置の吸着部表面に形成される溝(すなわち凹部)の深
さに着目して、静電吸着装置の中央部から導入されたH
eガスが、外周側に向かって流れる際の中央部の流路抵
抗を少なくし、かつ冷却効率を低下させないために、吸
着装置の中央部付近の凹部を深くして、外周側に向かっ
て浅くするようにした。このようにすることにより、静
電吸着装置の中央部から外周に向かっての圧力分布が小
さくなり、その結果、ウエハと静電吸着装置との間の熱
伝達率が一定になるため、ウエハ温度が均一化する。
[0010] Based on the above findings, the present inventors, in order to achieve the above object, in the present invention, the depth of a groove (ie, a concave portion) formed on the surface of the attraction portion of the electrostatic attraction device. Paying attention, H introduced from the central part of the electrostatic adsorption device
e In order to reduce the flow resistance at the center when the gas flows toward the outer peripheral side, and to reduce the cooling efficiency, the recess near the central part of the adsorption device is made deeper and shallower toward the outer peripheral side. I did it. By doing so, the pressure distribution from the center to the outer periphery of the electrostatic chuck becomes smaller, and as a result, the heat transfer coefficient between the wafer and the electrostatic chuck becomes constant. Becomes uniform.

【0011】以上の優れた作用効果を奏するものとし
て、以下の構成を採用した。すなわち、請求項1記載発
明は、被処理ウエハを静電気力により吸着部に吸着する
と共に、ウエハ裏面と吸着部表面に設けた凹部との空隙
部に、ヘリウム等の冷却媒体を導入してウエハ温度を制
御する静電吸着装置において、前記吸着部表面は、前記
導入した冷却媒体の圧力を所望の圧力分布になるよう
に、前記凹部の深さがウエハの半径方向に変化している
ことを特徴とするものである。また、請求項2記載発明
は、請求項1に記載の静電吸着装置において、前記導入
した冷却媒体の圧力が吸着部表面で均一になるように、
前記凹部の深さをウエハの半径方向の外側に向かって浅
くしたことを特徴とする。また、請求項3記載発明は、
請求項2に記載の静電吸着装置において、前記凹部の深
さは、ウエハの半径方向の外側に向かって階段状に変化
していることを特徴とする。
The following configuration is adopted as the one having the above-mentioned excellent functions and effects. That is, according to the first aspect of the present invention, the wafer to be processed is attracted to the attracting portion by electrostatic force, and a cooling medium such as helium is introduced into the gap between the back surface of the wafer and the concave portion provided on the surface of the attracting portion to reduce the wafer temperature. Wherein the depth of the concave portion is changed in the radial direction of the wafer so that the pressure of the introduced cooling medium has a desired pressure distribution on the surface of the suction portion. It is assumed that. According to a second aspect of the present invention, in the electrostatic attraction device according to the first aspect, the pressure of the introduced cooling medium is uniform on the surface of the attraction portion.
The depth of the concave portion is reduced toward the outside in the radial direction of the wafer. The invention according to claim 3 is:
3. The electrostatic chuck according to claim 2, wherein the depth of the recess changes stepwise toward the outside in the radial direction of the wafer.

【0012】また、請求項4記載発明は、反応室、ガス
供給系、ガス排気系およびウエハ搬入搬出系等の要素に
より構成される半導体成膜装置において、請求項1ない
し3のうちいずれかに記載の静電吸着装置を搭載したこ
とを特徴とする。また、請求項5記載発明は、ゲート電
極配線のポリシリコン膜、リンドープポリシリコン膜、
層間絶縁のための酸化膜やリンガラス膜、キャパシタ絶
縁のためのSi34膜のうち、少なくとも一つの膜を備
えた半導体素子において、前記膜の少なくとも一つが、
請求項4に記載の半導体成膜装置を用いて成膜されたこ
とを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a semiconductor film forming apparatus comprising elements such as a reaction chamber, a gas supply system, a gas exhaust system, and a wafer loading / unloading system. It is characterized by mounting the electrostatic attraction device described in the above. Further, the invention according to claim 5 provides a polysilicon film of a gate electrode wiring, a phosphorus-doped polysilicon film,
In a semiconductor element including at least one of an oxide film or a phosphor glass film for interlayer insulation, and a Si 3 N 4 film for capacitor insulation, at least one of the films is
A film is formed by using the semiconductor film forming apparatus according to claim 4.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して説明する。図1は、静電吸着装置の概略断
面構造を示したものである。図1に示すように、静電吸
着装置1は、Al等の支持部材2の上面にNi等の溶射
膜3を形成し、その上に誘電体膜4(例えばAl23
を溶射して製作する。支持部材2の中央部には、冷却ガ
スをウエハ10の裏面に供給するための冷却ガス流路9
が設けられており、冷却ガスの供給と排気を行う。ま
た、支持部材2の内部には、ウエハ10を冷却する冷媒
5を流すための冷媒流路6が設けられている。冷媒5は
供給部7から供給され、排出部8から排出される。誘電
体膜4と支持部材2との間に溶射膜3を設けるのは、支
持部材2と誘電体膜4の熱膨張率等の違いにより、誘電
体膜4が支持部材2から剥離することを防止するためで
ある。さらに、支持部材2は、静電吸着回路(図示せ
ず)に接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic sectional structure of the electrostatic chuck. As shown in FIG. 1, the electrostatic attraction device 1 forms a sprayed film 3 of Ni or the like on an upper surface of a support member 2 of Al or the like, and a dielectric film 4 (for example, Al 2 O 3 ) thereon.
And spraying it. A cooling gas flow path 9 for supplying a cooling gas to the back surface of the wafer 10 is provided at the center of the support member 2.
For supplying and exhausting the cooling gas. Further, inside the support member 2, a coolant channel 6 for flowing a coolant 5 for cooling the wafer 10 is provided. The coolant 5 is supplied from the supply unit 7 and discharged from the discharge unit 8. The reason why the thermal spray film 3 is provided between the dielectric film 4 and the support member 2 is that the dielectric film 4 is separated from the support member 2 due to a difference in thermal expansion coefficient between the support member 2 and the dielectric film 4. This is to prevent it. Further, the support member 2 is connected to an electrostatic suction circuit (not shown).

【0014】図2および図3は、本発明の第1実施形態
を示し、図2は、ウエハ吸着部表面の断面形状を示し、
図3は図2のA−A矢視図であり、静電吸着装置の吸着
部表面に形成される円柱状突起の配置を示した図であ
る。これらの図に示すように、静電吸着装置1の表面に
は、高さが数十から数百μmの多数の円柱状突起11が
設けられている。この円柱状突起11とウエハ10の裏
面との間に静電気力が発生し、ウエハ10が静電吸着装
置1に静電吸着される。このようにしているのは、静電
吸着することにより、ウエハ10の裏面に付着する異物
数は、ほぼ接触面積に比例するため、ウエハ10の裏面
と静電吸着装置1との接触面積を低減し、ウエハ10の
裏面に付着する異物数を低減するためである。この円柱
状突起11以外の領域では静電吸着力は発生しない。し
たがって、吸着力は、円柱状突起11の数や静電吸着装
置1に印加する電圧で制御できる。この円柱状突起11
の形状、大きさ、数、配置等については、ウエハ10の
裏面異物付着数の制限や静電吸着力等を考慮して適宜決
められる。
2 and 3 show a first embodiment of the present invention. FIG. 2 shows a cross-sectional shape of a surface of a wafer suction portion.
FIG. 3 is a view taken in the direction of arrows AA in FIG. 2, and is a view showing the arrangement of columnar projections formed on the surface of the suction unit of the electrostatic suction device. As shown in these figures, a large number of columnar projections 11 having a height of several tens to several hundreds μm are provided on the surface of the electrostatic attraction device 1. An electrostatic force is generated between the columnar protrusion 11 and the back surface of the wafer 10, and the wafer 10 is electrostatically attracted to the electrostatic attraction device 1. This is because the number of foreign substances adhering to the back surface of the wafer 10 due to the electrostatic attraction is almost proportional to the contact area, so that the contact area between the back surface of the wafer 10 and the electrostatic attraction device 1 is reduced. However, this is to reduce the number of foreign substances adhering to the back surface of the wafer 10. No electrostatic attraction force is generated in an area other than the columnar projection 11. Therefore, the attraction force can be controlled by the number of the columnar projections 11 and the voltage applied to the electrostatic attraction device 1. This cylindrical projection 11
The shape, size, number, arrangement, and the like of the wafers 10 can be appropriately determined in consideration of the limitation on the number of adhered foreign substances on the back surface of the wafer 10, the electrostatic attraction force, and the like.

【0015】また、図2に示すように、複数の円柱状突
起11の隙間に形成される凹部、つまり、溝部14の深
さhが、中心部で数百μm、外周部で数十μmになるよ
うに、中心部から外周部に向かってほぼ直線的に浅くな
るようにしてある。このような構造にすることにより、
従来問題であった中心部での大きな流路抵抗を下げるこ
とができ、全体としてHeガス圧力を均一にできる。こ
れは、ガスが狭い隙間h、幅b(隣接突起間)の流路を
流れる場合、(b≫h)の流体抵抗は、概ねb(=2π
r)×h2に比例する。したがって、外周部に比べて中
央部の隙間hを大きくすることにより、hの2乗に比例
して中心部の流路抵抗を下げることができるためであ
る。
As shown in FIG. 2, the depth h of the recess formed in the gap between the plurality of columnar projections 11, that is, the groove portion 14 is several hundred μm at the center portion and several tens μm at the outer peripheral portion. In this way, the depth is reduced almost linearly from the center to the outer periphery. With such a structure,
A large flow resistance at the central portion, which has been a problem in the past, can be reduced, and the He gas pressure can be made uniform as a whole. This is because when the gas flows through a flow path having a narrow gap h and a width b (between adjacent protrusions), the fluid resistance of (b≫h) is approximately b (= 2π).
r) is proportional to the × h 2. Therefore, by increasing the gap h at the central portion as compared with the outer peripheral portion, the flow path resistance at the central portion can be reduced in proportion to the square of h.

【0016】これら図2および図3に示すように、静電
吸着装置1の中央部のHeガス供給孔12から供給され
たHeガスは、図中矢印で示すように、円柱状突起11
の間の流路である溝部(凹部)を流れて、ガスシール部
13を経て、静電吸着装置1の外に流れ出る。本実施形
態で説明するような構造の静電吸着装置は、半導体製造
装置に用いられる場合が多いため、Heガスが多量に反
応室内に漏洩するとプロセスに影響するため、ガスシー
ル部13を設けて漏洩量を制御している。通常、Heガ
ス供給孔12でのHeガスの圧力は、数百Paから数千
Paであり、ガスシール部13の出口では数百Pa以下
の圧力である。このように、溝部にHeガスを流すの
は、ウエハ10と静電吸着装置1との間の熱通過率を高
くして、ウエハ10に入射する熱エネルギを静電吸着装
置1側に逃げ易くして、ウエハ10を効率的に冷却制御
するためである。
As shown in FIGS. 2 and 3, the He gas supplied from the He gas supply hole 12 at the center of the electrostatic chuck 1 is supplied with a cylindrical projection 11 as shown by an arrow in the figure.
Flows through a groove (recess), which is a flow path between them, and flows out of the electrostatic adsorption device 1 through the gas seal portion 13. Since the electrostatic chuck having the structure described in the present embodiment is often used in a semiconductor manufacturing apparatus, if a large amount of He gas leaks into the reaction chamber, it affects the process. The amount of leakage is controlled. Normally, the pressure of the He gas in the He gas supply hole 12 is several hundred Pa to several thousand Pa, and the pressure at the outlet of the gas seal portion 13 is several hundred Pa or less. The flow of the He gas into the groove increases the heat transfer rate between the wafer 10 and the electrostatic chuck 1 so that the heat energy incident on the wafer 10 can easily escape to the electrostatic chuck 1. Thus, the cooling of the wafer 10 is efficiently controlled.

【0017】Heガスによる熱通過率は、ウエハ10と
静電吸着装置1との距離が、Heガスの平均自由行程よ
りも小さければ、つまり、分子流であれば、ほぼそのガ
ス圧力に比例する。したがって、この領域ではガス圧力
を制御することにより、ウエハ温度を制御することが可
能である。例えば、圧力が500PaのHeガスの平均
自由行程は約20μmである。したがって、隙間hが2
0μm以下であれば、圧力の制御で熱通過率の制御、つ
まり、ウエハ温度を制御できる。ウエハ10と円形状突
起11との隙間は、数μm程度であるため、この部分で
は熱通過率は圧力に比例するため、上記したように、H
eガス圧力を均一化することで、ウエハ10と静電吸着
装置1との間の熱通過率を均一化できる。その結果、ウ
エハ10から静電吸着装置1側に熱を均一に流すことが
できるようになり、ウエハ10の温度を全面均一に冷却
制御できるという効果がある。
If the distance between the wafer 10 and the electrostatic chuck 1 is smaller than the mean free path of the He gas, that is, if it is a molecular flow, the heat transfer rate by the He gas is almost proportional to the gas pressure. . Therefore, in this region, the wafer temperature can be controlled by controlling the gas pressure. For example, the mean free path of He gas at a pressure of 500 Pa is about 20 μm. Therefore, the gap h is 2
If it is 0 μm or less, the control of the heat transmission rate, that is, the wafer temperature can be controlled by controlling the pressure. Since the gap between the wafer 10 and the circular projection 11 is on the order of several μm, the heat transmittance is proportional to the pressure in this portion.
By making the e-gas pressure uniform, the heat transfer rate between the wafer 10 and the electrostatic chuck 1 can be made uniform. As a result, heat can be uniformly flowed from the wafer 10 to the electrostatic attraction device 1 side, and there is an effect that the temperature of the wafer 10 can be uniformly cooled and controlled.

【0018】上記実施形態では、静電吸着装置1でウエ
ハ10を冷却する場合を説明したが、例えば、静電吸着
装置1の内部にヒータ等の加熱手段を設け、静電吸着装
置1でウエハ10を加熱する場合においても、ウエハ1
0と静電吸着装置1との間の熱通過率を均一化できるの
で、ウエハ10の温度を均一に加熱できるようになる。
In the above-described embodiment, the case where the wafer 10 is cooled by the electrostatic suction device 1 has been described. For example, a heating unit such as a heater is provided inside the electrostatic suction device 1 and the wafer is cooled by the electrostatic suction device 1. 10 is heated, the wafer 1
Since the heat transfer rate between 0 and the electrostatic adsorption device 1 can be made uniform, the temperature of the wafer 10 can be uniformly heated.

【0019】本発明の第2実施形態を、図4を用いて説
明する。図4は、ウエハ吸着部表面の断面形状を示した
ものである。図4に示すように、この実施形態では、溝
部(凹部)の深さhが、中心部から外周部に向かって階
段状に浅くしてある。段数については、製作性や圧力の
均一性に応じて決めれば良い。このような構造にするこ
とにより、従来問題であった中心部での大きな流路抵抗
を下げることができHe圧力を均一にできる。その結
果、ウエハ10と静電吸着装置1との間の熱通過率を均
一化できるので、ウエハ10の温度を均一に冷却や加熱
できるようになるという効果がある。
A second embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a cross-sectional shape of the surface of the wafer suction portion. As shown in FIG. 4, in this embodiment, the depth h of the groove (recess) is made smaller stepwise from the center toward the outer periphery. The number of steps may be determined according to manufacturability and pressure uniformity. With such a structure, a large flow resistance at the central portion, which has been a problem in the past, can be reduced, and the He pressure can be made uniform. As a result, the heat transfer rate between the wafer 10 and the electrostatic chuck 1 can be made uniform, so that the temperature of the wafer 10 can be uniformly cooled or heated.

【0020】次に、図5を用いて、第1実施形態の静電
吸着装置をプラズマCVD装置に適用した場合について
説明する。反応室16の底側壁面には、絶縁体24を介
して試料台で下部電極となる静電吸着装置1が電気絶縁
されて気密に設けられている。反応室16には、静電吸
着装置1と上下方向に対向してガス供給を兼ねた上部電
極23が内設されている。成膜に必要な反応性ガス21
が反応室16内に供給されると共に、反応室16は真空
ポンプ17により排気され所望の圧力に設定される。静
電吸着装置1には、高周波電源18と直流電源19が接
続されている。高周波電源18を作動させると反応室1
6内にプラズマ20が発生する。このとき、直流電源1
9の電位により、静電吸着装置1、ウエハ10、プラズ
マ20を介して静電吸着回路22が形成される。この状
態でウエハ10は静電吸着装置1に静電吸着保持され
る。静電吸着力は誘電体膜4によって発生する。静電気
を発生させるための直流電圧としては、数100Vを印
加することにより、ウエハ10が静電吸着装置1に吸着
される。
Next, a case where the electrostatic chuck according to the first embodiment is applied to a plasma CVD apparatus will be described with reference to FIG. On the bottom side wall surface of the reaction chamber 16, an electrostatic attraction device 1 serving as a lower electrode on a sample stage is electrically insulated and provided airtight through an insulator 24. An upper electrode 23 which also serves as a gas supply is provided inside the reaction chamber 16 so as to face the electrostatic adsorption device 1 in the vertical direction. Reactive gas 21 required for film formation
Is supplied into the reaction chamber 16, and the reaction chamber 16 is evacuated by the vacuum pump 17 and set to a desired pressure. A high frequency power supply 18 and a DC power supply 19 are connected to the electrostatic suction device 1. When the high frequency power supply 18 is operated, the reaction chamber 1
Plasma 20 is generated in 6. At this time, the DC power supply 1
The electrostatic attraction circuit 22 is formed by the potential of 9 through the electrostatic attraction device 1, the wafer 10, and the plasma 20. In this state, the wafer 10 is electrostatically held by the electrostatic suction device 1. The electrostatic attraction force is generated by the dielectric film 4. By applying a few hundred volts as a DC voltage for generating static electricity, the wafer 10 is attracted to the electrostatic attracting device 1.

【0021】このように吸着されたウエハ10の裏面に
冷却ガスが供給される。冷却ガスは静電吸着装置1の溝
部に圧力数百Paから数千Paで充填され、そのときの
漏洩量は数cm3/minである。
A cooling gas is supplied to the back surface of the wafer 10 thus adsorbed. The cooling gas is filled into the groove of the electrostatic adsorption device 1 at a pressure of several hundred Pa to several thousand Pa, and the amount of leakage at that time is several cm 3 / min.

【0022】また溝部(凹部)の隙間は、数十μmから
数百μmであり、冷却効率の低下は無視できる。静電吸
着力は溝部ではほとんど発生せず、突起部(ウエハ10
と接触している部分)においてのみ発生しているが、吸
着力は直流電源19の電圧で調整できるので、成膜中に
冷却ガスの圧力によりウエハ10が吹き飛ばされるよう
なことはない。成膜中、ウエハ10はイオンの衝突や反
応熱により加熱されるために、ウエハ10を所望の温度
に冷却制御するために、静電吸着装置1の支持部材2を
冷媒で冷却する。このようにすることにより、ウエハ1
0と静電吸着装置1との間に熱勾配が発生し、ウエハ1
0に入射した熱が静電吸着装置1側に効率的に流れるた
めに、ウエハ10は所望の温度に冷却制御される。その
結果、ウエハ10の表面には良質の薄膜が形成されるこ
とになり、半導体成膜プロセスにおける歩留まり向上な
どの効果が期待できる。
The gap between the grooves (concave portions) is several tens μm to several hundreds μm, and a decrease in cooling efficiency can be ignored. The electrostatic attraction force hardly occurs in the groove, and the protrusion (the wafer 10
However, since the suction force can be adjusted by the voltage of the DC power supply 19, the wafer 10 is not blown off by the pressure of the cooling gas during the film formation. During the film formation, the wafer 10 is heated by ion bombardment or reaction heat, so that the support member 2 of the electrostatic attraction device 1 is cooled by a coolant in order to control the cooling of the wafer 10 to a desired temperature. By doing so, the wafer 1
0 and the electrostatic chuck 1 generate a thermal gradient, and the wafer 1
The wafer 10 is controlled to be cooled to a desired temperature so that the heat incident on the wafer 0 efficiently flows toward the electrostatic chuck 1. As a result, a high-quality thin film is formed on the surface of the wafer 10, and an effect such as improvement in yield in a semiconductor film formation process can be expected.

【0023】また、上記で説明した実施形態を適用可能
な半導体素子としては、ゲート電極配線のポリシリコン
膜、リンドープポリシリコン膜、層間絶縁のための酸化
膜あるいはリンガラス膜、キャパシタ絶縁のためのSi
34膜のうち、すくなくとも一つの膜を備えた半導体素
子がが挙げられる。
The semiconductor device to which the above-described embodiments can be applied includes a polysilicon film of a gate electrode wiring, a phosphorus-doped polysilicon film, an oxide film or a phosphorus glass film for interlayer insulation, and a capacitor insulation film. Si
3 N 4 of the film, the semiconductor device can be cited with at least one membrane.

【0024】[0024]

【発明の効果】本発明によれば、ウエハの冷却や加熱が
効率的に実施でき、ウエハ温度の均一化が図れると共
に、ウエハ裏面に付着する異物の量を低減することがで
きるため、半導体素子の製造工程における装置稼働率と
歩留まり向上が実現できると言う効果がある。
According to the present invention, the cooling and heating of the wafer can be efficiently carried out, the temperature of the wafer can be made uniform, and the amount of foreign substances adhering to the back surface of the wafer can be reduced. This has the effect of improving the device operation rate and the yield in the manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静電吸着装置の概略断面構造図であ
る。
FIG. 1 is a schematic sectional structural view of an electrostatic suction device of the present invention.

【図2】本発明の第1実施形態のウエハ吸着部表面の断
面形状を示す図である。
FIG. 2 is a diagram illustrating a cross-sectional shape of a surface of a wafer suction unit according to the first embodiment of the present invention.

【図3】本発明の第1実施形態の吸着部面の円柱状突起
の配置図である。
FIG. 3 is a layout view of columnar projections on a suction unit surface according to the first embodiment of the present invention.

【図4】本発明の第2実施形態のウエハ吸着部表面の断
面形状を示す図である。
FIG. 4 is a diagram illustrating a cross-sectional shape of a surface of a wafer suction unit according to a second embodiment of the present invention.

【図5】第1実施形態の静電吸着装置をプラズマCVD
装置に適用した場合の装置構成図である。
FIG. 5 shows a plasma CVD method using the electrostatic chuck according to the first embodiment.
FIG. 2 is a device configuration diagram when applied to a device.

【符号の説明】[Explanation of symbols]

1 静電吸着装置 2 支持部材 3 溶射膜 4 誘電体膜 5 冷媒 6 冷媒流路 7 供給部 8 排気部 9 冷却ガス流路 10 ウエハ 11 円柱状突起 12 Heガス供給孔 13 ガスシール部 14 溝部 15 静電吸着装置 16 反応室 17 真空ポンプ 18 高周波電源 19 直流電源 20 プラズマ 21 反応性ガス 22 静電吸着回路 23 上部電極 24 絶縁体 DESCRIPTION OF SYMBOLS 1 Electrostatic adsorption apparatus 2 Support member 3 Thermal spray film 4 Dielectric film 5 Refrigerant 6 Coolant flow path 7 Supply part 8 Exhaust part 9 Cooling gas flow path 10 Wafer 11 Columnar projection 12 He gas supply hole 13 Gas seal part 14 Groove part 15 Electrostatic adsorption device 16 Reaction chamber 17 Vacuum pump 18 High frequency power supply 19 DC power supply 20 Plasma 21 Reactive gas 22 Electrostatic adsorption circuit 23 Upper electrode 24 Insulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石黒 浩二 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 村上 元 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Koji Ishiguro, Inventor 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside Kokubu Plant, Hitachi, Ltd. (72) Gen Murakami 7-1, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被処理ウエハを静電気力により吸着部に
吸着すると共に、ウエハ裏面と吸着部表面に設けた凹部
との空隙部に、ヘリウム等の冷却媒体を導入してウエハ
温度を制御する静電吸着装置において、前記吸着部表面
は、前記導入した冷却媒体の圧力を所望の圧力分布にな
るように、前記凹部の深さがウエハの半径方向に変化し
ていることを特徴とする静電吸着装置。
An electrostatic chuck for attracting a wafer to be processed to an attracting portion by electrostatic force, and introducing a cooling medium such as helium into a gap between a back surface of the wafer and a concave portion provided on a surface of the attracting portion to control a wafer temperature. In the electroadsorption device, the depth of the concave portion is changed in a radial direction of the wafer so that the pressure of the introduced cooling medium has a desired pressure distribution on the surface of the adsorption portion. Suction device.
【請求項2】 請求項1に記載の静電吸着装置におい
て、前記導入した冷却媒体の圧力が吸着部表面で均一に
なるように、前記凹部の深さをウエハの半径方向の外側
に向かって浅くしたことを特徴とする静電吸着装置。
2. The electrostatic chuck according to claim 1, wherein the depth of the concave portion is set toward the outside in the radial direction of the wafer so that the pressure of the introduced cooling medium becomes uniform on the surface of the suction portion. An electrostatic attraction device characterized by being shallow.
【請求項3】 請求項2に記載の静電吸着装置におい
て、前記凹部の深さは、ウエハの半径方向の外側に向か
って階段状に変化していることを特徴とする静電吸着装
置。
3. The electrostatic chuck according to claim 2, wherein the depth of the recess changes stepwise toward the outside in the radial direction of the wafer.
【請求項4】 反応室、ガス供給系、ガス排気系および
ウエハ搬入搬出系等の要素により構成される半導体成膜
装置において、請求項1ないし3のうちいずれかに記載
の静電吸着装置を搭載したことを特徴とする半導体成膜
装置。
4. A semiconductor film forming apparatus comprising elements such as a reaction chamber, a gas supply system, a gas exhaust system, and a wafer carry-in / carry-out system, wherein the electrostatic adsorption device according to claim 1 is used. A semiconductor film forming apparatus characterized by being mounted.
【請求項5】 ゲート電極配線のポリシリコン膜、リン
ドープポリシリコン膜、層間絶縁のための酸化膜やリン
ガラス膜、キャパシタ絶縁のためのSi34膜のうち、
少なくとも一つの膜を備えた半導体素子において、前記
膜の少なくとも一つが、請求項4に記載の半導体成膜装
置を用いて成膜されたことを特徴とする半導体素子。
5. A polysilicon film for a gate electrode wiring, a phosphorus-doped polysilicon film, an oxide film or a phosphorus glass film for interlayer insulation, and a Si 3 N 4 film for capacitor insulation.
A semiconductor device comprising at least one film, wherein at least one of the films is formed by using the semiconductor film forming apparatus according to claim 4.
JP12899498A 1998-05-12 1998-05-12 Electrostatic chucking device Pending JPH11330219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12899498A JPH11330219A (en) 1998-05-12 1998-05-12 Electrostatic chucking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12899498A JPH11330219A (en) 1998-05-12 1998-05-12 Electrostatic chucking device

Publications (1)

Publication Number Publication Date
JPH11330219A true JPH11330219A (en) 1999-11-30

Family

ID=14998514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12899498A Pending JPH11330219A (en) 1998-05-12 1998-05-12 Electrostatic chucking device

Country Status (1)

Country Link
JP (1) JPH11330219A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222851A (en) * 2001-01-29 2002-08-09 Ngk Insulators Ltd Electrostatic chuck and board processor
JP2005268524A (en) * 2004-03-18 2005-09-29 Canon Inc Substrate holder and aligner using same
JP2011155170A (en) * 2010-01-28 2011-08-11 Panasonic Corp Plasma processing apparatus
JP2012195211A (en) * 2011-03-17 2012-10-11 Ulvac Japan Ltd Apparatus and method for plasma processing
JP2013153171A (en) * 2013-02-15 2013-08-08 Panasonic Corp Plasma processing apparatus and plasma processing method
JP2014216516A (en) * 2013-04-26 2014-11-17 京セラ株式会社 Sample holder
JP2016143760A (en) * 2015-02-02 2016-08-08 住友大阪セメント株式会社 Electrostatic chuck device
JP2016213281A (en) * 2015-05-01 2016-12-15 サムコ株式会社 Tray for plasma processing apparatus
JP2017506825A (en) * 2014-02-12 2017-03-09 アクセリス テクノロジーズ, インコーポレイテッド Constant mass flow multilayer coolant path electrostatic chuck
JP2017084897A (en) * 2015-10-26 2017-05-18 東京エレクトロン株式会社 Substrate cooling method, substrate transfer method in load lock device, and load lock device
KR20180060954A (en) * 2016-11-29 2018-06-07 램 리써치 코포레이션 Substrate support with varying depths of areas between mesas and corresponding temperature dependent method of fabricating
JP2020070488A (en) * 2018-10-30 2020-05-07 キヤノントッキ株式会社 Electrostatic chuck system, film deposition device, adsorption method, film deposition method, and electronic device manufacturing method
WO2020149936A1 (en) * 2019-01-18 2020-07-23 Applied Materials, Inc. Heated pedestal design for improved heat transfer and temperature uniformity
WO2022245654A1 (en) * 2021-05-16 2022-11-24 Applied Materials, Inc. Heater pedestal with improved uniformity
WO2023283121A1 (en) * 2021-07-09 2023-01-12 Applied Materials, Inc. Mesa height modulation for thickness correction

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222851A (en) * 2001-01-29 2002-08-09 Ngk Insulators Ltd Electrostatic chuck and board processor
JP2005268524A (en) * 2004-03-18 2005-09-29 Canon Inc Substrate holder and aligner using same
JP4636807B2 (en) * 2004-03-18 2011-02-23 キヤノン株式会社 Substrate holding device and exposure apparatus using the same
JP2011155170A (en) * 2010-01-28 2011-08-11 Panasonic Corp Plasma processing apparatus
JP2012195211A (en) * 2011-03-17 2012-10-11 Ulvac Japan Ltd Apparatus and method for plasma processing
JP2013153171A (en) * 2013-02-15 2013-08-08 Panasonic Corp Plasma processing apparatus and plasma processing method
JP2014216516A (en) * 2013-04-26 2014-11-17 京セラ株式会社 Sample holder
JP2017506825A (en) * 2014-02-12 2017-03-09 アクセリス テクノロジーズ, インコーポレイテッド Constant mass flow multilayer coolant path electrostatic chuck
JP2016143760A (en) * 2015-02-02 2016-08-08 住友大阪セメント株式会社 Electrostatic chuck device
JP2016213281A (en) * 2015-05-01 2016-12-15 サムコ株式会社 Tray for plasma processing apparatus
JP2017084897A (en) * 2015-10-26 2017-05-18 東京エレクトロン株式会社 Substrate cooling method, substrate transfer method in load lock device, and load lock device
KR20180060954A (en) * 2016-11-29 2018-06-07 램 리써치 코포레이션 Substrate support with varying depths of areas between mesas and corresponding temperature dependent method of fabricating
JP2018098497A (en) * 2016-11-29 2018-06-21 ラム リサーチ コーポレーションLam Research Corporation Substrate support having area between mesas of different depth and corresponding temperature dependent processing method
CN108335993A (en) * 2016-11-29 2018-07-27 朗姆研究公司 The substrate support and temperature dependency manufacturing method that regional depth changes between table top
CN108335993B (en) * 2016-11-29 2023-08-18 朗姆研究公司 Substrate support with varying depth of inter-mesa regions and temperature-dependent fabrication method
JP2020070488A (en) * 2018-10-30 2020-05-07 キヤノントッキ株式会社 Electrostatic chuck system, film deposition device, adsorption method, film deposition method, and electronic device manufacturing method
WO2020149936A1 (en) * 2019-01-18 2020-07-23 Applied Materials, Inc. Heated pedestal design for improved heat transfer and temperature uniformity
US11830706B2 (en) 2019-01-18 2023-11-28 Applied Materials, Inc. Heated pedestal design for improved heat transfer and temperature uniformity
WO2022245654A1 (en) * 2021-05-16 2022-11-24 Applied Materials, Inc. Heater pedestal with improved uniformity
WO2023283121A1 (en) * 2021-07-09 2023-01-12 Applied Materials, Inc. Mesa height modulation for thickness correction
TWI828223B (en) * 2021-07-09 2024-01-01 美商應用材料股份有限公司 Mesa height modulation for thickness correction
US11869795B2 (en) 2021-07-09 2024-01-09 Applied Materials, Inc. Mesa height modulation for thickness correction

Similar Documents

Publication Publication Date Title
US4968374A (en) Plasma etching apparatus with dielectrically isolated electrodes
US8124539B2 (en) Plasma processing apparatus, focus ring, and susceptor
KR100757545B1 (en) Upper electrode and plasma processing apparatus
US5914568A (en) Plasma processing apparatus
JP3953247B2 (en) Plasma processing equipment
US8295026B2 (en) Electrostatic chuck and substrate processing apparatus having same
KR101050641B1 (en) Substrate Processing Unit and Shower Head
US8696862B2 (en) Substrate mounting table, substrate processing apparatus and substrate temperature control method
US7988814B2 (en) Plasma processing apparatus, plasma processing method, focus ring, and focus ring component
JP5202050B2 (en) Shower head and substrate processing apparatus
JPH11330219A (en) Electrostatic chucking device
KR20140063840A (en) Thermal plate with planar thermal zones for semiconductor processing
JPH10144614A (en) Face plate thermal choke in cvd plasma reactor
JPH01251735A (en) Electrostatic chuck apparatus
US20060037702A1 (en) Plasma processing apparatus
US20120037314A1 (en) Substrate processing apparatus and side wall component
JPH10223621A (en) Vacuum treating apparatus
JP7381713B2 (en) Process kit sheath and temperature control
JP2022511063A (en) Electrostatic chuck with improved thermal coupling for temperature sensitive processes
JP3181501B2 (en) Processing device and processing method
JPH0927398A (en) Plasma treatment device
JP4602528B2 (en) Plasma processing equipment
KR101079224B1 (en) Top electrode assembly and plasma processing apparatus
JPH05234944A (en) Wafer temperature control method and equipment
CN112750676A (en) Plasma processing device