JPH11329114A - Forced cooling superconductive conductor and superconducting coil using the conductor - Google Patents

Forced cooling superconductive conductor and superconducting coil using the conductor

Info

Publication number
JPH11329114A
JPH11329114A JP10136304A JP13630498A JPH11329114A JP H11329114 A JPH11329114 A JP H11329114A JP 10136304 A JP10136304 A JP 10136304A JP 13630498 A JP13630498 A JP 13630498A JP H11329114 A JPH11329114 A JP H11329114A
Authority
JP
Japan
Prior art keywords
refrigerant
superconducting
resistance
channel
channel portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10136304A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takeuchi
一浩 竹内
Michio Otsuka
道夫 大塚
Katsuhiko Asano
克彦 浅野
Kenkichi Ushikusa
健吉 牛草
Yoshikazu Takahashi
良和 高橋
Mitsuru Kikuchi
満 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP10136304A priority Critical patent/JPH11329114A/en
Publication of JPH11329114A publication Critical patent/JPH11329114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To heighten stability of a forced cooling superconductive conductor, by setting the flow rate of a cooling medium in the twisted wire part parallel to a high-resistance channel part to be larger than the flow rate in the twisted wire part parallel to a low-resistance channel part, therefore by enlarging the amount of heat removed by the cooling medium, in the twisted part where the flow rate of the cooling medium is larger. SOLUTION: In this forced cooling superconductive conductor, perforated holes 4 are formed in the wall surface of a channel 3 to permit replacement of a cooling medium in a conduit 1 containing a twisted wire part 2 and a channel part 3. Although the outside diameter of the channel part 3 is constant over the length of it, the inside diameter of the channel 3 is lessened in the portions where higher stability is required.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超電導導体内に循
環する超臨界圧ヘリウムなどの冷媒により超電導導体が
冷却される強制冷却超電導導体に係り、特に、超電導体
の撚り線部と冷媒流路であるチャネルとが併設されてい
る強制冷却超電導導体およびそれを用いた超電導コイル
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forced cooling superconductor in which the superconductor is cooled by a refrigerant such as supercritical helium circulating in the superconductor, and more particularly to a twisted wire portion of the superconductor and a coolant flow path. And a superconducting coil using the same.

【0002】[0002]

【従来の技術】強制冷却超電導導体の安定性を高める方
法については、特開平7−46137号公報および特開平8−8
3620号公報に述べられている。いずれも超電導線を数1
0〜数100本撚り合わせ、これを束ねて金属製の鞘に
収めたケーブル・イン・コンジット導体(Cable-In-con
duit conductor)に関するものである。超電導導体の安
定性(すなわち、局所的な熱的外乱によって常電導転移
領域が導体全体に広がるクエンチと呼ばれる現象が発生
しにくい性質)は、超電導状態の導体が局所的に常電導
状態となる際に発生する熱を、冷媒によって除去するこ
とにより、向上させることができる。
2. Description of the Related Art Methods for improving the stability of a supercooled superconducting conductor are disclosed in Japanese Patent Application Laid-Open Nos. 7-46137 and 8-8
No. 3620 is disclosed. In each case, the superconducting wire is number 1
Cable-in-conduit conductor (Cable-In-con) in which 0 to several hundred strands are twisted, bundled and put in a metal sheath
duit conductor). The stability of a superconducting conductor (ie, the property that a phenomenon called quench, in which a normal conduction transition region spreads over the entire conductor due to local thermal disturbance, is unlikely to occur) occurs when a superconducting conductor locally becomes a normal conducting state. Can be improved by removing the heat generated by the cooling medium.

【0003】特開平7−46137号公報では、熱伝導率の高
い導体の回りに超電導線を撚り線し、常電導転移した超
電導体からの発熱を導体に伝導させ速やかに除去するも
のである。特開平8−83620号公報は、超電導導体の撚り
線の表面に突起などを設け、あるいは撚り線を細線化
し、超電導導体の撚り線の表面積を増加させることによ
り、冷媒への熱伝達を促進しようとするものである。
In Japanese Patent Application Laid-Open No. 7-46137, a superconducting wire is twisted around a conductor having a high thermal conductivity, and the heat generated from the superconductor which has undergone a normal conduction transition is conducted to the conductor and quickly removed. Japanese Patent Application Laid-Open No. 8-83620 discloses a method for promoting heat transfer to a refrigerant by providing a projection or the like on the surface of a stranded wire of a superconducting conductor, or by thinning the stranded wire and increasing the surface area of the stranded wire of the superconducting conductor. It is assumed that.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
では、超電導撚り線を加工する必要があるため、撚り線
の製造工数が増え、線材価格が高くなり、また、超電導
撚り線自身も損傷し易くなる。一方、上記のような方法
を取らず、冷媒流速を大きくすることにより超電導撚り
線から冷媒への熱伝達を向上させることも可能である。
しかし、冷媒流速のほぼ2乗に比例して圧力損失が増大
し冷媒流量も大きくなるため、冷媒循環ポンプの容量の
増大を招く。本発明の目的は、安定性がより高い強制冷
却超電導導体とそれを用いた超電導コイルを提供するこ
とにある。
However, in the above prior art, since the superconducting stranded wire needs to be processed, the number of man-hours for manufacturing the stranded wire increases, the wire material price increases, and the superconducting stranded wire itself is damaged. It will be easier. On the other hand, it is also possible to improve the heat transfer from the superconducting stranded wire to the refrigerant by increasing the flow rate of the refrigerant without taking the above method.
However, the pressure loss increases in proportion to the square of the flow rate of the refrigerant, and the flow rate of the refrigerant also increases, thereby increasing the capacity of the refrigerant circulation pump. An object of the present invention is to provide a forced cooling superconducting conductor having higher stability and a superconducting coil using the same.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の特徴は、チャネルが、冷媒の流路抵抗が最も小さい
低抵抗チャネル部と、低抵抗チャネル部よりも冷媒の流
路抵抗が大きい高抵抗チャネル部とを有することにあ
る。
SUMMARY OF THE INVENTION To achieve the above object, the present invention is characterized in that the channel is a low-resistance channel having the smallest flow resistance of the refrigerant, and the flow resistance of the refrigerant is larger than that of the low-resistance channel. And a high-resistance channel portion.

【0006】高抵抗チャネル部は冷媒の流路抵抗が大き
いので、冷媒の流量が低抵抗チャネル部より少ない。冷
媒の流量が少ない分、高抵抗チャネル部に並行する撚り
線部に流れる冷媒の流量は、低抵抗チャネル部に並行す
る撚り線部よりも、多い。従って、高抵抗チャネル部に
並行する撚り線部では、冷媒の流速が、低抵抗チャネル
部に並行する撚り線部よりも、大きい。冷媒の流速が大
きくなった撚り線部では、冷媒によって除去される熱が
多くなるので、強制冷却超電導導体の安定性が高まる。
[0006] Since the flow path resistance of the refrigerant is large in the high resistance channel portion, the flow rate of the refrigerant is smaller than that in the low resistance channel portion. Since the flow rate of the refrigerant is small, the flow rate of the refrigerant flowing through the stranded wire section parallel to the high-resistance channel section is larger than that of the stranded wire section parallel to the low-resistance channel section. Therefore, the flow rate of the refrigerant is higher in the stranded wire section parallel to the high-resistance channel section than in the stranded wire section parallel to the low-resistance channel section. In the stranded portion where the flow rate of the refrigerant is increased, the heat removed by the refrigerant is increased, so that the stability of the forced cooling superconducting conductor is improved.

【0007】強制冷却超電導導体の全長に渡ってチャネ
ルの流路抵抗を大きくしたのでは、冷媒流量は大幅に減
少してしまうが、安定性を高めたい所のチャネルの流路
抵抗を大きくすれば、冷媒流量の減少を小さく抑え、か
つ、安定性を高めることができる。
If the flow resistance of the channel is increased over the entire length of the forced cooling superconducting conductor, the flow rate of the refrigerant is greatly reduced. However, if the flow resistance of the channel where stability is desired to be improved is increased, In addition, a decrease in the flow rate of the refrigerant can be suppressed to a small value, and the stability can be improved.

【0008】高抵抗チャネル部には、低抵抗チャネル部
よりも冷媒流路の大きさを小さくしたものを用いればよ
い。また、冷媒流路に冷媒の流れを妨げる障害物を設け
てもよい。
The high-resistance channel portion may have a smaller refrigerant flow path size than the low-resistance channel portion. Further, an obstacle that hinders the flow of the refrigerant may be provided in the refrigerant channel.

【0009】また、本発明の他の特徴は、超電導コイル
の内側から1回目または2回目に巻線された強制冷却超
電導導体が高抵抗チャネル部を有することにある。超電
導コイルは内周側の磁場が強く、この部分の強制冷却超
電導導体が高抵抗チャネル部を有すれば、超電導コイル
の安定性がより高まる。
Another feature of the present invention resides in that the forced cooling superconducting conductor wound first or second time from the inside of the superconducting coil has a high resistance channel portion. The superconducting coil has a strong magnetic field on the inner peripheral side, and if the forced cooling superconducting conductor in this portion has a high resistance channel portion, the stability of the superconducting coil is further improved.

【0010】また、本発明の他の特徴は、超電導コイル
の各巻線ごとの制限電流値が内側から3回巻線までに、
高から低になる腰折点をもつことにある。超電導コイル
は内周側の磁場が強いので、従来の超電導コイルの制限
電流値は内周側ほど小さいが、超電導コイルの内周側の
制限電流値を高くすれば、超電導コイルの各巻線ごとの
制限電流値は高から低になる腰折点をもつようになる。
腰折点の制限電流値は、従来の内周側の制限電流値より
も高いので、超電導コイルの安定性をより高めることが
できる。
Another feature of the present invention is that the limit current value for each winding of the superconducting coil is three times from the inside,
The point is to have a break from high to low. Since the superconducting coil has a strong magnetic field on the inner circumference side, the current limit value of the conventional superconducting coil is smaller on the inner circumference side, but if the current limit value on the inner circumference side of the superconducting coil is increased, each winding of the superconducting coil has The limiting current value has a break point from high to low.
Since the limiting current value at the hip break point is higher than the conventional limiting current value on the inner peripheral side, the stability of the superconducting coil can be further improved.

【0011】[0011]

【発明の実施の形態】初めに、超電導コイルにおける冷
媒流量と制限電流の関係について説明する。超電導コイ
ルの安定性は、超電導導体のおかれる局所的な磁場や温
度に敏感である。長尺の超電導導体で作った超電導コイ
ルについては、冷媒温度が高い部分や磁場が大きい部分
は安定性が低い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the relationship between the flow rate of refrigerant in a superconducting coil and the current limit will be described. The stability of the superconducting coil is sensitive to the local magnetic field and temperature where the superconducting conductor is placed. Regarding a superconducting coil made of a long superconducting conductor, stability is low in a portion where the refrigerant temperature is high or a portion where the magnetic field is large.

【0012】超電導コイルの安定性は最も安定性の低い
部分で評価されるため、安定性が低いところが局所的に
あれば、そこの安定性を改善することで、超電導コイル
の全体の安定性が高まる。
[0012] Since the stability of the superconducting coil is evaluated at the portion where the stability is the lowest, if the stability is low locally, the stability of the superconducting coil is improved by improving the stability there. Increase.

【0013】超電導コイルの安定性の定量的な指標の一
つは、「吉田 清、強制冷却方式による大型超電導コイ
ルの安定性と保護の研究、JAERI−M 92−11
9、p.77、日本原子力研究所(1992年)」によれ
ば、(数1)で表される制限電流である。
One of the quantitative indicators of the stability of the superconducting coil is described in "Kiyoshi Yoshida, Study on stability and protection of large superconducting coil by forced cooling system, JAERI-M 92-11."
9, p. 77, Japan Atomic Energy Research Institute (1992) ".

【0014】[0014]

【数1】Ilim={phA Cu(Tc−Tb)/ρ}0.5 p :撚り線の冷却ペリメータ(m) h :撚り線から冷媒への熱伝達係数(w/m2K)∝v
0.8 v :冷媒流速(m/s) ACu:安定化銅の断面積(m3) Tc :臨界温度(K) Tb :冷媒温度(K) ρ :銅の抵抗率(Ωm) (数1)に示す制限電流は、撚り線での常電導転移によ
るジュール発熱量と、冷媒への熱伝達による冷却量が等
しくなる電流値を示す。超電導コイルに流れる電流が制
限電流より小さければ、超電導導体の発熱は冷媒によっ
て十分に除去される。すなわち、制限電流が大きい超電
導コイルほど、超電導導体の安定性が高い。
## EQU1 ## I lim = { ph A Cu (T c −T b ) / ρ} 0.5 p: cooling perimeter of stranded wire (m) h: heat transfer coefficient from stranded wire to refrigerant (w / m 2 K) ∝v
0.8 v: Refrigerant flow rate (m / s) A Cu : Cross-sectional area of stabilized copper (m 3 ) T c : Critical temperature (K) T b : Refrigerant temperature (K) ρ: Resistivity of copper (Ωm) (number) The limiting current shown in 1) indicates a current value at which the amount of Joule heat generated by the normal conduction transition in the stranded wire becomes equal to the amount of cooling due to heat transfer to the refrigerant. If the current flowing through the superconducting coil is smaller than the limited current, the heat generated by the superconducting conductor is sufficiently removed by the refrigerant. In other words, the superconducting coil having a larger limiting current has higher stability of the superconducting conductor.

【0015】(数1)より明らかなように、制限電流は
熱伝達係数の0.6 乗に比例し、また、「電気学会編、
超電導工学改訂版、p.116 、オーム社、東京、19
88年」によれば、熱伝達係数は冷媒流速の0.8乗 に
比例する。したがって、制限電流は冷媒流速の0.4 乗
に比例する。
As is apparent from (Equation 1), the limiting current is proportional to the heat transfer coefficient to the power of 0.6.
Superconductivity Engineering Revised Edition, p.116, Ohmsha, Tokyo, 19
According to 1988, the heat transfer coefficient is proportional to the 0.8th power of the refrigerant flow rate. Therefore, the limiting current is proportional to the coolant flow rate to the power of 0.4.

【0016】導体断面の中心にチャネルを持ち、撚り線
部とチャネルの両方を流れる強制冷却超電導導体の場
合、撚り線部の冷媒流量は超電導コイルの安定性に寄与
し、チャネルの冷媒流量は運転中の発熱の除去や、室温
から極低温までの冷却時間の短縮等に寄与する。
In the case of a forced cooling superconducting conductor having a channel at the center of the conductor cross section and flowing through both the stranded portion and the channel, the refrigerant flow rate in the stranded portion contributes to the stability of the superconducting coil, and the refrigerant flow rate in the channel is controlled by the operation. It contributes to the removal of heat generated inside and the shortening of the cooling time from room temperature to extremely low temperature.

【0017】チャネルと撚り線部は冷媒が流れる並列回
路と見なすことができる。チャネルの内径を狭めて、あ
るいは局所的に障害物を設けてチャネルの流路抵抗を増
加させると、撚り線部の流路抵抗は相対的に小さくなる
ので、撚り線部により多くの冷媒が流れるようになる。
従って、撚り線部での冷媒の流速が大きくなる。撚り線
から冷媒への熱伝達は、冷媒流速のおよそ0.4 乗に比
例して向上するから、冷媒の流速が大きくなった撚り線
部では、超電導導体の安定性が高まり、クエンチしにく
くなる。
The channel and the stranded portion can be regarded as a parallel circuit through which the refrigerant flows. When the inner diameter of the channel is narrowed or an obstacle is locally provided to increase the flow path resistance of the channel, the flow resistance of the stranded wire portion becomes relatively small, so more refrigerant flows through the stranded wire portion. Become like
Therefore, the flow velocity of the refrigerant in the stranded portion increases. Since the heat transfer from the stranded wire to the refrigerant increases in proportion to the refrigerant flow velocity to the power of about 0.4, at the stranded wire portion where the flow velocity of the refrigerant is increased, the stability of the superconducting conductor is increased, and it is difficult to quench. .

【0018】超電導コイル全長に渡ってチャネルの流路
抵抗を大きくしたのでは、冷媒流量は大幅に減少してし
まうが、局所的に流路抵抗を大きくするのであれば、冷
媒流量の減少を小さく抑えることができる。
If the flow resistance of the channel is increased over the entire length of the superconducting coil, the flow rate of the refrigerant is greatly reduced. However, if the flow resistance is locally increased, the decrease in the flow rate of the refrigerant is reduced. Can be suppressed.

【0019】次に本発明の実施の形態を説明する。Next, an embodiment of the present invention will be described.

【0020】本発明の実施例である強制冷却超電導導体
を図1に示す。本実施例の強制冷却超電導導体は、外周
を覆うコンジット1の内部に、超電導線を撚り線した撚
り線部2および冷媒である超臨界圧ヘリウムが流れるチ
ャネル3を持つ。チャネル3の壁面には、撚り線部2と
チャネル3とで冷媒の交換が可能になるよう、貫通孔4
が空けられており、冷媒は撚り線部2およびチャネル3
の両方を流れる。チャネル3は全長に渡って外径は同じ
であるが、内径は要求される超電導導体の安定性によっ
て異なる。より高い安定性が求められる部分では、チャ
ネル3の内径を小さくする。
FIG. 1 shows a forced cooling superconductor according to an embodiment of the present invention. The forced cooling superconducting conductor of the present embodiment has a stranded wire portion 2 in which a superconducting wire is stranded and a channel 3 through which supercritical helium as a refrigerant flows, inside a conduit 1 covering the outer periphery. The wall of the channel 3 is provided with through holes 4 so that the refrigerant can be exchanged between the stranded wire portion 2 and the channel 3.
Is emptied, and the refrigerant flows through the stranded wire portion 2 and the channel 3
Flow through both. The outer diameter of the channel 3 is the same over the entire length, but the inner diameter differs depending on the required stability of the superconductor. In a portion where higher stability is required, the inner diameter of the channel 3 is reduced.

【0021】チャネル3には、図2に示すような、外径
が同じで内径の異なる2種のパイプ3aおよび3bが用
いられる。通常の超電導導体の安定性を要する部分には
内径の大きいパイプ3aを用い、超電導導体の安定性を
より高くしたい部分には内径の小さいパイプ3bを用
い、これらを溶接等によりつなぐ。外径をほぼ等しくし
てあるため、溶接等による接続作業後、接続部表面を滑
らかに加工すれば、超電導撚り線に機械的な損傷を与え
る恐れもない。
For the channel 3, two kinds of pipes 3a and 3b having the same outer diameter and different inner diameters as shown in FIG. 2 are used. A pipe 3a having a large inner diameter is used for a portion where the stability of a normal superconducting conductor is required, and a pipe 3b having a small inner diameter is used for a portion where higher stability of the superconducting conductor is desired, and these are connected by welding or the like. Since the outer diameters are substantially equal, if the surface of the connection portion is smoothly worked after the connection operation by welding or the like, there is no danger of mechanically damaging the superconducting stranded wire.

【0022】また、図3に示すように、帯状の材料5
a,5bをスパイラル状に巻いたものを用いてもよい。
隙間6が貫通孔4と同じ役割をする。厚さが異なる帯状
の材料5a,5bを外径が等しくなるように巻けば、内
径が異なるパイプを作ることができる。また、図4に示
すように、棒状の障害物8をチャネル3を横切って挿入
することによりチャネル3の流路抵抗を大きくしてもよ
い。棒状の障害物8はチャネル3の壁面に溶接等により
固定する。溶接後、チャネル外表面を滑らかにする。
Further, as shown in FIG.
What wound a and 5b in the shape of a spiral may be used.
The gap 6 plays the same role as the through hole 4. If the strip-shaped materials 5a and 5b having different thicknesses are wound so as to have the same outer diameter, pipes having different inner diameters can be manufactured. Further, as shown in FIG. 4, a flow path resistance of the channel 3 may be increased by inserting a bar-shaped obstacle 8 across the channel 3. The bar-shaped obstacle 8 is fixed to the wall surface of the channel 3 by welding or the like. After welding, smooth the outer surface of the channel.

【0023】本実施例の強制冷却超電導導体の製造方法
を図5を用いて説明する。チャネル用ドラム9から繰り
出されるチャネル3の回りに、撚り線用ドラム10から
超電導撚り線2を撚り合わせ、さらにコンジット用ドラ
ム11からコンジット1を巻き付け、成形用ローラ12
にて成形した後、溶接機13により溶接,一体化する。
これを線引き機14により引き延ばし製品形状とする
が、非破壊検査等の検査装置15によりチャネル3の内
部形状を検査し、内部形状が変化した位置をマーキング
し、その後製品用ドラム16に巻き取る。マーキングに
よりコイル製作時、チャネル形状を変化させた導体領域
を特定でき、超電導コイルの所望の位置にその領域を配
置することができる。
A method for manufacturing a forced cooling superconductor according to this embodiment will be described with reference to FIG. The superconducting stranded wire 2 is twisted from the stranded wire drum 10 around the channel 3 fed out from the channel drum 9, the conduit 1 is wound from the conduit drum 11, and the forming roller 12 is wound.
, And then welded and integrated by the welding machine 13.
This is stretched by a wire drawing machine 14 to obtain a product shape. The internal shape of the channel 3 is inspected by an inspection device 15 such as a non-destructive inspection, a position where the internal shape is changed is marked, and then wound around a product drum 16. At the time of coil production, the conductor region in which the channel shape is changed can be specified by the marking, and the region can be arranged at a desired position of the superconducting coil.

【0024】次に、本実施例により安定性が改善される
ことを定量的に説明する。
Next, the improvement in stability by the present embodiment will be quantitatively described.

【0025】図6に、シングルパンケーキコイル7を2
0個重ねたパンケーキ巻コイルを示す。図7に、シング
ルパンケーキコイル7の断面構造を示す。シングルパン
ケーキコイル7は本実施例の強制冷却超電導導体を9タ
ーン巻き線して作られる。冷媒の超臨界圧ヘリウムは、
各シングルパンケーキ7毎にコイルの最内周ターンから
流入し、最外周ターンから流出する。
FIG. 6 shows a single pancake coil 7
A pancake-wound coil in which 0 pieces are stacked is shown. FIG. 7 shows a cross-sectional structure of the single pancake coil 7. The single pancake coil 7 is formed by winding the forced cooling superconducting conductor of this embodiment for 9 turns. The supercritical helium of the refrigerant is
Each single pancake 7 flows in from the innermost turn of the coil and flows out from the outermost turn.

【0026】シングルパンケーキコイル7の冷媒流路の
等価回路を図8に示す。各ターンとも、撚り線部2の流
路抵抗R2 とチャネル3の流路抵抗R3 が並列に設置さ
れ、冷媒循環ポンプの圧力Vにより、冷媒流量I2 およ
びI3 が発生する。
FIG. 8 shows an equivalent circuit of the refrigerant flow path of the single pancake coil 7. In each turn, the flow path resistance R 3 of the flow resistance of the twisted portion 2 R 2 and channel 3 are installed in parallel, the pressure V of the refrigerant circulation pump, the coolant flow rate I 2 and I 3 is generated.

【0027】シングルパンケーキコイル7では、第1タ
ーンのチャネル3の内径を小さくし、第2ターンから第
9ターンでは大きくする。第1ターンの撚り線部2の流
路抵抗R21とチャネル3の流路抵抗R31の比をR21:R
31=r:2r=1:2とする。第2ターンから第9ター
ンの撚り線部2の流路抵抗R2nとチャネル3の流路抵抗
3nの比をR2n:R3n=r:r=1:1とする。
In the single pancake coil 7, the inner diameter of the channel 3 in the first turn is reduced, and is increased in the second to ninth turns. The ratio of the channel resistance R 31 of the first flow path resistance of the turns of stranded wire section 2 R 21 and channel 3 R 21: R
31 = r: 2r = 1: 2. The ratio of the flow path resistance R 2n of the stranded wire portion 2 to the flow resistance R 3n of the channel 3 in the second to ninth turns is R 2n : R 3n = r: r = 1: 1.

【0028】図9に、第1ターンにのみチャネル3の内
径を小さくしたシングルパンケーキコイル7の冷媒流量
と、第1ターンから第9ターンまで内径が大きい従来型
のシングルパンケーキコイルの冷媒流量との違いを示
す。
FIG. 9 shows the refrigerant flow rate of the single pancake coil 7 in which the inner diameter of the channel 3 is reduced only in the first turn, and the refrigerant flow rate of the conventional single pancake coil in which the inner diameter is large from the first turn to the ninth turn. The difference is shown.

【0029】シングルパンケーキコイル7は、従来型と
比べて、全流量Iは6.3% 減少し((6/19)/
(1/3)=0.947)、第2ターン以降の撚り線部
2の流量I2nも同じく6.3%減少するが、第1ターン
の撚り線部2の流量I21は42.1%増加する((3/
19)/(1/9)=1.421)。
In the single pancake coil 7, the total flow rate I is reduced by 6.3% as compared with the conventional pancake coil ((6/19) /
(1/3) = 0.947), the flow rate I 2n of the stranded portion 2 after the second turn is also reduced by 6.3%, but the flow rate I 21 of the stranded portion 2 in the first turn is 42.1. % Increase ((3 /
19) / (1/9) = 1.421).

【0030】図10に、シングルパンケーキコイル7と
従来型のシングルパンケーキコイルについて、各ターン
の温度,磁場および制限電流を示す。冷媒温度は第1タ
ーンが最も低く、下流にいくほど高くなるが大きな影響
はない。コイルの作る磁場は、第1ターンが最も高く、
外周に移動するにつれ減少していき再び若干増加する。
超電導体の臨界温度は、磁場分布に強く依存し、第1タ
ーンが最も低くなる。従来型では、制限電流は第1ター
ンで最も低く運転電流の1.13 倍であり、これがコイ
ルの安定性を規定する。
FIG. 10 shows the temperature, magnetic field, and limiting current of each turn for the single pancake coil 7 and the conventional single pancake coil. The refrigerant temperature is lowest in the first turn, and increases as it goes downstream, but does not have a significant effect. The magnetic field created by the coil is the highest on the first turn,
It decreases as it moves to the outer circumference and increases again slightly.
The critical temperature of the superconductor strongly depends on the magnetic field distribution, and becomes the lowest at the first turn. In the conventional type, the limiting current is the lowest in the first turn and 1.13 times the operating current, which defines the stability of the coil.

【0031】シングルパンケーキコイル7では、第1タ
ーンの制限電流は運転電流の1.29倍となり、第2ターン
の制限電流が1.20 倍とやや下がり、コイルの安定性
は、第2ターンの制限電流で規定される。従って、超電
導コイル安定性のマージンが13%から20%へと1.
6 倍以上高めることができる。また、このマージンが
13%で十分なコイルについては、(数1)に示した安
定化銅の断面積を11%減少させることが出来るので
((1.13/1.20)の2乗=0.886)、コイルサ
イズを小さくでき、超電導撚り線も安価になる。あるい
は、安定化銅の11%抵抗率を高く取ることが出来、銅
も安価になる。または、冷媒流速を14%小さくできる
ので((1.13/1.20)の2.6乗=0.860)、
圧力損失を26%小さくでき((1.13/1.20)の
2.6乗のさらに2乗=0.740)、冷媒循環ポンプの
容量を小さくできる。
In the single pancake coil 7, the limiting current of the first turn is 1.29 times the operating current, the limiting current of the second turn is slightly reduced to 1.20 times, and the stability of the coil is limited by the limiting of the second turn. Defined by current. Therefore, the margin of the superconducting coil stability is increased from 13% to 20% as follows: 1.
It can be increased 6 times or more. For a coil having a sufficient margin of 13%, the cross-sectional area of the stabilized copper shown in (Equation 1) can be reduced by 11%, so that the square of (1.13 / 1.20) = 0.886), the coil size can be reduced, and the superconducting stranded wire can be inexpensive. Alternatively, the 11% resistivity of the stabilized copper can be increased, and the cost of copper is reduced. Alternatively, since the refrigerant flow rate can be reduced by 14% ((1.13 / 1.20) to the 2.6th power = 0.860),
The pressure loss can be reduced by 26% (the square of (1.13 / 1.20) to the power of 2.6 = 0.740), and the capacity of the refrigerant circulation pump can be reduced.

【0032】また、チャネル3を加工して撚り線部2の
冷媒流速を高くすることは、超電導体の撚り線部2を加
工することに比べて、容易にかつ安価に行える。
Further, processing the channel 3 to increase the flow rate of the refrigerant in the stranded wire portion 2 can be performed easily and inexpensively as compared with processing the stranded wire portion 2 of the superconductor.

【0033】また、本実施例では、チャネル3の流路抵
抗が高低2段階の場合について説明したが、要求される
安定性に応じて複数段階にしても良い。
Further, in this embodiment, the case where the channel resistance of the channel 3 has two levels of high and low has been described. However, a plurality of levels may be used according to the required stability.

【0034】[0034]

【発明の効果】本発明によれば、高抵抗チャネル部に並
行する撚り線部では、冷媒の流速が、低抵抗チャネル部
に並行する撚り線部よりも、大きい。冷媒の流速が大き
くなった撚り線部では、冷媒によって除去される熱が多
くなるので、強制冷却超電導導体の安定性が高まる。
According to the present invention, the flow rate of the refrigerant is greater in the stranded portion parallel to the high-resistance channel portion than in the stranded portion parallel to the low-resistance channel portion. In the stranded portion where the flow rate of the refrigerant is increased, the heat removed by the refrigerant is increased, so that the stability of the forced cooling superconducting conductor is improved.

【0035】また、超電導コイルは内周側の磁場が強
く、この部分の強制冷却超電導導体が高抵抗チャネル部
を有すれば、超電導コイルの安定性がより高まる。
The superconducting coil has a strong magnetic field on the inner peripheral side. If the forced cooling superconducting conductor in this portion has a high resistance channel portion, the stability of the superconducting coil is further improved.

【0036】また、超電導コイルの内周側の制限電流値
を高くすれば、超電導コイルの各巻線ごとの制限電流値
は高から低になる腰折点をもつようになり、腰折点の制
限電流値は、従来の内周側の制限電流値よりも高いの
で、超電導コイルの安定性をより高めることができる。
Further, if the current limiting value on the inner peripheral side of the superconducting coil is increased, the current limiting value for each winding of the superconducting coil has a waist break point from high to low. Since the current value is higher than the conventional limit current value on the inner circumference side, the stability of the superconducting coil can be further improved.

【0037】本発明によれば、冷媒流量や圧力損失を増
加させることなしに安定性の高い超電導コイルを提供で
きるので、コイルクエンチを引き起こす外乱に対する安
定性のマージンを高めることができ、高性能の超電導コ
イルを提供できる。あるいは、安定性が従来技術と同程
度でよい場合には、安定化銅の量を減少させ、コイルサ
イズを小さく、超電導導体を安価にできる。あるいは、
安定化銅の抵抗率を高く取ることが出来、または、冷媒
流速を小さくして冷媒循環ポンプの容量を小さくでき
る。
According to the present invention, a superconducting coil having high stability can be provided without increasing the refrigerant flow rate and pressure loss. Therefore, the stability margin against disturbance causing coil quench can be increased, and the high performance superconducting coil can be provided. A superconducting coil can be provided. Alternatively, if the stability is the same as that of the prior art, the amount of stabilized copper can be reduced, the coil size can be reduced, and the superconducting conductor can be inexpensive. Or,
The resistivity of the stabilized copper can be increased, or the flow rate of the refrigerant can be reduced to reduce the capacity of the refrigerant circulation pump.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である強制冷却超電導導体を示
す図。
FIG. 1 is a diagram showing a forced cooling superconductor according to an embodiment of the present invention.

【図2】チャネル3を構造するパイプ3aおよび3bを
示す図。
FIG. 2 is a view showing pipes 3a and 3b constituting a channel 3.

【図3】帯状の材料をスパイラル状に巻いてチャネル3
を構造した例を示す図。
FIG. 3 shows a channel 3 formed by spirally winding a band-shaped material.
FIG.

【図4】チャネル流路に棒状の障害物8を挿入してチャ
ネル3を構造した例を示す図。
FIG. 4 is a diagram showing an example in which a channel 3 is structured by inserting a bar-shaped obstacle 8 into a channel flow channel.

【図5】本実施例の強制冷却超電導導体の製造方法を説
明する図。
FIG. 5 is a diagram illustrating a method for manufacturing the forced-cooled superconducting conductor of the present embodiment.

【図6】パンケーキ巻コイルを示す図。FIG. 6 is a diagram showing a pancake-wound coil.

【図7】シングルパンケーキコイル7の断面構造を示す
図。
FIG. 7 is a diagram showing a cross-sectional structure of a single pancake coil 7;

【図8】シングルパンケーキコイル7の冷媒流路の等価
回路を示す図。
FIG. 8 is a diagram showing an equivalent circuit of a refrigerant flow path of the single pancake coil 7.

【図9】シングルパンケーキコイル7と従来型のシング
ルパンケーキコイルの冷媒流量示す表。
FIG. 9 is a table showing the refrigerant flow rates of the single pancake coil 7 and the conventional single pancake coil.

【図10】シングルパンケーキコイル7と従来型のシン
グルパンケーキコイルの温度,磁場,制限電流の分布を
示す図。
FIG. 10 is a diagram showing distributions of the temperature, the magnetic field, and the limiting current of the single pancake coil 7 and the conventional single pancake coil.

【符号の説明】[Explanation of symbols]

1…コンジット、2…撚り線部、3…チャネル、3a,
3b…パイプ、4…貫通孔、5a,5b…帯状の材料、
6…隙間、7…シングルパンケーキコイル、8…障害
物、9…チャネル用ドラム、10…撚り線用ドラム、1
1…コンジット用ドラム、12…成形ローラ、13…溶
接機、14…線引き機、15…検査装置、16…製品用
ドラム。
DESCRIPTION OF SYMBOLS 1 ... Conduit, 2 ... Stranded wire part, 3 ... Channel, 3a,
3b: pipe, 4: through hole, 5a, 5b: band-shaped material,
6 gap, 7 single pancake coil, 8 obstacle, 9 drum for channel, 10 drum for stranded wire, 1
DESCRIPTION OF SYMBOLS 1 ... Conduit drum, 12 ... Forming roller, 13 ... Welding machine, 14 ... Drawing machine, 15 ... Inspection device, 16 ... Product drum.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 克彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 牛草 健吉 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所 那珂研究所内 (72)発明者 高橋 良和 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所 那珂研究所内 (72)発明者 菊池 満 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所 那珂研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Katsuhiko Asano, Inventor Katsuhiko Asano 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (72) Inventor Kenkichi Ushigusa 801 Mukoyama, Nakamachi, Naka-gun, Naka-gun, Ibaraki Prefecture No. 1 in the Japan Atomic Energy Research Institute, Naka Research Laboratory (72) Inventor Yoshikazu Takahashi 801 Mukaiyama, Naka-machi, Naka-gun, Ibaraki Prefecture Inside of Japan Nuclear Research Institute Naka Research Laboratory (72) Inventor Mitsuru Kikuchi, Naka-machi Naka-machi, Ibaraki Prefecture 801 Mukoyama 1 Atomic Research Institute, Naka Research Institute of Japan

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数の超電導導線を有する撚り線と、前記
撚り線と並行して配置されて、冷媒を通過させるために
長手方向に貫かれた冷媒流路を内部に有し、前記冷媒流
路から前記撚り線部に前記冷媒を供給する通路を有する
チャネルとを備える強制冷却超電導導体において、 前記チャネルは、冷媒の流路抵抗が最も小さい低抵抗チ
ャネル部と、前記低抵抗チャネル部よりも冷媒の流路抵
抗が大きい高抵抗チャネル部とを有することを特徴とす
る強制冷却超電導導体。
1. A stranded wire having a plurality of superconducting wires, and a refrigerant flow passage disposed in parallel with the stranded wire and penetrated in a longitudinal direction for allowing a refrigerant to pass therethrough. A forced cooling superconducting conductor comprising a channel having a passage for supplying the refrigerant from the path to the stranded wire portion, wherein the channel is smaller than the low-resistance channel portion having the smallest flow path resistance of the refrigerant, and A forced-cooled superconductor having a high-resistance channel portion having a large flow path resistance of a refrigerant.
【請求項2】前記高抵抗チャネル部は、前記低抵抗チャ
ネル部より前記冷媒流路の大きさが小さいことを特徴と
する請求項1の強制冷却超電導導体。
2. The forced cooling superconducting conductor according to claim 1, wherein said high-resistance channel portion has a smaller size of said refrigerant flow path than said low-resistance channel portion.
【請求項3】前記高抵抗チャネル部は、前記冷媒流路に
前記冷媒の流れを妨げる障害物を有することを特徴とす
る請求項1の強制冷却超電導導体。
3. The forced-cooled superconducting conductor according to claim 1, wherein the high-resistance channel portion has an obstacle in the coolant flow path that impedes the flow of the coolant.
【請求項4】複数の超電導導線を有する撚り線と、前記
撚り線と並行して配置されて、冷媒を通過させるために
長手方向に貫かれた冷媒流路を内部に有し、前記冷媒流
路から前記撚り線に前記冷媒を供給する通路を有するチ
ャネルとを備える強制冷却超電導導体を複数回巻線した
超電導コイルにおいて、 前記チャネル部は、冷媒の流路抵抗が最も小さい低抵抗
チャネル部と、前記低抵抗チャネル部よりも冷媒の流路
抵抗が大きい高抵抗チャネル部とを有し、内側から1回
目と2回目に巻線された前記強制冷却超電導導体が高抵
抗チャネル部を有することを特徴とする超電導コイル。
4. A stranded wire having a plurality of superconducting wires, and a refrigerant flow passage disposed in parallel with the stranded wire and penetrated in a longitudinal direction for allowing a refrigerant to pass therethrough. In a superconducting coil in which a forced cooling superconducting conductor comprising a channel having a passage for supplying the refrigerant from the path to the stranded wire is wound a plurality of times, the channel portion is a low-resistance channel portion having the smallest flow path resistance of the refrigerant. A high-resistance channel portion having a larger flow path resistance of the refrigerant than the low-resistance channel portion, and wherein the forcibly cooled superconducting conductor wound first and second times from the inside has a high-resistance channel portion. Features superconducting coil.
【請求項5】撚り線された超電導線および前記超電導線
を冷却する冷媒を通過させるチャネルを内包する強制冷
却超電導導体を、複数回巻線した超電導コイルにおい
て、 撚り線での常電導転移によるジュール発熱量と冷媒への
熱伝達による冷却量とが等しくなる電流値である制限電
流値が、内側から3回巻線までに、高から低になる腰折
点を設定したことを特徴とする超電導コイル。
5. A superconducting coil in which a forcedly cooled superconducting conductor containing a stranded superconducting wire and a channel through which a cooling medium for cooling the superconducting wire passes is wound a plurality of times. A superconducting power supply characterized in that a limiting current value, which is a current value at which a heat value and a cooling amount due to heat transfer to a refrigerant become equal, is set from a high point to a low point by three turns from the inside. coil.
JP10136304A 1998-05-19 1998-05-19 Forced cooling superconductive conductor and superconducting coil using the conductor Pending JPH11329114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10136304A JPH11329114A (en) 1998-05-19 1998-05-19 Forced cooling superconductive conductor and superconducting coil using the conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10136304A JPH11329114A (en) 1998-05-19 1998-05-19 Forced cooling superconductive conductor and superconducting coil using the conductor

Publications (1)

Publication Number Publication Date
JPH11329114A true JPH11329114A (en) 1999-11-30

Family

ID=15172072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10136304A Pending JPH11329114A (en) 1998-05-19 1998-05-19 Forced cooling superconductive conductor and superconducting coil using the conductor

Country Status (1)

Country Link
JP (1) JPH11329114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985925B2 (en) 2004-04-23 2011-07-26 Gsi Helmholtzzentrum Fuer Schwerionenforschung Gmbh Superconducting cable and method for the production thereof
JP2011215064A (en) * 2010-04-01 2011-10-27 Sumitomo Electric Ind Ltd Device and method for measuring superconducting critical current
JP2013504748A (en) * 2009-09-10 2013-02-07 ビーエーエスエフ エスイー Method and apparatus for quality control of superconducting bands

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985925B2 (en) 2004-04-23 2011-07-26 Gsi Helmholtzzentrum Fuer Schwerionenforschung Gmbh Superconducting cable and method for the production thereof
JP2013504748A (en) * 2009-09-10 2013-02-07 ビーエーエスエフ エスイー Method and apparatus for quality control of superconducting bands
JP2011215064A (en) * 2010-04-01 2011-10-27 Sumitomo Electric Ind Ltd Device and method for measuring superconducting critical current

Similar Documents

Publication Publication Date Title
US9859039B2 (en) Multifilament superconducting wire with high resistance sleeves
US3699647A (en) Method of manufacturing long length composite superconductors
CN101361143B (en) Superconducting cable
US4151498A (en) Combined superconducting coil
JPH11329114A (en) Forced cooling superconductive conductor and superconducting coil using the conductor
EP0156626B1 (en) Superconductor with improved persistence characteristics
JPH0232762B2 (en)
JP4487361B2 (en) Superconducting cable
JPH0510809B2 (en)
JP2004200178A (en) Oxide superconductor and its manufacturing method
JPH10106647A (en) Wire connection structure and method for permanent current switch
US4038492A (en) Current feeding device for electrical apparatus with conductors cooled to a low temperature
JPS6340003B2 (en)
JPH0520937A (en) Superconductive conductor
JPS6381709A (en) Superconductor
JP3099460B2 (en) Nb-Ti alloy superconducting wire
JP4081911B2 (en) Current limiter
JP3330267B2 (en) Superconducting connection structure
JPH05217433A (en) Superconductor
JPH0482205A (en) Superconducting coil apparatus
JPH01183009A (en) Superconductor
JPS62154605A (en) Forced frozen type superconducting magnet
JP2007172978A (en) Superconductive electric wire, method for manufacturing same, and superconductive electromagnet device
JPH04129204A (en) Gas-cooled type current lead apparatus
JP2001006456A (en) Superconducting cable

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207