JPH05217433A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH05217433A
JPH05217433A JP4017293A JP1729392A JPH05217433A JP H05217433 A JPH05217433 A JP H05217433A JP 4017293 A JP4017293 A JP 4017293A JP 1729392 A JP1729392 A JP 1729392A JP H05217433 A JPH05217433 A JP H05217433A
Authority
JP
Japan
Prior art keywords
twisted
wire
superconducting
wires
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4017293A
Other languages
Japanese (ja)
Inventor
Yoshihiro Wachi
良裕 和智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4017293A priority Critical patent/JPH05217433A/en
Publication of JPH05217433A publication Critical patent/JPH05217433A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent the movement of superconducting element wires within a conduit and at the same time maintain a path for a coolant to flow, by fixing the element wires with a thermohardening type insulating tape wound in a spiral form in the direction of the length thereof on the outer circumference of a secondary twisted wire in which a plurality of superconducting element wires are twisted. CONSTITUTION:A superconducting element wire 11 is formed with an extremely thin multi-core superconducting wire of NbTi or Nb3Sn being surrounded with a stabilization material such as Cu, Al or the like. Three pieces of the element wires 11 are twisted to make a primary twisted wire 12, and three pieces of the primary twisted wires 12 are twisted to make a secondary twisted wire 13. A thermohardening type insulating tape is wound on the twisted wire 13 in a spiral form along in the direction of the length thereof. A plurality of the twisted wires 13, the circumference of which the insulating tape 14 is applied to, are twisted to make a subcable 15. In this case, six pieces of subcables 15 are twisted and then housed in the conduit 16. The superconducting wire is made by drawing. Thereby, the movement of the element wire 11 is restricted by the thermohardening type insulating layer 18. However, there is not present the layer 18 all over the space between the element wires 11, so that a path for a coolant to flow can be maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超臨界ヘリウムを強制
的に圧送して冷却する強制冷却型の超電導導体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forced cooling type superconducting conductor for forcibly feeding and cooling supercritical helium.

【0002】[0002]

【従来の技術】超臨界ヘリウムのような単相流,極低温
流体の強制対流を利用して冷却する強制冷却型の超電導
導体には、ホロー導体、ケーブル・イン・コンジット導
体およびそれらを組合わせた導体などがある。ホロー導
体は極細多芯超電導線を多数本集合して半田等で安定化
材とともに一体化し、その中央部分に穴をあけて冷媒で
あるヘリウムを圧送できるように構成されている。ま
た、ケーブル・イン・コンジット導体8は、図3に示す
ようにNbTiやNb3 Snの極細多芯超電導線1を数
本ずつ多数回撚り合せて2次撚線2,3次撚線3,4次
撚線4,5次撚線5とケーブル状に多重撚りし、SUS
材やインコロイ材,Ti材またはそれらの合金等からな
る強固なコンジット(管)6内に納め、超電導素線以外
のコンジット6内壁とで囲まれた空間7に冷媒が流れる
ように構成されている(米国特許第4,336,420
号明細書:Jun.22,1982,参照)。
2. Description of the Related Art A forced-cooling type superconducting conductor that cools by using forced convection of a single-phase flow such as supercritical helium or a cryogenic fluid is a hollow conductor, a cable-in-conduit conductor, or a combination thereof. There is a conductor. The hollow conductor is configured such that a large number of ultra-fine multi-core superconducting wires are assembled and integrated with a stabilizing material by solder or the like, and a hole is formed in the central portion thereof so that helium as a refrigerant can be pumped. As shown in FIG. 3, the cable-in-conduit conductor 8 includes a secondary twisted wire 2, a tertiary twisted wire 3, which is formed by twisting a plurality of superfine multicore superconducting wires 1 of NbTi or Nb 3 Sn many times. 4th twisted wire 4 and 5th twisted wire 5 and multiple twists in a cable shape, SUS
Is contained in a strong conduit (tube) 6 made of a material, an incoloy material, a Ti material, or an alloy thereof, and the refrigerant flows into a space 7 surrounded by the inner wall of the conduit 6 other than the superconducting element wire. (U.S. Pat. No. 4,336,420
Specification: Jun. 22, 1982).

【0003】この種の超電導導体は、コンジット6内の
超電導素線1が電磁力によってコンジット6内で動くこ
とにより発熱し、素線温度が上昇して超電導破壊(クエ
ンチ)することを防ぐため、超電導素線1の表面に半田
を薄くコーティングし、撚線時にお互い点接触,線接触
した部分で半田付け固定して動かないようにしている。
また、撚線を数回束ねたケーブルに対してその外周を熱
伝導特性の良好な高電気抵抗材で覆うことにより素線の
動きを拘束している。さらに、コンジット6内のケーブ
ル空間の断面積に対する冷媒流路面積の占める割合(以
下ボイド率と称する)をできるだけ小さくなるように
(一般には35〜40%前後)管径をしごいて小さくし
ていた。
In this type of superconducting conductor, since the superconducting element wire 1 in the conduit 6 moves in the conduit 6 by an electromagnetic force to generate heat, the element wire temperature is prevented from rising to cause superconducting breakdown (quenching). The surface of the superconducting element wire 1 is thinly coated with solder, and when the wires are twisted, they are point-contacted with each other, and soldered and fixed at the portions where they contact each other to prevent them from moving.
Further, the movement of the strands is restrained by covering the outer circumference of the cable in which the twisted wires are bundled several times with a high electric resistance material having good heat conduction characteristics. Further, the pipe diameter is squeezed to be as small as possible (generally around 35 to 40%) so that the ratio of the refrigerant flow passage area to the cross-sectional area of the cable space in the conduit 6 (hereinafter referred to as void ratio) is as small as possible. It was

【0004】[0004]

【発明が解決しようとする課題】上述したように、従来
の超電導導体では、コンジット内の超電導素線は半田コ
ーティングされていて超電導素線の動きは拘束される
が、超電導素線間の電気的接続のため変動磁界に対する
結合損失が大きく、この内部発熱のためクエンチに至る
ことがあるため、電気的に素線間を結合せず単に撚り合
せることによってのみ固定すると、曲げ径の異なる箇所
や電磁力の強大な箇所では素線が動き易くなるという欠
点があった。
As described above, in the conventional superconducting conductor, the superconducting element wires in the conduit are solder-coated and the movement of the superconducting element wires is restricted, but the electrical conductivity between the superconducting element wires is reduced. Due to the connection, the coupling loss with respect to a fluctuating magnetic field is large, and quenching may occur due to this internal heat generation.Therefore, if the wires are not electrically coupled but only fixed by twisting, the bending radius and electromagnetic There is a drawback that the wire becomes easy to move in places where the force is strong.

【0005】そこで、従来の超電導導体では素線の動き
易さを防ぐためボイド率を極力小さくしているが、導体
製造時の素線の断線や水力直径が小さくなるため圧力損
失が増大し、ひいては循環ポンプの損失が非常に大きく
なったり、圧損による温度上昇で冷媒の温度が高くなる
等の別の欠点が生じた。
Therefore, in the conventional superconducting conductor, the void ratio is made as small as possible in order to prevent the easiness of movement of the wire, but the wire loss and the hydraulic diameter become small at the time of manufacturing the conductor, and the pressure loss increases, As a result, other drawbacks such as a very large loss of the circulation pump and an increase in the temperature of the refrigerant due to a temperature rise due to pressure loss have occurred.

【0006】上述したような欠点を補う方法として、超
電導素線の外周に半田付け固定する代りに接着剤を塗布
してお互いに接着し固定したもの(特開平2−2978
08号公報)が提案されているが、この方法では素線同
士を互いに接着する際、超電導素線間の冷媒流路が塞が
ってしまい、冷媒が流れなくなり著しい冷却特性の劣化
を招き、ひいてはクエンチ(超電導破壊)を生じるとい
う問題があった。
As a method for compensating for the above-mentioned drawbacks, instead of soldering and fixing to the outer circumference of the superconducting element wire, an adhesive agent is applied and adhered and fixed to each other (JP-A-2-2978).
No. 08 gazette) has been proposed, but in this method, when the wires are bonded to each other, the refrigerant flow path between the superconducting wires is blocked, the refrigerant does not flow, and the cooling characteristics are significantly deteriorated. There was a problem of causing (superconducting breakdown).

【0007】本発明は上記問題を解決するためになされ
たもので、その目的はコンジット内の超電導素線の動き
を防ぐとともに冷媒流路を確保し安定性のある冷却特性
の優れた超電導導体を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to prevent the movement of the superconducting element wire in the conduit and to secure the refrigerant passage to provide a stable superconducting conductor having excellent cooling characteristics. To provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明はNbTiまたはNb3 Snの極細多芯線の
超電導素線からなる撚線を高強度ステンレス鋼製の管内
に納めて、この管内に冷媒を圧送して強制冷却するケー
ブル・イン・コンジット型の超電導導体において、前記
撚線を形成する超電導素線を複数本撚り合せた2次撚線
の外周に熱硬化型の絶縁テープを長尺方向にスパイラル
状に巻回して超電導素線を互いに固定したことを特徴と
する。
In order to achieve the above object, the present invention stores a stranded wire made of NbTi or Nb 3 Sn ultrafine multifilamentary superconducting wire in a high strength stainless steel pipe. In a cable-in-conduit type superconducting conductor for forcedly cooling a refrigerant by forcing it into a pipe, a thermosetting insulating tape is provided on the outer periphery of a secondary stranded wire formed by twisting a plurality of superconducting element wires forming the stranded wire. It is characterized in that the superconducting wires are fixed to each other by spirally winding in the longitudinal direction.

【0009】[0009]

【作用】本発明の超電導導体によれば、超電導素線の動
きを最小限に拘束しかつ素線間の冷媒流路を確保してい
るので、優れた安定性及び冷却特性が得られる。
According to the superconducting conductor of the present invention, since the movement of the superconducting element wire is restrained to the minimum and the refrigerant flow path between the element wires is secured, excellent stability and cooling characteristics can be obtained.

【0010】[0010]

【実施例】以下、本発明の実施例を図1を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0011】図1(a)は本発明の一実施例の断面図で
あり、図1(b)は同図(a)のA部の拡大図である。
図1において、11は超電導素線であり、NbTiやN
3Snの極細多芯超電導線をCuやAl等の安定化材
で囲み、さらに必要に応じて電気絶縁材を挿入する。こ
の超電導素線11は図2に示すように3本ずつ撚られて
1次撚線12を形成し、さらに1次撚線12は3本撚っ
て2次撚線13を形成する。この2次撚線13の外周に
熱硬化型の絶縁テープ14を長尺方向に沿ってスパイラ
ル状に巻回する。このように外周に絶縁テープ14を施
された2次撚線13は、図3に示す従来例と同様に多数
回撚線され、サブケーブル15を構成する。
FIG. 1 (a) is a sectional view of an embodiment of the present invention, and FIG. 1 (b) is an enlarged view of part A of FIG. 1 (a).
In FIG. 1, 11 is a superconducting element wire, which is NbTi or N
An extra fine multi-core superconducting wire of b 3 Sn is surrounded by a stabilizing material such as Cu or Al, and an electrical insulating material is inserted if necessary. As shown in FIG. 2, three superconducting wires 11 are twisted to form a primary twisted wire 12, and three primary twisted wires 12 are twisted to form a secondary twisted wire 13. A thermosetting insulating tape 14 is spirally wound around the outer periphery of the secondary twisted wire 13 along the longitudinal direction. The secondary stranded wire 13 thus provided with the insulating tape 14 on the outer periphery is stranded many times as in the conventional example shown in FIG.

【0012】本実施例の場合、サブケーブル15を6本
撚線してコンジット16に収納し、所定のボイド率まで
ダイス引きして超電導導体20を製作する。超電導導体
20の製作後、コイル製作の適当な過程で超電導導体2
0を加熱して熱硬化型の絶縁テープ14を硬化させ、超
電導素線11を2次撚線単位で固定する。硬化後の超電
導導体20は図1(a)に示すようになり、そのA部を
拡大したものを図1(b)に示す。
In the case of this embodiment, six sub cables 15 are twisted and housed in the conduit 16, and the superconducting conductor 20 is manufactured by dicing to a predetermined void ratio. After the superconducting conductor 20 has been manufactured, the superconducting conductor 2 can be processed in an appropriate process of coil manufacturing.
0 is heated to cure the thermosetting insulating tape 14, and the superconducting element wires 11 are fixed in units of secondary twisted wires. The superconducting conductor 20 after curing is as shown in FIG. 1 (a), and an enlarged portion A is shown in FIG. 1 (b).

【0013】硬化絶縁層18が1次撚線12の状態で超
電導素線11を固定しており、これにより超電導素線1
1の動きを拘束している。しかし、超電導素線11間の
全てに硬化絶縁層18がないため冷媒流路17を確保で
きる。したがって、コイルを形成して通電しても超電導
素線11の動きはほとんどなく優れた安定性を有すると
ともに良好な冷却特性も得ることができる。
The hardened insulating layer 18 fixes the superconducting element wire 11 in the state of the primary twisted wire 12, whereby the superconducting element wire 1 is formed.
It restrains the movement of 1. However, since there is no hardened insulating layer 18 between all the superconducting wires 11, the coolant flow path 17 can be secured. Therefore, even if a coil is formed and electricity is applied, the superconducting element wire 11 hardly moves and has excellent stability and good cooling characteristics can be obtained.

【0014】なお、本実施例では熱硬化型の絶縁テープ
の巻きピッチについて特に規定しなかったが、密巻きま
たはラップ巻きにすると、冷却表面積が減少したり電流
の偏流、分流問題が生じるため飛ばし巻きを行なうこと
により冷却表面積の減少を防ぎ、偏流、分流問題の軽減
ができる。この場合、飛ばし巻きのピッチは、3次撚線
(33 本撚り)の撚りピッチの1/3長以下のピッチと
するのがよい。また、2次撚線は2本撚り、4本撚り等
複数本撚りを用いても上記実施例と同様の効果が得られ
る。
Although the winding pitch of the thermosetting insulating tape is not specified in this embodiment, if it is tightly wound or lap wound, the cooling surface area is reduced, and the current is unbalanced or shunted. By winding, the cooling surface area can be prevented from decreasing, and uneven flow and diversion problems can be reduced. In this case, the pitch of the skip winding is the third stranded wire (3 3 It is preferable that the pitch is 1/3 or less of the twist pitch of the main twist. Further, the same effect as that of the above-mentioned embodiment can be obtained even if the secondary twisted wire is formed by two twists, four twists such as four twists.

【0015】[0015]

【発明の効果】以上説明したように、本発明によればコ
ンジット内の超電導素線の動きを防ぐとともに冷媒流路
を確保できるので、安定で冷却特性の優れた超電導導体
を提供することができる。
As described above, according to the present invention, the movement of the superconducting element wire in the conduit can be prevented and the coolant flow path can be secured, so that the superconducting conductor having a stable and excellent cooling characteristic can be provided. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】同図(a)は本発明の一実施例の断面図、同図
(b)は同図(a)のA部の拡大図。
FIG. 1 (a) is a cross-sectional view of an embodiment of the present invention, and FIG. 1 (b) is an enlarged view of part A of FIG. 1 (a).

【図2】図1の2次撚線の1部の斜視図。FIG. 2 is a perspective view of a part of the secondary stranded wire of FIG.

【図3】従来の超電導導体の製作工程を示す図。FIG. 3 is a diagram showing a manufacturing process of a conventional superconducting conductor.

【符号の説明】[Explanation of symbols]

11…超電導素線、12…1次撚線、13…2次撚線、
14…熱硬化型の絶縁テープ、15…サブケーブル、1
6…コンジット、17…冷媒流路、18…硬化絶縁層、
20…超電導導体。
11 ... Superconducting element wire, 12 ... Primary stranded wire, 13 ... Secondary stranded wire,
14 ... Thermosetting insulating tape, 15 ... Sub cable, 1
6 ... Conduit, 17 ... Refrigerant flow path, 18 ... Cured insulating layer,
20 ... Superconducting conductor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 NbTiまたはNb3 Snの極細多芯線
の超電導素線からなる撚線を高強度ステンレス鋼製の管
内に納めて、この管内に冷媒を圧送して強制冷却するケ
ーブル・イン・コンジット型の超電導導体において、前
記撚線を形成する超電導素線を複数本撚り合せた2次撚
線の外周に熱硬化型の絶縁テープを長尺方向にスパイラ
ル状に巻回して超電導素線を互いに固定したことを特徴
とする超電導導体。
1. A cable-in-conduit in which a stranded wire made of an NbTi or Nb 3 Sn ultrafine multi-core superconducting element wire is housed in a tube made of high-strength stainless steel, and a refrigerant is forced into the tube for forced cooling. Type superconducting conductor, a thermosetting insulating tape is wound spirally around the outer periphery of a secondary stranded wire in which a plurality of superconducting element wires forming the stranded wire are twisted, and the superconducting element wires are mutually wound. A superconducting conductor characterized by being fixed.
JP4017293A 1992-02-03 1992-02-03 Superconductor Pending JPH05217433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017293A JPH05217433A (en) 1992-02-03 1992-02-03 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017293A JPH05217433A (en) 1992-02-03 1992-02-03 Superconductor

Publications (1)

Publication Number Publication Date
JPH05217433A true JPH05217433A (en) 1993-08-27

Family

ID=11939953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017293A Pending JPH05217433A (en) 1992-02-03 1992-02-03 Superconductor

Country Status (1)

Country Link
JP (1) JPH05217433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154187A1 (en) 2012-04-12 2013-10-17 古河電気工業株式会社 Compound superconductive wire and method for manufacturing same
WO2020016035A1 (en) * 2018-07-19 2020-01-23 Nv Bekaert Sa Superconductor with twisted structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154187A1 (en) 2012-04-12 2013-10-17 古河電気工業株式会社 Compound superconductive wire and method for manufacturing same
US9711262B2 (en) 2012-04-12 2017-07-18 Tohoku Techno Arch Co., Ltd. Compound superconducting wire and method for manufacturing the same
WO2020016035A1 (en) * 2018-07-19 2020-01-23 Nv Bekaert Sa Superconductor with twisted structure
US11881352B2 (en) 2018-07-19 2024-01-23 Nv Bekaert Sa Superconductor with twisted structure

Similar Documents

Publication Publication Date Title
JP5738440B2 (en) Superconducting cable and manufacturing method thereof
US7468207B2 (en) Superconducting coil and superconducting apparatus
US4336420A (en) Superconducting cable
US6169252B1 (en) Hollow twisted and drawn cables and method for making the same
US5929385A (en) AC oxide superconductor wire and cable
JPH05217433A (en) Superconductor
US3737989A (en) Method of manufacturing composite superconductor
JPH06168636A (en) Superconductor
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
JP3119514B2 (en) Superconducting conductor
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
JP3628589B2 (en) Superconducting cable
JPH02126519A (en) Superconducting conductor
JP4686076B2 (en) Superconducting conductor
JP3672982B2 (en) Superconducting conductor connection method
JPS6348147B2 (en)
JPH08181014A (en) Superconductive magnet device and its manufacture
USH369H (en) Mechanically stable, high aspect ratio, multifilar, wound, ribbon-type conductor and method for manufacturing same
Petrovich et al. Critical current of multifilamentary Nb 3 Sn-insert coil and long sample bend tests
JPH01264112A (en) Superconductive conductor
JPH05234743A (en) Manufacture of superconducting coil
JP2000222952A (en) Superconductive conductor, superconductive conductor connecting structure, and superconducting coil using them
JPH1186922A (en) Connecting part structure for superconducting cable
JPH0377207A (en) Superconductor
JPH02273417A (en) Superconductor