JPH01264112A - Superconductive conductor - Google Patents

Superconductive conductor

Info

Publication number
JPH01264112A
JPH01264112A JP63089302A JP8930288A JPH01264112A JP H01264112 A JPH01264112 A JP H01264112A JP 63089302 A JP63089302 A JP 63089302A JP 8930288 A JP8930288 A JP 8930288A JP H01264112 A JPH01264112 A JP H01264112A
Authority
JP
Japan
Prior art keywords
superconducting
conduit
conductor
refrigerant
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63089302A
Other languages
Japanese (ja)
Inventor
Sunao Ichihara
直 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63089302A priority Critical patent/JPH01264112A/en
Publication of JPH01264112A publication Critical patent/JPH01264112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To secure thermal stability without increasing power of a refrigerator by forming a subchannel between a superconductive cable and a thin metal belt/a conduit to let a refrigerant flow therethrough. CONSTITUTION:A superconductive conductor comprises a superconductive wire 1, a superconductive cable 2, a thin metal belt 4 and a conduit 5 and a space made by the thin metal belt 4 between a superconductive cable 2 and the conduit 5 forms a subchannel 7. The way of rolling the thin belt 4 is a spiral rolling leaving a space. This process enables a refrigerant for cooling to flow mainly in a subchannel, so it is possible to remarkably reduce a pressure loss between the entrance and the exit of the conductor. Therefore, it is possible to secure thermal stability without increasing the power of a refrigerator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導導体に関し、もう少し詳しくいうと
、超電導素線を束ねた超電導クープルの周囲に薄帯を巻
付け、さらにコンジットで覆い、コンジット内に極低温
冷媒を強制循環させるようにした超lIiCmi体に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a superconducting conductor, and more specifically, a thin ribbon is wrapped around a superconducting couple made by bundling superconducting strands, and the conduit is further covered with a conduit. This invention relates to an ultra-IIiCmi body in which a cryogenic refrigerant is forcedly circulated.

第3図および第4図は例えば本出願人のXの出ml願昭
62−256180号)に記載された従来の強制冷却超
1M、J4導体を示し、図において、超電導素線(11
を多数本撚線して形成した超!導クープル(2)の超電
導素線(1)相互間の間隙は冷媒通路(3)を形成して
いる。超電導ケーブル(2)の外周は金楓薄帯(4)を
介してコンジット(5)で囲み、断面角形の超電導導体
(6)が形成されている。
FIGS. 3 and 4 show a conventional forced cooling super 1M, J4 conductor, which is described in, for example, the present applicant's ML Application No. 62-256180).
Super made by stranding a large number of wires! A gap between the superconducting wires (1) of the conducting couple (2) forms a coolant passage (3). The outer periphery of the superconducting cable (2) is surrounded by a conduit (5) via a gold maple ribbon (4) to form a superconducting conductor (6) with a rectangular cross section.

超電導素線(1)は例えばNb3Snより作られており
、撚線された超電導ケーブル(2)を形成している。超
電導ケーブル(2)は電磁力支持構造物および気密保持
のための機能を有するコンジッ) (5) K 51わ
れている。金稿薄帯(4)は、コンジット(5)を平板
から製作して溶接時に超電導素線(1)に熱損傷を与え
ないため、および、超電導導体(6)を断面四角形に整
形するときに超電導素線(1)に機械的損傷を与えない
ように設けられたものである。
The superconducting wires (1) are made of Nb3Sn, for example, and form a twisted superconducting cable (2). The superconducting cable (2) is equipped with a conduit (5) K51 that has an electromagnetic force support structure and a function for maintaining airtightness. The gold strip (4) is used to make the conduit (5) from a flat plate so that the superconducting wire (1) is not damaged by heat during welding, and when shaping the superconducting conductor (6) into a rectangular cross section. This is provided so as not to cause mechanical damage to the superconducting wire (1).

以上の構成により、超電連索1lJP(1)の間隙でな
る冷媒通路(3)には冷媒として超臨界圧ヘリウム(例
えは45 K 、 10 aim )が圧送される。
With the above configuration, supercritical pressure helium (for example, 45 K, 10 aim) is pumped as a refrigerant into the refrigerant passage (3) formed by the gap between the superelectric cables 11JP (1).

超電導導体(6)は、超電連索da (t)の径を細く
できるので従来のいわゆるモノリスと呼はれる超電導導
体と比べて、冷媒との接触面積が格段に多くなるので、
熱的に非常に安定したものとなる。また、この超電導導
体(6)を巻回して製作した超電導コイルは、その電磁
力をコンジット(5)で支持することが可能であり、機
械的に強固である。さらに、コンジット(5)の周囲を
絶縁物で強固に覆うこともできるので、耐電圧特性の比
較的優れた超電導コイルを得ることができる。
In the superconducting conductor (6), the diameter of the superconducting cable da (t) can be made thinner, so the contact area with the refrigerant is much larger than that of conventional superconducting conductors called monoliths.
It is very thermally stable. Moreover, the superconducting coil manufactured by winding this superconducting conductor (6) can support its electromagnetic force with the conduit (5), and is mechanically strong. Furthermore, since the periphery of the conduit (5) can be tightly covered with an insulating material, a superconducting coil with relatively excellent withstand voltage characteristics can be obtained.

〔発明が解決しようとする課題〕 従来の超電導導体は以上のように構成されているので、
超電導素線径を小さくすれば冷却面積が上昇するが、そ
の反面、等価水力直径が小さくなり導体出入口間の冷媒
圧力損失が大きくなるので、冷凍機動力を増加させる必
要があるという問題点があった。例えば、超電導素線径
が0.9Fm、コンジット内の全超電導素線の占める割
合を60%とすると、等価水力直径は0.065 mと
なり、超電導導体長さ200rn、超臨界圧ヘリウム流
量s tt /sで圧力損失は2atmとなり、かかる
超電導導体の数千水より形成される核融合炉用超電導コ
イルでは、超臨界圧ヘリウム循環のための冷凍機動力は
数MWにも達する。
[Problem to be solved by the invention] Since the conventional superconducting conductor is configured as described above,
Decreasing the diameter of the superconducting strands increases the cooling area, but on the other hand, the equivalent hydraulic diameter decreases and the refrigerant pressure loss between the conductor inlet and outlet increases, so there is a problem in that it is necessary to increase the chiller power. Ta. For example, if the superconducting strand diameter is 0.9 Fm and the proportion of all superconducting strands in the conduit is 60%, the equivalent hydraulic diameter is 0.065 m, the superconducting conductor length is 200 rn, and the supercritical helium flow rate is s tt. /s, the pressure loss is 2 atm, and in a superconducting coil for a fusion reactor formed from several thousand waters of such a superconducting conductor, the refrigerator power for circulating supercritical pressure helium reaches several MW.

また、コイル内の導体間電気絶縁はコンジットはとみに
高まり、導体間のべ気絶員物のみでは要になされたもの
で、冷凍機動力を増加させることな(、熱的に安定な超
1s導体、および高度の絶縁能力を有する超電導導体を
得ることを目的とする。
In addition, the electrical insulation between the conductors in the coil has increased rapidly in the case of conduits, and it has become essential to only use a stunner between the conductors, without increasing the power of the refrigerator (thermally stable super 1s conductor, etc.). and to obtain a superconducting conductor with a high degree of insulation ability.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る超電導導体は、金属などの薄帯が薄帯間
に間隔をもって巻付けられ、間隔は冷媒用サブチャネル
を形成している。
In the superconducting conductor according to the present invention, thin ribbons of metal or the like are wound with intervals between the ribbons, and the intervals form coolant subchannels.

この発明の別の発明に係る超電導導体は、超電導ケーブ
ルに絶縁テープが巻付けられている。
In a superconducting conductor according to another aspect of the present invention, an insulating tape is wrapped around a superconducting cable.

〔作 用〕[For production]

この発明においては、冷却用冷媒は主としてサブチャネ
ルを流れるので冷却効果を損うことなく、導体出入口間
の圧力損失が著しく減少する。
In this invention, since the cooling refrigerant mainly flows through the subchannels, the pressure loss between the inlet and outlet of the conductor is significantly reduced without impairing the cooling effect.

この発明の別の発明においては、電気絶縁が、超電導ケ
ーブルとコンジットとの間で行われているので、高い電
気絶縁能力を呈する。
In another aspect of the present invention, electrical insulation is provided between the superconducting cable and the conduit, thus exhibiting high electrical insulation ability.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示し、図において、符号
(1)〜(6)は第4図と同じものである。超電導ケー
ブル(2)とコンジット(5)の間の金属薄帯(4)の
間の間隔がサブチャネル(7)を形成している。薄帯(
4)の巻き方はいわゆるすかしスパイラル巻きである。
FIG. 1 shows an embodiment of the present invention, and in the figure, reference numerals (1) to (6) are the same as those in FIG. 4. The spacing between the metal ribbons (4) between the superconducting cable (2) and the conduit (5) forms subchannels (7). Thin obi (
The winding method 4) is a so-called watermark spiral winding.

次に動作について説明する。流体の圧力損失は等価水力
直径の4.75乗に逆比例するので、例えば、等価水力
直径が2fl程度の間隙でなるサブチャネル(7)を設
けると、超電導クープル(2)内の等価水力直径は、0
.065mmであるので、超臨界圧ヘリウムは主として
サブチャネル(7)内を流れて、導体出入口間の圧力損
失は著しく減少する。
Next, the operation will be explained. Since the pressure loss of fluid is inversely proportional to the equivalent hydraulic diameter to the 4.75th power, for example, if a subchannel (7) with a gap of about 2 fl is provided, the equivalent hydraulic diameter in the superconducting couple (2) is 0
.. 065 mm, the supercritical helium flows mainly within the subchannel (7) and the pressure loss between the conductor inlet and outlet is significantly reduced.

このとき、超電導ケーブル(2)内の流量は減少し、超
電導素線(1)の安定性は低下するように考えられるが
、このような細い超電導素線(1)を撚線した超電導ケ
ーブル(2)においては、その安定性は、超電導素線(
1)の周囲にある冷媒の址のみに依存し、冷媒の流量に
ほとんど依存しないことが、ジエ・ダブリュ・ルーエ(
J 、W、Lue )らの論文ジャーナル オブ アプ
ライド フィジックス(J、Appl 、Phys、)
51 (1980)p、772により、実験的にも、理
論的にも確認されている。
At this time, the flow rate in the superconducting cable (2) decreases, and the stability of the superconducting wire (1) seems to decrease. In 2), the stability of the superconducting wire (
1) depends only on the location of the refrigerant around it, and almost does not depend on the flow rate of the refrigerant.
Journal of Applied Physics (J, Appl, Phys, ) et al.
51 (1980) p. 772, both experimentally and theoretically.

なお、上記実施例では、超電導素線としてNb 3 S
 nを、冷媒として超臨界圧ヘリウムを使用した場合に
ついて述べたが、冷媒は液体ヘリウムであってもよいし
、超電導素線はNbTiでもよい。
In addition, in the above embodiment, Nb 3 S is used as the superconducting wire.
Although the case where supercritical pressure helium is used as a refrigerant has been described for n, the refrigerant may be liquid helium, and the superconducting strands may be NbTi.

さらに、超電導導体の臨界温度が液体窒素の沸点(7,
73K)以上の場合は、冷媒として液体窒素、超臨界圧
窒素、液体窒素と熱交換した高圧のヘリウムガスなどで
あってもよい。この場合の超電導体としては、例えばY
 −Ba −Cu −0系酸化物がある。この物質は、
臨界温度が80に以上であることが実験的に確認されて
いる。
Furthermore, the critical temperature of the superconducting conductor is the boiling point of liquid nitrogen (7,
73K) or higher, the refrigerant may be liquid nitrogen, supercritical pressure nitrogen, high pressure helium gas heat exchanged with liquid nitrogen, or the like. In this case, the superconductor is, for example, Y
There is -Ba-Cu-0 type oxide. This substance is
It has been experimentally confirmed that the critical temperature is above 80°C.

また、上記実施例では薄情として金属博労としたが、薄
帯は電気絶縁物でもよい。
Further, in the above embodiment, the thin ribbon was made of metal as a courtesy, but the ribbon may be made of an electrically insulating material.

第2図は他の実施例を示し、図において(1)〜(3)
FIG. 2 shows another embodiment, in which (1) to (3)
.

(5) (6)は第3図と同じものである。超電導ケー
ブル(2)の外周に電気絶縁テープ(8)が巻かれ超電
導ケーブル(2)とコンジット(5)の間の電気絶縁を
確保している。
(5) and (6) are the same as in Figure 3. Electrical insulation tape (8) is wrapped around the outer circumference of the superconducting cable (2) to ensure electrical insulation between the superconducting cable (2) and the conduit (5).

次に動作について説明する。超電導コイルが運転される
絶対温度4に付近での冷媒H’eの電気絶縁能力は著し
く高く、1+w当り10〜20 kVの耐電圧能力を有
する。しかも固体絶縁と異なり、くり返し電圧が印加さ
れても絶縁劣化することがない。この実施例は、以上の
すぐれたHeの絶縁能力を利用するもので、電気絶縁テ
ープ(8)は基本的には超電導クープル(2)とコンジ
ット(5)の間のスペーサの役をなし、間KHeを確保
するものである。
Next, the operation will be explained. The electrical insulation ability of the refrigerant H'e near the absolute temperature 4 at which the superconducting coil is operated is extremely high, and has a withstand voltage ability of 10 to 20 kV per 1+W. Moreover, unlike solid insulation, the insulation does not deteriorate even if voltage is repeatedly applied. This embodiment utilizes the above-mentioned excellent insulating ability of He, and the electrical insulating tape (8) basically serves as a spacer between the superconducting couple (2) and the conduit (5). This is to ensure KHe.

さらに、コンジット(5)には超電導コイルのamが変
動したときに誘導性電圧が作用するので、コンジット(
5)を電圧検出のためのピックアップコイルとして使用
することもできるという副次効果がある。
Furthermore, since an inductive voltage acts on the conduit (5) when the am of the superconducting coil changes, the conduit (5)
5) can also be used as a pickup coil for voltage detection.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上の説明から明らかなように、超電導ケ
ーブルと、金属博労とコンジット間にサブチャネルを形
成して冷媒を通したので、冷却効果を損うことなく、導
体出入口間の圧力損失が著しく減少することから、冷凍
機動力の増加を要せずして熱的安定を達成することがで
きる効果がある。
As is clear from the above description, in this invention, a subchannel is formed between the superconducting cable, the metal conduit, and the conduit to pass the coolant, thereby reducing the pressure loss between the conductor entrance and exit without impairing the cooling effect. Since this decreases significantly, there is an effect that thermal stability can be achieved without requiring an increase in the power of the refrigerator.

また、この発明の別の発明は、超電導ケーブルを電気絶
縁テープでくるみ、コンジットと絶縁したので、電気絶
縁性能を著しく向上することができる・
In addition, another invention of this invention is that the superconducting cable is wrapped with electrical insulating tape and insulated from the conduit, so that the electrical insulation performance can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の一部切欠き斜視図、第2
図は他の実施例の倒断面図、第3図、第4図は従来の超
電導導体のそれぞれ横断面図および一部切欠き斜視図で
ある。 (1)・・超電導素線、(2)・・超電導ケーブル、(
3)・・冷媒通路、(4)・・金属薄帯、(5)・−コ
ンジツ) 、 (6)・・超電導導体、(7)・・サブ
チャネル、(8)φ・電気絶縁テープ。 なお、各図中、向−符号は同−又は相当部分を示す。
FIG. 1 is a partially cutaway perspective view of one embodiment of the present invention, and FIG.
The figure is a collapsed sectional view of another embodiment, and FIGS. 3 and 4 are a cross-sectional view and a partially cutaway perspective view, respectively, of a conventional superconducting conductor. (1)...Superconducting wire, (2)...Superconducting cable, (
3)...Refrigerant passage, (4)...Metal thin strip, (5)...-Conduit), (6)...Superconducting conductor, (7)...Subchannel, (8)φ・Electric insulation tape. Note that in each figure, the same or corresponding parts are indicated by the same reference numerals.

Claims (2)

【特許請求の範囲】[Claims] (1)超電導素線を多数束ねた断面四角形の超電導ケー
ブルと、この超電導ケーブルの周囲に巻付けた薄帯と、
この薄帯の周囲を覆つたコンジツトからなり、前記コン
ジツト内に極低温冷媒を強制循環させて冷却する超電導
導体において、前記薄帯は薄帯間に間隔をもつて巻かれ
ていることを特徴とする超電導導体。
(1) A superconducting cable with a rectangular cross section made by bundling a large number of superconducting wires, a thin ribbon wrapped around this superconducting cable,
A superconducting conductor comprising a conduit surrounding the thin ribbon and cooled by forced circulation of a cryogenic refrigerant within the conduit, characterized in that the thin ribbon is wound with intervals between the ribbons. superconducting conductor.
(2)超電導素線を多数束ねた断面四角形の超電導ケー
ブルと、この超電導ケーブルの周囲に巻付けた薄帯と、
この薄帯を覆つたコンジツトからなり、前記コンジツト
内に極低温冷媒を強制循環させて冷却する超電導導体に
おいて、電気絶縁テープでなる前記薄帯を備えてなるこ
とを特徴とする超電導導体。
(2) A superconducting cable with a rectangular cross section made by bundling a large number of superconducting wires, and a thin ribbon wrapped around this superconducting cable,
A superconducting conductor comprising a conduit covering the thin strip and cooled by forced circulation of a cryogenic refrigerant within the conduit, characterized in that the thin strip is made of electrically insulating tape.
JP63089302A 1988-04-13 1988-04-13 Superconductive conductor Pending JPH01264112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089302A JPH01264112A (en) 1988-04-13 1988-04-13 Superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089302A JPH01264112A (en) 1988-04-13 1988-04-13 Superconductive conductor

Publications (1)

Publication Number Publication Date
JPH01264112A true JPH01264112A (en) 1989-10-20

Family

ID=13966874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089302A Pending JPH01264112A (en) 1988-04-13 1988-04-13 Superconductive conductor

Country Status (1)

Country Link
JP (1) JPH01264112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132108A (en) * 1990-09-21 1992-05-06 Sumitomo Electric Ind Ltd Nb3al superconductor
KR100683132B1 (en) * 2005-09-29 2007-02-15 한국기초과학지원연구원 Winding device for cable-in-conduit-conductor and its winding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132108A (en) * 1990-09-21 1992-05-06 Sumitomo Electric Ind Ltd Nb3al superconductor
KR100683132B1 (en) * 2005-09-29 2007-02-15 한국기초과학지원연구원 Winding device for cable-in-conduit-conductor and its winding method

Similar Documents

Publication Publication Date Title
JP3474602B2 (en) Superconducting conductor
US4377032A (en) Superconducting cable
CA2563501C (en) Superconductive cable and method for the production thereof
US8112135B2 (en) Superconductive electrical cable
US6510604B1 (en) Superconducting cables experiencing reduced strain due to bending
US4568900A (en) Forced-cooled superconductor
US4857675A (en) Forced flow superconducting cable and method of manufacture
US3956724A (en) Superconductive winding with cooling passages
US3470508A (en) Superconducting winding
JPH0371518A (en) Superconductor
JPH01264112A (en) Superconductive conductor
KR100498972B1 (en) High temperature superconducting cable and process for manufacturing the same
JPH0475642B2 (en)
CA2299245C (en) High temperature superconducting cable and process for manufacturing the same
JPH01100821A (en) Superconductor
JP3415646B2 (en) Superconducting conductor
JPH0377607B2 (en)
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
JPS6340003B2 (en)
JPH02273417A (en) Superconductor
JP3457060B2 (en) Oxide superconducting conductor
JPH10247428A (en) Oxide superconductive wire
JPH0377207A (en) Superconductor
JP3585719B2 (en) Oxide superconducting cable unit and oxide superconducting cable including the same
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications