JPH11326566A - Fusion device pyrogenic load structure - Google Patents

Fusion device pyrogenic load structure

Info

Publication number
JPH11326566A
JPH11326566A JP10137940A JP13794098A JPH11326566A JP H11326566 A JPH11326566 A JP H11326566A JP 10137940 A JP10137940 A JP 10137940A JP 13794098 A JP13794098 A JP 13794098A JP H11326566 A JPH11326566 A JP H11326566A
Authority
JP
Japan
Prior art keywords
heat
cooling substrate
resistant material
load structure
heat load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10137940A
Other languages
Japanese (ja)
Inventor
Natsuhiko Toyoda
夏彦 豊田
Katsusuke Shimizu
克祐 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10137940A priority Critical patent/JPH11326566A/en
Publication of JPH11326566A publication Critical patent/JPH11326566A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To improve heat resistance load performance due to a temperature change by forming a heat-resistance material in high load structure where the heat-resistance material is joined onto a metal cooling substrate metallurgically in a round rod or a square rod shape with dimensions, where thermal stress being generated on joining and thermal loading does not become any problem. SOLUTION: Pyrogenic load structure is made of a tungsten heat-resistance material 4, a Cu metal cooling substrate 2, and a pure Cu cooling pipe 3. The heat-resistance material 4 is in a round rod or square rod shape with specific dimensions, and a number of heat-resistance material 4 are arranged regularly with a constant interval on the cooling substrate 2 and are joined by vacuum brazing with a Cu-Mn-Ni brazing material for the cooling substrate 2 that is made of W-Cu. Also, the dimensions of the heat-resistance material should be equivalent to those where a thermal stress being generated on joining and thermal loading does not become any problem. The cooling pipe 3 is joined to the cooling substrate 2 by vacuum brazing using the Cu-Mn-Ni brazing material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、核融合装置高熱負
荷構造に関する。詳しくは、核融合装置真空容器内の高
熱負荷構造に関する。
The present invention relates to a high heat load structure for a fusion device. More specifically, the present invention relates to a high heat load structure in a fusion device vacuum vessel.

【0002】[0002]

【従来の技術】従来の高熱負荷構造を図3に示す。同図
に示すように、Cu合金、ステンレス鋼、モリブデン等
の金属材料からなる冷却基板2内には冷却管3が貫通す
ると共にその上に、W,Mo等の高融点金属、セラミッ
クス、黒鉛材料等よりなる耐熱材料1を冶金的に接合す
る構造となっている。
2. Description of the Related Art FIG. 3 shows a conventional high heat load structure. As shown in the figure, a cooling pipe 3 penetrates into a cooling substrate 2 made of a metal material such as a Cu alloy, stainless steel, molybdenum and the like, and further has a high melting point metal such as W and Mo, ceramics and graphite material. The structure is such that the heat-resistant material 1 made of metal or the like is metallurgically joined.

【0003】この耐熱材料1の寸法は、冷却基板2の幅
と同等であり、25〜30mm程度である。このような
構造は、核融合プラズマからの高熱負荷を直接受けるた
め、高温及び熱応力の繰り返しにより、熱疲労が発生
し、耐熱材料と冷却基板2との接合部の信頼性が問題と
なっていた。
The size of the heat-resistant material 1 is equal to the width of the cooling substrate 2 and is about 25 to 30 mm. Since such a structure is directly subjected to a high thermal load from fusion plasma, thermal fatigue occurs due to repetition of high temperature and thermal stress, and the reliability of the joint between the heat-resistant material and the cooling substrate 2 has become a problem. Was.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消する核融合装置高熱負荷構造を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high heat load structure for a fusion device which solves the above-mentioned problems of the prior art.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の請求項1に係る核融合装置高熱負荷構造は、耐熱材
料を金属製冷却基板上に冶金的に接合してなる高熱負荷
構造において、前記耐熱材料は、接合時及び熱負荷時に
発生する熱応力が問題とならない程度の寸法の丸棒或い
は角棒状としたことを特徴とする。
According to a first aspect of the present invention, there is provided a high heat load structure for a fusion device, wherein a heat resistant material is metallurgically bonded on a metal cooling substrate. The heat-resistant material is characterized in that it is formed in a round bar or a square bar having such a size that thermal stress generated at the time of joining and heat load does not matter.

【0006】上記目的を達成する本発明の請求項2に係
る核融合装置高熱負荷構造は、耐熱材料を金属製冷却基
板上に冶金的に接合してなる高熱負荷構造において、前
記耐熱材料は前記冷却基板上に接合後、熱負荷時に発生
する熱応力が問題とならない程度の寸法に、接合面まで
切断加工されることを特徴とする。
According to a second aspect of the present invention, there is provided a high heat load structure for a fusion device, wherein a heat resistant material is metallurgically bonded on a metal cooling substrate. After bonding on the cooling substrate, the substrate is cut to a bonding surface to such a size that thermal stress generated at the time of heat load does not matter.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面に示す実施例を参照して詳細に説明する。 〔実施例1〕本発明の第1の実施例に係る核融合装置高
熱負荷構造を図1に示す。同図に示すように、この高熱
負荷構造は、タングステン製の耐熱材料4、Cu金属製
の冷却基板2及び純Cu製の冷却管3により構成され
る。
Embodiments of the present invention will be described below in detail with reference to embodiments shown in the drawings. Embodiment 1 FIG. 1 shows a high heat load structure of a fusion device according to a first embodiment of the present invention. As shown in the figure, this high heat load structure is composed of a heat-resistant material 4 made of tungsten, a cooling substrate 2 made of Cu metal, and a cooling pipe 3 made of pure Cu.

【0008】ここで、耐熱材料4は、外径4mm、長さ
10mmの丸棒状であり、冷却基板2上に一定間隔で規
則正しく多数配列している。耐熱材料4は、W−30%
Cu製の冷却基板2に対して、Cu−Mn−Niろうで真空
ろう付により接合している。耐熱材料4の寸法は、接合
時及び熱負荷時に発生する熱応力が問題とならない程度
大きさとする。
The heat-resistant material 4 is in the form of a round bar having an outer diameter of 4 mm and a length of 10 mm, and is regularly arranged on the cooling substrate 2 at regular intervals. Heat resistant material 4 is W-30%
Cu-Mn-Ni brazing is applied to the cooling substrate 2 made of Cu by vacuum brazing. The dimensions of the heat-resistant material 4 are set to such a degree that thermal stress generated at the time of joining and thermal load does not matter.

【0009】耐熱材料4としては、丸棒状に限らず、角
棒状としても良い。また、冷却管3は、冷却基板2に対
して、Cu−Mn−Niろうで真空ろう付により接合して
いる。
The heat-resistant material 4 is not limited to a round bar, but may be a square bar. The cooling pipe 3 is joined to the cooling substrate 2 by a Cu-Mn-Ni solder by vacuum brazing.

【0010】ここで、比較例として、図3に示すよう
に、W−30%Cu製の冷却基板2に、25mm×25
mm、厚さ10mmの純タングステン製耐熱材料(耐熱
タイル)1をCu−Mn−Niろうで真空ろう付した試験
体を作製し、電子ビームによる熱負荷試験を実施した。
Here, as a comparative example, as shown in FIG. 3, a cooling substrate 2 made of W-30% Cu is
A heat-resistant material (heat-resistant tile) 1 made of pure tungsten having a thickness of 10 mm and a thickness of 10 mm was vacuum-brazed with a Cu-Mn-Ni braze, and a heat load test using an electron beam was performed.

【0011】その結果、25mm×25mmのW製耐熱
材料1を接合した場合には、10MW/m2×10se
cの照射条件で80回照射した後、耐熱材料1と冷却基
板2との接合部近傍の耐熱材料側にクラックが発生した
が、本実施例に係る外径4mmの丸棒W製耐熱材料4を
使用した場合には、10MW/m2×10secの照射
条件で100回照射後も丸棒W製耐熱材料4と冷却基板
2との接合部に変化は見られなかった。
As a result, when the W heat-resistant material 1 of 25 mm × 25 mm is joined, 10 MW / m 2 × 10 sec
After irradiating 80 times under the irradiation condition c, cracks occurred on the heat-resistant material side near the joint between the heat-resistant material 1 and the cooling substrate 2. When no was used, no change was observed in the joint between the heat-resistant material 4 made of round bar W and the cooling substrate 2 even after irradiation 100 times under the irradiation condition of 10 MW / m 2 × 10 sec.

【0012】〔実施例2〕本発明の第2の実施例に係る
核融合装置高熱負荷構造を図2に示す。同図に示すよう
に、この高熱負荷構造は、タングステン製の耐熱材料
5、Cu金属製の冷却基板2及び純Cu製の冷却管3によ
り構成される。
Embodiment 2 FIG. 2 shows a high heat load structure of a nuclear fusion device according to a second embodiment of the present invention. As shown in the figure, this high heat load structure is composed of a heat-resistant material 5 made of tungsten, a cooling substrate 2 made of Cu metal, and a cooling pipe 3 made of pure Cu.

【0013】タングステン製の耐熱材料5は、25mm
×25mm、厚さ10mmのタイル状の純タングステン
を、W−30%Cu製の冷却基板2にCu−Mn−Niろう
で真空ろう付で接合した後、ワイヤカットにより、約5
mm×5mmの碁盤目状に、耐熱材料5と冷却基板2の
接合面まで切断加工したものである。
The heat-resistant material 5 made of tungsten is 25 mm
× 25 mm, 10 mm thick tile-shaped pure tungsten was bonded to a cooling substrate 2 made of W-30% Cu by vacuum brazing with a Cu-Mn-Ni braze, and then about 5 mm was cut by wire cutting.
This is cut into a grid of mm × 5 mm up to the joint surface between the heat-resistant material 5 and the cooling substrate 2.

【0014】耐熱材料5の切断加工される寸法は、接合
時及び熱負荷時に発生する熱応力が問題とならない程度
大きさとする。また、冷却管3は、冷却基板2に対し
て、Cu−Mn−Niろうで真空ろう付により接合してい
る。
The size of the heat-resistant material 5 to be cut is set to such a size that thermal stress generated at the time of joining and thermal load does not matter. The cooling pipe 3 is joined to the cooling substrate 2 by a Cu-Mn-Ni solder by vacuum brazing.

【0015】実施例1と同様に、電子ビームによる熱負
荷試験を実施した。その結果、10MW/m2×10s
ecの照射条件で、100回照射後も耐熱材料5と冷却
基板2の接合部には変化は見られなかった。
In the same manner as in Example 1, a heat load test using an electron beam was performed. As a result, 10 MW / m 2 × 10 s
Under the irradiation condition of ec, no change was observed in the joint between the heat-resistant material 5 and the cooling substrate 2 even after irradiation 100 times.

【0016】[0016]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明の請求項1に係る核融合装置高熱負荷
構造は、耐熱材料を金属製冷却基板上に冶金的に接合し
てなる高熱負荷構造において、前記耐熱材料は、接合時
及び熱負荷時に発生する熱応力が問題とならない程度の
寸法の丸棒或いは角棒状としたので、温度変化の繰り返
しを経ても接合部に変化がなく、耐熱負荷性能を向上さ
せることができた。
As described above in detail with reference to the embodiments, the fusion device high heat load structure according to the first aspect of the present invention comprises a heat resistant material metallurgically bonded on a metal cooling substrate. In the high heat load structure described above, the heat-resistant material has a round bar or a square bar shape having a size such that thermal stress generated at the time of bonding and heat load does not cause a problem, so that the heat-resistant material changes to the bonded portion even after repeated temperature changes. As a result, the heat load performance was able to be improved.

【0017】また、本発明の請求項2に係る核融合装置
高熱負荷構造は、耐熱材料を金属製冷却基板上に冶金的
に接合してなる高熱負荷構造において、前記耐熱材料は
前記冷却基板上に接合後、熱負荷時に発生する熱応力が
問題とならない程度の寸法に、接合面まで切断加工され
たので、温度変化の繰り返しを経ても接合部に変化がな
く、耐熱負荷性能を向上させることができた。
In the high heat load structure of a nuclear fusion device according to claim 2 of the present invention, in the high heat load structure in which a heat resistant material is metallurgically bonded on a metal cooling substrate, the heat resistant material is provided on the cooling substrate. After joining, the joint surface was cut to a size that does not cause thermal stress generated during thermal load, so the joint does not change even after repeated temperature changes, improving heat load performance Was completed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る核融合装置高熱負
荷構造を示す説明図である。
FIG. 1 is an explanatory view showing a high heat load structure of a nuclear fusion device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に係る核融合装置高熱負
荷構造を示す説明図である。
FIG. 2 is an explanatory view showing a high heat load structure of a fusion device according to a second embodiment of the present invention.

【図3】従来の核融合装置高熱負荷構造を示す説明図で
ある。
FIG. 3 is an explanatory view showing a conventional fusion device high heat load structure.

【符号の説明】[Explanation of symbols]

1,4,5 耐熱材料 2 冷却基板 3 冷却管 1,4,5 heat-resistant material 2 cooling board 3 cooling pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐熱材料を金属製冷却基板上に冶金的に
接合してなる高熱負荷構造において、前記耐熱材料は、
接合時及び熱負荷時に発生する熱応力が問題とならない
程度の寸法の丸棒或いは角棒状としたことを特徴とする
核融合装置高熱負荷構造。
1. A high heat load structure in which a heat-resistant material is metallurgically bonded on a metal cooling substrate, wherein the heat-resistant material comprises:
A high heat load structure for a fusion device, characterized in that it is shaped like a round bar or a square bar so that thermal stress generated at the time of joining and heat load does not matter.
【請求項2】 耐熱材料を金属製冷却基板上に冶金的に
接合してなる高熱負荷構造において、前記耐熱材料は前
記冷却基板上に接合後、熱負荷時に発生する熱応力が問
題とならない程度の寸法に、接合面まで切断加工される
ことを特徴とする核融合装置高熱負荷構造。
2. A high heat load structure in which a heat-resistant material is metallurgically bonded on a metal cooling substrate, wherein the heat-resistant material is bonded to the cooling substrate after the thermal stress generated at the time of heat load does not matter. A high heat load structure for a nuclear fusion device, characterized in that it is cut to the size of the joint surface.
JP10137940A 1998-05-20 1998-05-20 Fusion device pyrogenic load structure Withdrawn JPH11326566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10137940A JPH11326566A (en) 1998-05-20 1998-05-20 Fusion device pyrogenic load structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10137940A JPH11326566A (en) 1998-05-20 1998-05-20 Fusion device pyrogenic load structure

Publications (1)

Publication Number Publication Date
JPH11326566A true JPH11326566A (en) 1999-11-26

Family

ID=15210266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10137940A Withdrawn JPH11326566A (en) 1998-05-20 1998-05-20 Fusion device pyrogenic load structure

Country Status (1)

Country Link
JP (1) JPH11326566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324023A (en) * 2005-05-17 2006-11-30 Tokyo Electron Ltd Plasma treatment device
CN105067449A (en) * 2015-08-01 2015-11-18 中国人民解放军国防科学技术大学 Heat insulation apparatus capable of transmitting tension and pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324023A (en) * 2005-05-17 2006-11-30 Tokyo Electron Ltd Plasma treatment device
JP4664119B2 (en) * 2005-05-17 2011-04-06 東京エレクトロン株式会社 Plasma processing equipment
CN105067449A (en) * 2015-08-01 2015-11-18 中国人民解放军国防科学技术大学 Heat insulation apparatus capable of transmitting tension and pressure

Similar Documents

Publication Publication Date Title
JP4904767B2 (en) Semiconductor device
KR100734794B1 (en) Method for making a joint between copper and stainless steel
JP4051264B2 (en) Manufacturing method of spark plug
WO2013015262A1 (en) Clad electrode for spark plug and method for manufacturing same
US2627110A (en) Method of bonding nickel structures
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
JPH11326566A (en) Fusion device pyrogenic load structure
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JP4224050B2 (en) Heater chip thermocouple mounting structure and thermocouple mounting method
JPS6110084A (en) Method of soldering metal electrode to electroconductive silicon carbide ceramic element and silicon carbide ceramic element manufactured thereby
JP2815498B2 (en) Ceramic-copper bonded substrate with excellent thermal shock resistance
JP4910789B2 (en) Power element mounting substrate, power element mounting substrate manufacturing method, and power module
JP2010082636A (en) Welding method of pillar-like member, method of manufacturing heat radiation member, and heat radiation member
JPH08274423A (en) Ceramic circuit board
JPH0782050A (en) Junction of ceramics with metal
JP2010051989A (en) Laser joining method
JP2000286466A (en) Si-ge semiconductor device and manufacture of the same, and thermoelectric conversion module
US3147361A (en) Vacuum tight joint and method of making such joint
JPS5870985A (en) Joining method for different metals
JP3694588B2 (en) Method for producing ceramic-metal joined body and ceramic-metal joined body
JP3463760B2 (en) Electrode for thermal spray heating element and joining method
JP4246449B2 (en) Bonding strip and bonding method using the strip
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JP6344605B2 (en) Manufacturing method of semiconductor device
JP3369610B2 (en) Method for manufacturing bonded body of silicon carbide and austenitic steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802